IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR

FaultFlow: an MDE Library for Dependability
Evaluation of Component-Based Systems

Laura Carnevali, Member, IEEE, Stefania Cerboni, Leonardo Montecchi,
and Enrico Vicario, Member, IEEE

Abstract—We present a Model Driven Engineering (MDE) approach to dependability evaluation of component-based coherent dyadic
systems, implemented by the FaultFlow library, combining simple high-level modeling with powerful quantitative evaluation methods. In
the functional perspective, distinctive features are: modeling of fault propagations within individual components and between different
components, possibly not connected through physical or communication interfaces; support for non-Markovian distributions, both for
the times to the occurrence of faults and for the duration of fault-to-failure propagations; derivation of the distribution of the time to the
occurrence of a given failure; derivation of fault importance measures, for models where each fault does not propagate into multiple
failures and, viceversa, each failure does not act as fault to multiple components, achieving evaluation efficiency even for significantly

complex systems with hundreds of different faults. In the implementation perspective, distinctive features are: definition of a
custom-made extensible metamodel to specify the system structure and failure logic; automated derivation of metamodel instances
from Systems Modeling Language (SysML) Block Definition Diagrams (BDDs) and Stochastic Static Fault Trees (SSFTs); automated
derivation of the mentioned dependability measures; open source availability. We illustrate the typical modeling and evaluation
workflow with relevant uses cases, comparing functionalities with those of other dependability evaluation tools.

Index Terms—Dependability evaluation, component-based coherent systems, Model-Driven Engineering (MDE), SysML Block
Definition Diagrams (BDDs), non-Markovian Stochastic Static Fault Trees (SSFTs), importance measures, software tools and libraries.

1 INTRODUCTION

IN the development of dependable component-based sys-
tems [7], models of the failure logic [42] support the anal-
ysis of the causes and consequences of failures. The chain of
threats to dependability [5] starts when a fault is activated,
bringing a component into an error state. Then, the error can
propagate in the component up to cause its failure (intra-
component fault-to-failure propagation). In turn, a component
failure can act as external fault for other components (inter-
component failure-to-fault propagation). When fault-to-failure
and failure-to-fault propagations have probabilistic char-
acterization in time, quantitative evaluation of stochastic
models of the system failure logic enables derivation of
metrics of dependability [36], [57], [65], supporting early
validation of design choices and development of predictive
analytics for proactive fault management [59].
Model-Driven Engineering (MDE) [18], [61] has been
widely employed to automatically derive dependability
models from other artifacts, preserving consolidated indus-
trial processes as prescribed by various certification stan-
dards [1], [23], [34], [53], [54], while exploiting transfor-
mation rules to guarantee affordable complexity of model
analysis with respect to the class and size of the underlying
stochastic process. To this end, extensions of system design
languages like the Unified Modeling Language (UML) and
the Architecture Analysis & Design Language (AADL) [27]

L. Carnevali, S. Cerboni, and E. Vicario are with the Department of Informa-
tion Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze,
Italy. E-mail: {laura.carnevali,stefania.cerboni, enrico.vicario} @unifi.it

L. Montecchi is with the Department of Computer Science, Norwegian
University of Science and Technology, Sem Seelands vei 7-9, 7034 Trondheim,
Norway. E-mail: leonardo.montecchi@ntni.no

Manuscript received Month Day, Year; revised Month Day, Year.

have been defined to support representation of non-
functional properties. Notable extensions include the UML
profile for Modeling and Analysis of Real-Time Embedded
systems (MARTE) [49], the UML profile for Dependability
Analysis and Modeling (DAM) [6], the Systems Modeling
Language (SysML) [50], and the AADL Annexes on Error
Model [58] and Safety [67]. Many tools leverage these and
other high-level artifacts to specify the system failure logic,
and automatically transform them into formal stochastic
models to analyze dependability. CHESS [9], [46] supports
CHESS-ML, a custom UML-based language including tai-
lored subsets of MARTE and SysML, and implements trans-
lation into Continuous Time Markov Chains (CTMCs) and
Stochastic Petri Nets (SPNs) [16], using mainly stochastic
simulation for dependability evaluation. OSATE [20], [25]
provides a reference implementation of AADL and its An-
nexes, with translation into Static Fault Trees (SFTs) and
Reliability Block Diagrams (RBDs), and then into Discrete
Time Markov Chain (DTMCs) and CTMCs that can be
analyzed by PRISM [40]. ADAPT [55] supports translation
of AADL models (annotated with dependability attributes)
into Generalized Stochastic Petri Nets (GSPNs) [2] to per-
form the analysis by external tools. ASTRO [62] provides
an integrated environment for dependability evaluation
by supporting modeling and analysis of RBDs, CTMCs,
and SPNs. Except for CHESS, these tools rely on artifacts
that intrinsically bind specification of the system structure
with its failure logic, modeling direct couplings (i.e., low-
level failure propagations directly connected among com-
ponents, by physical or communication interfaces) but not
indirect couplings (i.e., high-level failure propagations among
not directly connected components). Moreover, none of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 2

these tools supports state-space analysis for models with
multiple concurrent non-Markovian durations, ie., with
non-Exponential general (GEN) distribution possibly with
bounded support, which actually characterize the system
behavior in many application domains [69].

Other tools like DFTCalc [4], SAFEST [74], DFTRES [11],
SHyFTOO [15], DFTSim [8], RAATS [43], MatCarloRE [44],
RADYBAN [45], and Galileo [21] evaluate dependability of
systems specified by Dynamic Fault Trees (DTFs) [57], in
part or entirely, achieving significantly greater expressivity
by modeling dependencies among the behaviors of compo-
nents, e.g., dependent events, spare components, different
operational modes. To limit the greater complexity of the
analysis of the underlying stochastic process, these tools ei-
ther restrain duration distributions in the Markovian setting
or resort to simulation-based solution methods.

Other tools like Mobius [19], GreatSPN [3], PRISM [39],
Mercury [63], SHARPE [70], SMART [17], TimeNET [76],
CPN IDE [72], FIG [10], and ORIS [51] implement quanti-
tative evaluation methods using modeling formalisms that
have different expressivity, e.g., Stochastic Activity Net-
works (SANs) [60], Performance Evaluation Process Alge-
bra (PEPA) [32], GSPNs, SPNs, Deterministic and Stochastic
Petri Nets (DSPNs) [41], Coloured Petri Nets (CPNs) [35], In-
put/Output Stochastic Automata (IOSA) [22], and Stochas-
tic Time Petri Nets (STPNs) [73]. These tools do not support
automated derivation of dependability models from high-
level artifacts. Thus, using them to model and analyze the
failure logic of complex systems requires domain analysts to
have strong expertise in stochastic modeling and analysis.

In this paper, we present the MDE approach to depend-
ability evaluation of component-based coherent' dyadic?
systems, implemented by the FaultFlow Java library [24]. It
models both structural information on the system hierarchi-
cal composition, specified by a SysML Block Definition Dia-
gram (BDD) [50], and behavioral information on fault propa-
gations, specified by a Stochastic Static Fault Tree (SSFT), a
variant of Component Fault Tree (CFT) [31], [37] with prob-
abilistic choices and delays characterized by a continuous-
time probability distribution. Fault propagations occur via
physical and communication interfaces between compo-
nents, or stigmergic information flows [38], i.e., component-
environment interactions affecting other components within
the same environment. The duration to the occurrence or
propagation of a given fault is characterized by a non-
Markovian Probability Density Function (PDF), possibly
with firmly bounded support, facilitating fitting of analyt-
ical distributions from statistical data. FaultFlow derives the
Cumulative Distribution Function (CDF) of the time to the
occurrence of a given failure and, if no fault propagates into
different failures and viceversa, importance measures [75]
characterizing how faults contribute to failures over time,
i.e.,, numerical ranks used in reliability engineering to quan-
tify the impact of component faults on the entire system and
to decide which components to maintain first.

FaultFlow offers a custom-made extensible metamodel,
not tied to specific frameworks like the Ecore metamodel of

1. A coherent system is a system where an additional event cannot
cause the top-level event to switch from failed to operational again.
2. A dyadic system is a system that can be either operational or failed.

the Eclipse Modeling Framework [66], supporting Model-
to-Model (M2M) transformations and integration with tools
and libraries for quantitative evaluation of stochastic mod-
els. A metamodel instance can be automatically derived
from a SysML BDD modeling the system structure and
an SSFT modeling the system failure logic, guaranteeing a
correct-by-construction configuration of metamodel instances.
A metamodel instance can be automatically translated into
an STPN, encoded as an instance of the metamodel of the
Sirio Java library® of the ORIS tool, automatically deriving
the time-to-failure CDF through the analysis method of [33].
If no fault propagates into different failures and viceversa,
a metamodel instance can be automatically translated into
the statechart-based formalism of Hierarchical Semi-Markov
Processes with parallel regions (HSMPs) [13], encoded as
instance of the metamodel of the Pyramis Java library*.
The M2M transformation enables separate analysis of inde-
pendent fault propagations by the solution method of [13],
guaranteeing efficient evaluation of the time-to-failure CDF
and importace measures of faults, even for significantly
complex systems with hundreds of different faults.

Major contributions with respect to the FaultFlow API
preliminarily presented in [52] include: i) extensive descrip-
tion of the workflow and relevant use cases; ii) integration
with Pyramis, implementing automated transformation of
instances of the FaultFlow metamodel into instances of the
Pyramis metamodel; iii) formal proof of correctness of such
model-to-model transformation, by characterizing the set of
STPN models that defines the semantics of the two meta-
models; iv) application to two case studies, showing efficient
computation of importance measures that characterize the
contribution of faults to failures over time; v) comparison
of the capabilities with those of other competing tools for
dependability evaluation; and vi) open-source release of
the FaultFlow library under the AGPLv3 licence [24], also
supporting replication of the experimental results.

In the following, first we illustrate the FaultFlow capa-
bilities (Section 2), syntax, and semantics (Section 3). Then,
we recall the Pyramis syntax and semantics, we translate
FaultFlow metamodel instances into Pyramis metamodel
instances, and we derive importance measures of faults
(Section 4). Next, we illustrate relevant FaultFlow use cases
(Section 5) and we compare the FaultFlow capabilities with
those of other tools for dependability evaluation (Section 6).
Finally, we draw our conclusions (Section 7). The proof
of Theorem 1 is reported in the Supplemental Material,
together with some details on the experiments of Section 5.

2 FAULTFLOW OVERVIEW

In this section, we characterize the class of component-based
systems (Section 2.1) as well as the dependability measures
supported by FaultFlow (Section 2.2), and we illustrate the
typical modeling and evaluation workflow (Section 2.3).

2.1 Component-based systems

FaultFlow supports modeling of component-based systems,
with structure specified by a SysML BDD through the com-

3. https:// github.com/oris-tool/sirio
4. https:/ / github.com/oris-tool/pyramis

https://github.com/oris-tool/sirio
https://github.com/oris-tool/pyramis

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 3

UC1 - CRUD model

’ SysML Block Definition Diagram and Stochastic Static Fault Tree

v

UC2 - Export STPN failure
logic model to XPN

|1.

N (2.]

derivation

FaultFlow metamodel

metamodel entities

FaultFlow operational data
instantiation

J -

«include»
convert failure logic model to STPN
«include»

metamodel entities l

metamodel instance

l concrete instances
(structure model and

i ucs- Evalum s dependabilty

User ‘

database of knowledge and operational data

failure logic model)

uc4 - Evaluahe dependablllty

metamodel instance
(structure model and
failure logic model)

failure mode 9.

calculate minimal cut sets
-

metamodel instance
(structure model and

«include»
convert failure logic model to HSMP

«include»

(3.

failure logic model)
N

) (=

FaultFlow to Sirio
M2M transformation

FaultFlow to Pyramis
M2M transformation .
minimal

UCS - Calculate importance
measures by Pyramis

XPN file of the
STPN model

l STPN model ~ HSMP modeli

~ HSMP model | HSMP model cut sets

calculate Birnbaum
importance measures

(5.

0 (@

calculate Fussell-Vesely
importance measures

by the ORIS GUI

(4 |)2
L simulation and evaluation J Ldependablllty evaluatlonbyJ Ldependablllty evaluation byJ importance measures

Sirio

compute Birnbaum compute Fussell-Vesely
importance measures
Pyramis by Pyramis by Pyramis

‘ time-to-failure CDF ‘

‘ time-to-failure CDF ‘ ‘ Birnbaum measures

‘ Fussell-Vesely measures

y «include»
calculate minimal cut sets
(@)

(b)

Fig. 1. FaultFlow library: (a) UML use case diagram of the main functionalities provided by the FaultFlow API (light blue highlights main use cases);
(b) UML dataflow diagram of the typical modeling and evaluation workflow (yellow is used for modeling activities, red for M2M transformations, green
for evaluation activities supported by the API, and gray for evaluation activities manually performed through the GUI of the external tool ORIS).

position of blocks, according to the following EBNF syntax:

system:=block

block:=component | composite{block, ..., block,}

FaultFlow models the failure logic of component-based co-
herent dyadic systems by means of SSFTs, an extension of
SFTs defined by the following EBNF syntax:
SSFT:=node
node:=leaf|gate\prop(leaf)\prop(gate)
gate::AND{nodel,...,noden}\OR{nodel,..
| voT{k, nodeq, ..

.,node,}
.,nodey,}

Specifically, leaf nodes model internal faults of components,
whose occurrence has a stochastic duration characterized by
a time-to-fault PDF (see Definition 1); logical gates model
conditions that activate fault-to-failure propagations (which
can be activated also by individual faults); and, propagation
nodes model fault-to-failure propagations taking a stochas-
tic delay characterized by a fault-to-failure PDF (se Defini-
tion 2) and, possibly, failure-to-fault propagations occurring
with a given probability(see Definition 3).

Definition 1 (Time-to-fault PDF). Given a fault z of a
component, the time-to-fault PDF ff#u!t(#) is the PDF of the
duration elapsing from the initial time to the fault occur-
rence (the fault occurrence is also termed fault activation).

Definition 2 (Fault-to-failure PDF). Given a failure y of a
component or system, caused by a set of faults identified
by a boolean expression (with AND, OR, and VOT(k/N)
operators), the fault-to-failure PDF fP™P(t) is the PDF of
the duration elapsing from the time at which the boolean
expression of faults becomes true to the failure occurrence.

Definition 3 (Failure-to-fault probability). Given a failure y
of a component or system, the failure-to-fault probability p,

is the probability (not depending on time) that failure y acts
as external fault for other components or systems.

Given that FaultFlow represents coherent systems, SSFTs
consist of AND gates (i.e., the output event occurs if all
input events occur), OR gates (i.e., the output event occurs
if any input event occurs), and VOT(k/N) gates (i.e., the
output event occurs if at least k of the IV input events occur).

Moreover, the time-to-fault PDFs and the fault-to-failure
PDFs are provided in analytical form in the class of expoly-
nomial functions, also termed exponomials [70], defined as
the sum of products of Exjgonentlal and polynomial terms,
ie, f(x) = SN en Iy a@mne ™ mnon In particular,
exponomials may have analytlcal representation over the
entire domain or be piecewise-defined over multiple sub-
domains, they facilitate fitting of analytical PDFs from statis-
tics of duration data, and they are supported by the ORIS
tool [51] and its Sirio Java library, exploited by FaultFlow
for the evaluation of dependability measures.

2.2 Dependability measures

FaultFlow derives the duration CDF of failure processes (not
necessarily top-level failures) in numerical form, based on
the structure of the SSF, the time-to-fault PDFs, and the fault-
to-failure PDFs (as illustrated in Sections 3.2 and 4.3).

Definition 4 (Time-to-failure CDF). Given a failure y of a
component, the time-to-failure CDF Fj*! is the CDF of the
duration from the initial time to the failure occurrence.

Note that, in Definition 4, the failure may be the top-level
system failure. Moreover, the duration is measured since the
initial time, not since the activation of faults triggering the
fault-to-failure propagation, as done in Definition 2.

Evaluation also supports computation of the Birnbaum
measures and the Fussel-Vesely measures of faults [71].

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 4

Definition 5 (Birnbaum measure). The Birnbaum measure
IB(t) of fault x at time ¢ is the difference between the system
time-to-failure CDF Ff;él(t) at ¢ given that = has occurred

by t and F!2l(¢) given that = has not occurred by ¢:

sys

I3 (t) = F2(t) prowety=1 — Foi (8) prae =0 ¥t (1)

sys

where F2U! js the time-to-fault CDF of fault z, i.e., F1*"(¢)
= fot flault(7) dr, where ffault(7) if the time-to-fault PDF.
For each time ¢, st}'i‘él (t)|pawi(1)=1 can be computed as
the system time-to-failure CDF by assuming that Ffu!t(¢)
is the generalized CDF of a Dirac Delta function® centered
att =0, and st;‘él(th Frauit(1)=o can be derived as the system
time-to-failure CDF by removing fault = and the related
fault-to-failure propagations from the system failure logic.
The derivation of the Fussell-Vesely measure requires the
computation of the Minimal Cut Sets (MCSs) [68].

Definition 6 (Minimal Cut Set). Given a failure y of a
component or system, a Minimal Cut Set (MCS) is a minimal
combination of faults that induces the failure .

For instance, let a fault-to-failure propagation be started
when the following boolean expression of faults 1, ..., 24
becomes true: AND{z1,x2, OR{x3,x4}}). Thus, the MCSs
are {$1, Ta, 1‘3} and {JJ1, To, 334}. Note that {331, To, T3, 564}
is also a cut set but not an MCS.

Definition 7 (Fussell-Vesely measure). The Fussell-Vesely
measure I} ¥ (t) of fault x at time ¢ is the ratio of i) the sum
of the probabilities Fy ((t) that MCS I'; has occurred by ¢

(i.e., that all faults of I'; have occurred by t) for each MCS

I'; containing « and ii) the sum of F}, (t) for each MCS T';:

LYty=) Fﬁys(t)/ZFﬁys(t) vi. @

HEIS ¥

Fl.(t) is the system time-to-failure CDF given that only
th_e faults contained in I'; can occur. According to this,
F3,4(t) can be derived as the system time-to-failure CDF by

removing the faults that do not belong to I'; and the related
fault-to-failure propagations from the system failure logic.

2.3 FaultFlow workflow

The Use Case Diagram (UCD) of Fig. 1a illustrates the main
functionalities of the FaultFlow API, exposed to the user as
Java Standard Edition API. The Data Flow Diagram (DFD)
of Fig. 1b describes the usual modeling and evaluation
workflow supporting the Use Cases (UCs) of Fig. 1a.

o UC1: CRUD model: A metamodel instance can be ei-
ther automatically derived from a JSON file encoding
the BDD of the system structure and the SFT of the
system failure logic (i.e., processes 1 and 2 in Fig. 1b)
or manually created with a programmatic approach.
Then, the model can be persisted onto the database.

e UC2: Export STPN failure logic model to XPN:
Given a failure mode (not necessarily a top-level sys-
tem failure mode), a FaultFlow metamodel instance
can be converted into a Sirio metamodel instance

5. Without loss of generality, we do not provide a formal definition
of generalized CDF and generalized PDF of a discrete random variable.

(i.e., process 3), being an STPN modeling the failure
logic. In turn, the STPN can be also exported as an
XPN file, which can be solved by analysis or simula-
tion through the GUI of the ORIS tool (process 4).

e UC3: Evaluate dependability by Sirio: The STPN
of a failure mode can be analyzed through Sirio to
derive the time-to-failure CDF (i.e., process 5).

o UC4: Evaluate dependability by Pyramis: Given a
failure mode, a FaultFlow metamodel instance can
be converted into a Pyramis metamodel instance
(i.e., process 6), being an HSMP modeling the failure
logic. In turn, the HSMP can be analyzed by Pyramis
to derive the time-to-failure CDF (i.e., process 7).

e UCS5: Calculate importance measures by Pyramis:
The HSMP of a failure mode can be analyzed by
Pyramis to derive the Birnbaum and Fussell-Vesely
importance measures [71], [75] of faults (processes 8
and 10, respectively). This step requires to compute
the MCSs, which can be derived from the metamodel
instance and the specific failure mode (process 9).

3 FAULTFLOW SYNTAX AND SEMANTICS

In this section, we illustrate the abstract syntax (Section 3.1),
semantics (Section 3.2), and concrete syntax (Section 3.3) of
the FaultFlow library, discussing modeling and evaluation
limitations, and exemplifying the described functionalities
with a programmatic approach through the Java APL

3.1 Abstract syntax

Fig. 2 shows the metamodel of FaultFlow, which provides
an abstract and reusable specification for component-based
systems in a general perspective of knowledge. On the one
hand, the metamodel supports the representation of the hi-
erarchical structure of the system. Specifically, a system (rep-
resented by class SystemType) consists of a hierarchy of
hardware/software components (class ComponentType).
Each component is either a simple component, or a com-
posite component made of subcomponents directly con-
nected through physical or communication interfaces (class
CompositionPortType). The entire system is modeled by
the top-level component (i.e., the Component Type instance
represented by the attribute topLevelComponentType
referenced by the SystemType instance).

On the other hand, the metamodel also supports repre-
sentation of fault-to-failure and failure-to-fault propagations
within the chain of threats to dependability of a system [5],
exploiting suffix Mode for classes that model dependability
concepts [5] to highlight abstractness and reusability of the
provided system specification. Specifically, fault-to-failure
propagations (class ErrorMode) model internal failure logic
of components, from activation of faults (class FaultMode)
to manifested failures (class FailureMode). A fault-to-
failure propagation is defined by: i) a boolean expression (at-
tribute activationFunction of class ErrorMode) defin-
ing which faults need to be active to cause propagation into
errors and then to the failure; ii) a time-to-failure Probability
Density Function (PDF) (attribute faultToFailurePDF),

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 5

SystemType
I
-topLevelComponentType |1 1,_x -componentTypes

<

-affectedComponentType_| ComponentType

et

CompositionPortType

-children

-parent: ComponentType
-children: ComponentType

Reflection ™3 System
e et -7 []
Component
-components
-serial: String
-componentType: ComponentType

-faultModes 0.* $ -errorModes

-outgoingFailureMode

-events

-
S |

<> Event

| FaultMode 1 ErrorMode 1

FailureMode | :

#timestamp: BigDecimal

-activationFunction: BooleanExpression
-faultToFailurePDF: String

—7

I 1
| ExternalFaultMode | InternalFaultMode

L _timeToFaultPDF: String

—externalFauItModeT1
-propagationPortTypes

-propagatedFailureMode

[1 1
Fault Failure

-faultMode: FaultMode

Error

-errorMode: ErrorMode || -failureMode: FailureMode

PropagationPortType

0.*

-failureToFaultProbability: BigDecimal

|Knowledge level 'ﬁ ----- | Operational level 'ﬁ

Fig. 2. UML class diagram of the metamodel of the FaultFlow library.

where the time-to-failure is intended as the duration elaps-
ing from the activation of the boolean expression of faults
to the failure occurrence. In turn, faults can be either
internal faults (class InternalFaultMode) activated by
interior processes of components and characterized by a
time-to-fault PDF (attribute t imeToFaultPDF), or external
faults (class ExternalFaultMode) activated by exterior
processes propagated from other components (at any hier-
archy level). Conversely, failure-to-fault propagations (class
PropagationPortType) characterize occurrence of fail-
ures of source components that act as external faults to other
components, and are defined by the probability (attribute
failureToFaultProbability) thata component failure
(attribute propagatedFailureMode) affects another com-
ponent (attribute affectedComponent) by activating one
of its external faults (attribute externalFaultMode).

Moreover, the metamodel provides a stochastic char-
acterization for durations of failure processes (attribute
timeToFaultPDF of class InternalFaultMode and at-
tribute faultToFailurePDF of class ErrorMode) by sup-
porting any PDF in the class of exponomial functions [70].

Summarizing, three primary entities are defined: 7) class
CompositionPortType, modeling the system hierarchy in
terms of hardware/software communications among com-
ponents; ii) class ErrorMode, characterizing fault-to-failure
propagations; and, iii) class PropagationPortType, char-
acterizing failure-to-fault propagations. Fault-to-failure and
failure-to-fault chains of threats either occur across phys-
ical and communication interfaces between components
(modeled by class CompositionPortType), or are due to
component-environment interactions affecting other com-
ponents sharing the same environment (modeled by class
PropagationPortType). Note that the metamodel repre-
sents failure propagation mechanisms with both branches
and confluences, notably including multiple contributions
of a single fault to the same failure through multiple propa-
gation paths, so that the fault comprises a repeated event.

Note that classes at knowledge and operational levels
model concepts independent of specific application do-
mains, e.g., specific types of component. Thus, these classes
are few and expected to change or increase in number only
if the conceptual elements need to be changed or extended.

3.1.1 Running example

We consider a variant of the Gas Detection System (GDS)
of [48], consisting of 3 gas detection sensors operating in
a confined area of a petroleum installation, i.e., Gas Detec-
tors A, B, and C (GDA, GDB, and GDC, respectively). The
area can be logically divided in 2 parts: area X1, where GDA
and GDB are located, close to each other (for redundancy);
and, area X2 where GDC is located. In turn, each gas
detector GDA, GDB, and GDC contains a physical unit to
sense the gas, i.e., Initiators A, B, and C (IA, IB, and IC
respectively). Fig. 3a shows the object diagram of the Fault-
Flow metamodel instance modeling the GDS structure. Each
component is modeled by a Component Type instance with
the same name. Composition relations between components
are modeled by a CompositionPortType instance. For
example, the Component Type instance GDS models the top-
level component, the Component Type instance GDA models
the GDA, and the CompositionPortType instance GDS_-
GDA_CPort models the fact that the GDS contains the GDA.

The GDS of [48] is extended with a failure logic made
of 12 internal faults (ie, F1, ..., F12), modeling both
fault-to-failure and failure-to-fault propagations across the
GDS hierarchy. Specifically, each initiator IA, IB, and IC
has 2 internal faults, each causing an immediate failure
(e.g., IB_Failurel occurs as soon as F5 or F6 has occurred).
In turn, the failure of each initiator IA, IB, and IC acts as
an external fault for the corresponding gas detector GDA,
GDB, and GDC, respectively (e.g., IB_Failurel acts as the
external fault GDB_EF1 to GDB). Each gas detector also has
2 internal faults affecting its sensing capability. When its
external fault and at least one of its internal faults have
occurred, each gas detector then fails by missing to detect
the gas (e.g., the fault propagation causing GDB_Failurel
is activated as soon as the external fault GDB_EF1 has
occurred and the internal fault F7 or F8 has occurred).
Detected gas values are computed based on values sensed
within a bounded time of 24h, and the fault-to-failure
propagation takes a non-negligible time (e.g., the fault
propagation that causes GDB_Failurel is not immediate).
Finally, failure of each gas detector acts as an external
fault for the GDS (e.g., GDB_Failurel acts as the external
fault GDS_EF2 to GDS), which fails as soon as both GDA

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 6

System: SystemType

-topLevelComponent

GDS: ComponentType

-children[0]
| GDS_GDAt: CompositionPortType

-children[1]
GDS_GDB: CompositionPortType

[I
’ GDB: ComponentType | GDC: ComponentType

-children[2]
GDS_GDC: CompositionPortType

GDA: ComponentType

|—chi|dren[0] I -children[0]
’ GDB_IB: CompositionPortType | GDC_IC: CompositionPortType

I I
| IB: ComponentType | IC: ComponentType

(@)

-children[0]
| GDA_IA: CompositionPortType

IA: ComponentType

GDB_Failure1: FailureMode

Tou!goingFailureMode

GDB_Error1: ErrorMode

-activationFunction: GDB_EF1&&(F7||F8)
-faultToFailurePDF: "unif(0,24)"

GDB_EF1: ExternalFaultMode F7: InternalFaultMode F8: InternalFaultMode
-externalFaultMode

-timeToFaultPDF: "exp(0.00008)" | | -timeToFaultPDF: "erlang(3,0.0001)"
IB_Failure1_to_GDB_EF1_PPort: PropagationPortType
-failureToFaultProbability: BigDecimal. ONE

-errorModes(O] [Gppg; ComponentType
] —

-affectedComponentType

-propagationPorts[0]

-propagatedFailureMode

IB_Failure1: FailureMode

-outgoingFailureMode
-errorModes[0]

I1B_Error1: ErrorMode

-activationFunction: F5||F6
-faultToFailurePDF: "dirac(0)"

faultModes[0] |,
F5: InternalFaultMode
-timeToFaultPDF: "exp(0.0001)"

(b)

IB: ComponentType

-faultModes|[1]

F6: InternalFaultMode
-timeToFaultPDF: "erlang(2,0.0001)"

Fig. 3. Gas Detection System (GDS) [48] (times expressed in h): UML object diagram describing (a) the FaultFlow metamodel instance that
represents the GDS structure, and (b) the FaultFlow metamodel instance that represents the failure logic yielding Failure1 of component GDB.

and GDB located in area X1 have failed, or GDC located
in area X2 has failed (i.e., GDS_Failurel occurs as soon
as both the external faults GDS_EF1 and GDS_EF2 have
occurred or the external fault GDS_EF3 has occurred). To
facilitate the interpretability of results, the probability of |

o Ul W N

<

10

a failure mode (i.e., probability that a failure will even-
tually occur given that its fault activation function has |
become true) is not modeled, though it could be accounted !!
by the attribute failureToFaultProbability of the!
PropagationPortType instance that specifies such com- ¢

19
ponent failure as external fault of the component itself. 20

Stochastic parameters of the failure logic are selected as
follows. For internal faults of initiators and gas detectors, >:
we consider Exponential time-to-fault PDF, fitting expected 2
values in the same order of magnitude as those reported -
in [48], and Erlang time-to-fault PDF, fitting also an arbitrary -
defined coefficient of variation. For fault-to-failure propaga- -,
tions of gas detectors, which propagate a fault into a failure -,
within a maximum time of 24 h, we consider a uniform PDF
over the min-max interval [0, 24] b, as typically done in the 7/
literature on stochastic models by advocating a principle of ¥ >
maximum entropy [6]. The remaining fault-to-failure prop- ‘!
agations occur immediately, and failures of initiators and *’
gas detectors act as external faults with probability 1. Note »
that the approach can be easily tailored to any other spec1f1c 4“
statistics and approximant, since FaultFlow supports mod- 4
els with non-Markovian duration distributions in the class

52

of exponomial functions, possibly with bounded support. s
Fig. 3b shows the object diagram of the FaultFlow meta- -
model instance representing the failure logic that yields 3‘1
the failure of component GDB. Specifically, GDB_Failurel
represents a failure of component GDB, which propagates ;/
when its external fault GDB_EF1 has occurred and at least on
of its internal faults F7 and F8 has occurred. In turn, exter- *
nal fault GDB_EF1 propagates from failure IB_Failurel ® ““
of component IB, which propagates when at least one of “\
internal faults F5 and F 6 of IB has occurred. &
Listing 1 shows the Java code defining the metamodel
instance specified by the object diagrams of Figs. 3a and 3b:

faultModes = new HashMap<>();
errorModes = HashMap<> () ;
failureModes = w HashMap<> () ;
propagationPorts = new ArrayList<>();
// Definition of the SoS structure
System SoS = System("SystemOfSystems") ;
Component GDS = new Component ("GasDetectionSystem");
Component GDA = new Component ("GasDetectorA");
Component GDB = new Component ("GasDetectorB");
Component GDC = new Component ("GasDetectorC");
Component IA = Component ("InitiatorA");

13 Component IB Component ("InitiatorB");
Component IC = new Component ("InitiatorC");

SoS.addComponent (GDS, GDA, GDB, GDC,
SoS.setTopLevelComponent (GDS) ;

Ia, IB, IC);

CompositionPort GDS_GDA_CPort = r
CompositionPort GDS_GDB_CPort CompositionPort (GDB, GDS);
CompositionPort GDS_GDC_CPort = new CompositionPort (GDC, GDS);

¢ w CompositionPort (GDA, GDS);
GDS.addCompositionPorts (GDS_GDA_CPort,GDS_GDB_CPort, GDS_GDC_CPort) ;

Lev

CompositionPort GDA_IA_CPort = new CompositionPort (IA, GDA);

5 GDA.addCompositionPorts (GDA_IA_CPort);

CompositionPort GDB_IB_CPort = new CompositionPort (IB, GDB);

7 GDB.addCompositionPorts (GDB_IB_CPort);

CompositionPort GDC_IC_CPort = new CompositionPort (IC, GDC);

9 GDC.addCompositionPorts (GDC_IC_CPort);

// Definition of the failure logic
InternalFaultMode F5 =
F5.setArisingPDF ("exp (0 1)");
InternalFaultMode F6 = InternalFaultMode ("F6");
F6.setArisingPDF ("erlang (4,0 005)") ;
InternalFaultMode F7= new InternalFaultMode (
F7.setArisingPDF ("exp 02)") ;
InternalFaultMode F8 InternalFaultMode ("F8");
F8.setArisingPDF ("erlang))
faultModes.put (F5.

characterizing GDB_Failurel

InternalFaultMode ("F5");

wg7my

getName () i
), F6);

(
faultModes.put (F6.getName (
faultModes.put (F7.getName (), F7);
faultModes.put (F§.getName (), F8);
ExternalFaultMode GDB_EF1 = new ExternalFaultMode ("GDB_EF1");
faultModes.put (GDB_EF1.getName (), GDB_EF1);
FailureMode IB_Failurel = new FailureMode ("IB_Failurel");
ErrorMode IB_Errorl = new ErrorMode ("IB Errorl");
IB_Errorl.addInputFaultMode (F5, F6);
IB_Errorl.setOutgoingFailure (IB_Failurel);
IB_Errorl.setEnablingCondition("F5 || F6", faultModes);

IB_Errorl.setPDF ("dirac(0)");

errorModes.put (IB_Errorl.getName (), IB_Errorl);
failureModes.put (IB_Failurel.getDescription (),
IB.addErrorMode (IB_Errorl);

IB Failurel);

FailureMode GDB_Failurel = new FailureMode ("
ErrorMode GDB_Errorl = ErrorMode ("G
GDB_Errorl.addInputFaultMode (F7, F8, GDB_EF1);
GDB_Errorl.setOutgoingFailure (GDB_Failurel);

Failurel");
")

new GDB_Er:

62 GDB_Errorl.setEnablingCondition("(F7 || F8) && GDB_EF1", faultModes);
63 GDB_Errorl.setPDF ("unif (0,6)");

errorModes.put (GDB_Errorl.getName (), GDB_Errorl);

failureModes.put (GDB_Failurel.getDescription(), GDB_Failurel);

GDB.addErrorMode (GDB_Errorl);

PropagationPort IB_Failurel to_GDB_EF1_PPort =
new PropagationPort (IB_Failurel, GDB_EFI,
IB.addPropagationPort () ;

Listing 1. Java code snippet defining the FaultFlow metamodel instance
illustrated by the UML object diagrams of Figs. 3a and 3b.

GDB) ;

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 7

3.2 Semantics

The FaultFlow semantics is defined through translation of
metamodel instances into STPNs [73], a formal model of
concurrent timed systems with stochastic temporal parame-
ters and discrete probabilistic choices. In STPNs, transitions
(depicted as bars) model stochastic durations of activities,
tokens (depicted as dots) within places (depicted as circles)
model the discrete logical state of the system, and directed
arcs (depicted as directed arrows) from input places to tran-
sitions and from transitions to output places model prece-
dence relations among activities. A transition is enabled by a
marking (i.e., an assignment of tokens to places) if each of its
input places contains at least one token and if its enabling
function evaluates to true. Upon enabling, each transition
samples a time-to-fire from its PDF, which can be EXP, GEN,
or the generalized PDF of a Dirac Delta function. In the
latter case, the transition time-to-fire takes a deterministic
value 7, and the transition is termed deterministic (DET)
if 7 # 0 and immediate (IMM) if 7 = 0. The transition
with minimum time-to-fire is selected to fire, removing one
token from each of its input places and adding one token to
each of its output places. Ties among transitions with equal
time-to-fire are solved by a random switch determined by
probabilistic weights associated with transitions.

To translate metamodel instances into STPNs, a bottom-
up visit of metamodel instances is performed, starting from
the InternalFaultMode instances. Two transformation
rules R1 and R2 are applied, concerning modeling of fault-
to-failure and failure-to-fault propagations, respectively. In
particular, R1 maps each time-to-fault PDF and each fault-
to-failure PDF into a transition with the same PDF:

e R1. Each InternalFaultMode instance is trans-
lated into a transition with PDF equal to the attribute
timeToFaultPDF, input place modeling activation
of the internal process yielding the fault, and output
place modeling the fault occurrence, e.g., in Fig. 5a,
place F5 models activation of the internal process
leading to fault F5 of the IA, transition F5_0ccur-
rence models the fault process duration, and place
F5_0ccurred models the fault occurrence.

Each ErrorMode instance is translated into a transi-
tion with PDF equal to the attribute timeToFail-
urePDF, and enabling function derived from the
attribute activationFunction by replacing each
fault name with the name of the place modeling the
fault occurrence, i.e., the enabling function is a con-
straint on token counts in places representing occur-
rence of the FaultMode instances referenced by the
ErrorMode instance. Moreover, the transition has an
input place modeling activation of the fault-to-failure
process as soon as the enabling function becomes
true, and an output place modeling occurrence of the
failure represented by the FailureMode instance
referenced by the ErrorMode instance. For exam-
ple, in Fig. 5a, transition IB_Failurel_Occurrence
models duration of propagation from faults F5
and F6 to failure Failurel of IB: its enabling
function is F5_0ccurred||F6_Occurred; its input
place IB_Errorl models activation of the fault-to-
failure propagation as soon as F5_Occurrence or

F6_0ccurrence has fired; its output place IB_Fail-
urel_Occurred models IB_Failurel occurrence.

e R2 The PropagationPortType instances referenc-

ing the same FailureMode instance are collectively
translated into an IMM transition ¢ having the place
modeling the failure occurrence as input place, and
an output place for each PropagationPortType
instance i, e.g., the PropagationPort instance
IB_Failurel_to_GDB_EF1_PPort in Fig. 3b is
translated into the IMM transition IB_Failurel_-
to_GDB_EF1 in Fig. 5a, whose input place is IB_Fail-
urel_Occurred modeling occurrence of IB_Failurel.
For each PropagationPortType instance i, if
the attribute failureToFaultProbability p; is
equal to 1, the output place of ¢ is the place mod-
eling occurrence of the ExternalFaultMode in-
stance referenced by the PropagationPortType
instance i, e.g., the output place of IB_Failurel_-
to_GDB_EF1 is GDB_EF1_Occurred representing oc-
currence of the external fault GDB_EF1 propagated
from IB_Failurel.
Otherwise, if the attribute failureToFaultProba-
bility p; is lower than 1 (see Fig. 4), then the out-
put place of ¢t (i.e., place IB_Failurel_to_GDB_EF1-
_router) is the input place of two IMM transi-
tions t;, and t;; (i.e., transitions IB_Failurel_ PROP-
AGATED_to_GDB_FEF1 and IB_Failurel NOT_PROPA-
GATED_to_GDB_EF1, respectively) with weight p; and
1 — p;, respectively, where the output place of t;,
models the occurrence of the external fault and
t;p has no output place. Note that, to guarantee
that the propability of propagating the failure into
each external fault EF; is actually equal to p;, the
IMM transitions t;, and t;;, associated with each
PropagationPortType instance i have different
priority than the IMM transitions associated with any
other PropagationPortType instance.

The FaulFlow API implements translation of metamodel
instances into STPN models according to two modes: in
mode PetriNetExportMethod.FAULT_ANALYSIS, the
STPN represents concurrent execution of all fault propaga-
tion processes, i.e., each place modeling activation of the
process leading to an internal fault contains one token (and
each place modeling activation of a fault-to-failure prop-
agation contains one token); in mode PetriNetExport-
Method.FAULT_INJECTION, the STPN represents con-
current execution of selected fault propagation processes,
i.e., each place that models activation of the process leading
to a selected internal fault contains one token (and each

IB_Failurel_to_GDB_EF1 IB_Failurel_PROPAGATED_to_GDB_EF1

IB_Failurel_to|GDB_EF1_router GDB_EF1_Occurred
L
weight = pj
IB_Failurel_NOT_PROPAGATED_to_GDB_EF1

I-»weight:l»pi

Fig. 4. Fragment of the STPN of Fig. 5a if the attribute rout ingProb-
ability of IB_Failurel to_GDB-_EF1_PPort in Fig.3bisp; < 1.

2 system SoS = GasDetectionSystemBuilder.getInstance ()
3 String failureName =
PetriNetTranslator pnt = PetriNetExporter.exportPetriNetFromSystem(

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 8

F5_Occurrence

(OO0

F5 F5_Occurred IB_Errorl
Erl(2,0.0001) I

F6_Occurrence L .

enabling function:
F5_Occurred || F6_Occurred
F6 F6_Occurred
0.00008
F7_Occurrence [0,24] uni
GDB_Failurel_Occurrence
e

F7_Occurred

Erl(3,0.0001)
F8_Occurrence

F7

GDB_Errorl ! GDB_Failurel_Occurred

enabling function:

F8 F8_Occurred

(@

IB_Failurel_Occurrence IB_Failurel to_GDB_EF1

3 IB_Failurel Occurred GDB_EF1_Occurred

GDB_EF1_Occurred && (F7_Occurred || F8_Occurred) 0

0.7

GDB_Failurel
IB_Failurel (GDB_EF1)
0.6 1

0.5 1

0.4 4

0.3 1

0.2 1

0.14

0.0

4000 5000 6000 7000

time (h)

(b)

1000 2000 3000 8000

Fig. 5. GDS of Fig. 3 (times expressed in h): (a) STPN model of the failure logic yielding Failure1 of component GDB; and, (b) CDFs of the duration
of the failure processes that determine Failure1 of component IB and Failure1 of component GDB.

place modeling activation of a fault-to-failure propagation
contains one token) and each transition modeling the occur- s

rence of a selected fault may take a selected deterministic
11

value, thus supporting representation of injected faults. 2/

FaultFlow exploits Sirio to evaluate the numerical form o
of the time-to-failure CDF F;ail(t) of a given failure y, as |,
specified in Definition 4, ie., Fi*!(t) is the CDF of the
duration elapsing from the initial time to the occurrence),
of failure y. In particular, once the FaultFlow metamodel *'
instance is translated into an STPN, encoded as an instance
of the metamodel of the Sirio library, F*!!(¢) can be derived
as the transient probability of the marking m that assigns
one token to the place representing the failure occurrence, by
performing regenerative transient analysis [33] of the STPN
with a stop condition equal to m. The analysis can be per-
formed either through the Sirio library, or through the ORIS
GUI [51] if exported as an XPN file. For example, Fig. 5b
shows the CDFs of the duration of the failure processes
that determine IB_Failurel and GDB_Failurel, computed in
nearly 1.31s and 60.63s,° respectively, by performing the
analysis with time step 2h and time limit 8000h, i.e., the
time by which a maintenance of the GDB is scheduled and
the component can be considered as new [48]. Note that
transient analysis of a single flat STPN, modeling the entire
chain of threats leading to a failure, may suffer the curse
of dimensionality when the failure logic model includes
multiple concurrent durations with GEN distribution. This
limitation can be overcome by separately analyzing dif-
ferent combinations of fault propagations (by exploiting
the PetriNetExportMethod.FAULT-_INJECTION mode
for STPN generation) or, if the failure logic model does
not include repeated events at any level, by exploiting the
Pyramis library [13] (see Section 4).

Listing 2 shows the Java code that translates the meta-
model instance created by Listing 1 into an STPN, and
analyzes it through to derive the time-to-failure CDFs of
IB_Failurel and GDB_Failurel, shown in Fig. 5b:

Conversion of the failure logic model to STPN
.getSystem() ;

"GDB_Failurel";

So0S, PetriNetExportMethod.FAULT_ANALYSIS);

6. The experiments of Sections 3 and 4 have been executed on a single
core of an Intel(R) Xeon(R) Gold 5120 CPU 2.20 GHz with 32.0 GB RAM.

PetriNetReducer petriNetReducer = new PetriNetReducer (
pnt.getPetriNet (), pnt.getMarking());
petriNetReducer.reduce (failureName,
GasDetectionSystemBuilder.getPropagationPorts (),
GasDetectionSystemBuilder.getErrorModes ());
STPN

Analysis of the failure logic

PetriNetAnalyzer petriNetAnalyzer = new PetriNetAnalyzer (
petriNetReducer.getPetriNet (), petriNetReducer.getMarking());

String externalFaultMode = "GDB_EF1";

BigDecimal timeStep = new BigDecimal (2);

BigDecimal timeLimit = new BigDecimal (8000);

BigDecimal error = BigDecimal.ZERO;
TransientSolution<DeterministicEnablingState, RewardRate> rewards =
petriNetAnalyzer.regenerativeTransient (
externalFaultMode, timeLimit, timeStep, error);

Listing 2. Java code snippet that analyzes the FaultFlow metamodel
instance created by Listing 1 to derive the time-to-failure CDFs of
IB_Failure1 of component IB and GDB_Failure1 (shown in Fig. 5b).

3.3 Concrete syntax

Concrete instances of the FaultFlow metamodel can be
automatically derived from SysML BDDs [50], modeling the
system decomposition into components, and from SFTs [31],
[37], modeling fault-to-failure and failure-to-fault propa-
gations, thus mitigating the effort demanded to domain
experts by automatically initializing executable object in-
stances of the metamodel. Specifically, the fragment of
concrete instance that represents the system structure can
be derived from a BDD by mapping each block to a
Component instance and each relation between blocks to a
CompositionPortType instance, with the root block cor-
responding to the ComponentType instance representing
the entire system, i.e., the attribute topLevelComponent-
Type referenced by the SystemType instance. For example,
Fig. 6a shows the BDD modeling the structure of the GDS
specified by the metamodel instance of Fig. 3a.

The fragment of concrete instance representing the sys-
tem failure logic can be derived from an SFT where nodes
represent events occurring after a stochastic delay charac-
terized by a time-to-occurrence PDF, with leaf nodes mod-
eling internal faults of components, logical gates (i.e., AND,
OR, KoN) representing fault-to-failure propagations, and
propagation nodes modeling failure-to-fault propagations
occurring with a given probability. Specifically, the M2M
transformation is performed as follows (see the SFT of
Fig. 6b representing the failure logic of the GDS specified
by the metamodel instance of Fig. 3b):

o Each leaf node is mapped to an InternalFault-
Mode instance where the attribute timeToFault-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 9

«block»
Gas Detection System - GDS

=. dirac(0)

«block»
Gas Detector A - GDA

-

«block»
Initiator A - 1A
«block»

Gas Detector B - GDB
«block»
Initiator B - IB
«block»

Gas Detector C - GDC

unif(0,24)

GDA_EF1 p=1
1A_Failure1

exp(0.00004) erlang(3,0.0002)

«block»
Initiator C - IC
(@

GDS_EF3 p=1
GDC_Failure1
unif(0,24)

GDS_EF2 p=1
GDB_Failure1

unif(0,24)

Fig. 6. GDS in Figs. 3 and 6 (times expressed in h): (a) SysML Block Definition Diagram (BDD) defining the structure of the entire GDS (which
can be automatically translated into the object diagram of Fig. 3a); and, (b) Stochastic Fault Tree (SFT) defining the failure logic of the entire GDS,
where the sub-SFT within the box with dashed outline can be automatically translated into the object diagram of Fig. 3b, and different colors are
used to highlight internal faults and failures of different components (e.g., light gray for IB and dark gray for GDB).

PDF is the time-to-occurrence PDF associated with
the node, e.g., leaf nodes F5 and F6 in Fig. 6b are
mapped to instances F5 and F6 in Fig. 3b.

o Each propagationno node 7 is translated into:

— an ErrorMode instance, whose attribute ac-
tivationFunction is the boolean expres-
sion defined by the subtree having node n as
root and the successor nodes of n as leaves,
and the attribute faultToFailurePDF is the
time-to-occurrence PDF of node n;

- a FailureMode instance referenced by the
above mentioned ErrorMode instance.

For instance, node IB_Failurel in Fig. 6b is mapped to
instances IB_Errorl and IB_Failurel in Fig. 3b.
e Each non-root node m is mapped to an External-
FaultMode instance and to a PropagationPort-
Type instance referencing the ExternalFault-
Mode instance and the FailureMode instance also
associated with m, e.g., node IB_Failurel in Fig. 6b
is mapped also to instances GDB_EF1 and IB_Fail-
urel_to_GDB_EF1_PPort in Fig. 3b.

4 INTEGRATION WITH THE PYRAMIS LIBRARY

In this section, we discuss syntax and semantics of the
Pyramis Java library (Section 4.1) and its integration with
FaultFlow by a M2M transformation (Section 4.2), proving
that the Pyramis semantics can be expressed by a variant of
the set of STPN models defining the FaultFlow semantics.
Then, we derive the time-to-failure CDF as well as impor-
tance measures of faults (Section 4.3). The described func-
tionalities are exemplified with a programmatic approach
through the Java API of FaultFlow and Pyramis.

4.1 Pyramis syntax and semantics

Pyramis supports modeling and evaluation of stochastic
systems specified by Hierarchical Semi-Markov Processes

with parallel regions (HSMPs) [13], an extension of UML
statecharts capturing concurrency, hierarchy, stochastic tim-
ing, and probabilistic choices. Fig. 7 shows a refactoring of
the Pyramis metamodel [13] aimed to improve its program-
matic use and facilitate the FaultFlow-to-Pyramis transfor-
mation. Specifically, an HSMP (represented by class HSMP)
consists of locations (class LogicalLocation) which can
be either steps (class Step), i.e., activities with stochastic
duration, or final locations (class FinalLocation)i.e., ter-
minated activities. Steps have a weight, used to select the
next location by a random switch when multiple steps
terminate at the same time (limit condition occurring only
when steps have deterministic duration). Steps can be either
simple (class SimpleStep), modeling atomic activities with
duration PDEF, or composite (class CompositeStep), made
of concurrent regions (class Region). Regions can be of
type either ENDING (i.e., terminating in a final location) or
NEVERENDING (i.e., not terminating), and can be combined
in composite step of type either FIRST (i.e., terminating as
soon as any of its regions terminates) or LAST (i.e., terminat-

-initiall ogicall.ocation -initialLogicalLocation

LogicalLocation

«enumeration»
RegionType
ENDING
NEVERENDING

#name: String g oo

-regions

I FinalLocation I Step
L 1 [#nextLocations: Map «enumeration»
#weight: BigDecimal CompositeStepType
FIRST
4 LAST

[

SimpleStep

-type

P

-durationPDF: PartitionedFunction

-exitSteps: Map

Fig. 7. UML class diagram of the metamodel of the Pyramis library.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 10

[consumese |

-initialLogicalLocation \L

-nextLocations[0][0]

-type: LAST -durationPDF: GEN.newUniform(OmegaBigDecimal.ZERO.X,new OmegaBigDecimal(24))
-regions[0] \|/ \|/ -regions[1] -nextLocations[0][0]
. N Top_Reg_End: Finall acation
-initialLocation \I/ \I/ -initialLocation
B_Errorl: C ites OR F7 F8:C s —nextLocations[O][O]>|I OR_E7_E8_Reg End: Fi . |
-type: FIRST -type: FIRST
[-nextLocations[0][0] B_ES 6 1o Eai - si
-regions[0] -regions[1] -regions[O] -regions[1, -durationPDF: GEN.newDeterministic(BigDecimal.ZERO)
E5_Reg: Region | [F6_Reg: Region F7_Reg: Region F8 Reg: Region -nextLocations[0][0]
GDB_EE1 Reg End: Finall .
-initialLocation
E5: si -nextLocations[0][0] . | . -
> -E5_Reg_Fnd: Finall ocation
-durationPDF: new EXP(Variable.X,new BigDecimal(0.0001))
-initialLocation
. -nextLocations[0][0] .| - A
E6: SimpleStep | _E6_Reg_FEnd: Finall ocatior
-durationPDF: new Erlang(Variable.X,new Integer(2),new BigDecimal(0.0001))
-initialLocation
E7:Si 5 -nextLocations[0][0] . .
>| F--Reg-End- Finall-acatior
-durationPDF: new EXP(Variable.X,new BigDecimal(0.00008))
-initialLocation
_E8: Si -nextLocations[0][0] \| _F8_Reg_End: Finall ocation |
=1
-durationPDF: new Erlang(Variable.X,new Integer(3),new BigDecimal(0.0001))
(@)
0.30
(GDB_Errorl N\ GDS_Failurel
(IB Errorl \ GDB_EF1_Reg 0.25
(m P
X
EXP(0.0001 &
N (IB_F5_F6_to_Failurel) 0.20
m F6_Reg DET(0)
Ve
(GDB_EF1_F7_F8_to_Failurel
° (. OR_F7_F8 N OR_F7_F8_Reg K UNIF(0,24)
0.10
e
X
. >@) 0.05
L
Vg
%
L N\ y, 0.00 T T
0 1000 2000 3000 4000 5000 6000 7000 8000
(b) time (h)
(©

Fig. 8. GDS of Figs. 3 and 6 (times expressed in h): (a) UML object diagram describing the Pyramis metamodel instance that represents the GDS
failure logic, which can be automatically derived from the FaultFlow metamodel instance specifying the GDS structure (as shown in Fig. 3a) and
failure logic (not shown in Fig. 3b due to space limits, corresponding to the SFT of Fig. 6b); (b) HSMP model of the failure logic yielding Failure1 of

component GDB (which compares with the STPN model of Fig. 5a); (c) CDF of the duration of the failure process of the GDS.

ing as soon as all its regions have terminated). Composition
of regions and steps yields a hierarchy of HSMPs where each
composite step is defined by an HSMP at the next lower
level, the top-level HSMP contains a single region, and non-
top-level HSMPs contain at least one region of type ENDING.

Fig. 8b shows the HSMP obtained from the FaultFlow
metamodel instance of Fig. 3b, in turn obtained from the
SSFT in the box with dashed outline in Fig. 6b. Steps are
depicted as rounded boxes (e.g., simple step F5 modeling
fault F5 of component IB); regions of composite steps are
separated by dashed lines (e.g., regions of step IB_Errorl,
modeling the activation leading to Failurel of component
IB); the initial steps of a region are denoted by directed arcs
connecting a black-filled circle to the box of the step (e.g., F5
is the initial step of region F5_Reg); the final location of
a region of type ENDING is depicted as an unfilled circle
placed on the border of the region, with an X-shaped cross

inside if the composite step is of type FIRST (e.g., the final
location of region F5_Reg) or with a smaller black-filled
circle inside if the composite step is of type LAST (e.g., the
final location of region GDB_EF1_Reg); transitions between
locations are depicted as directed arcs.

The state of an HSMP collects an active location for each
region (of the composite step modeling the HSPM), a time
to the next event (TNE) for each active step (i.e., the time to
the step completion), and a state for each active composite
step. In the initial state of the HSMP of Fig. 8b, steps F5,
F6, F7, and F8 are active and sample a TNE from their
duration PDFE. If F5 or F6 terminates before F7 and F8, then
IB_F5_F6_to_Failurel becomes the active step of region
GDB_EF1_Reg. Conversely (i.e., F7 or F8 terminates before
F5 and F6), GDB_Errorl terminates and GDB_EF1_F7_F8_-
to_Failurel becomes the active step of the top-level re-
gion, until its completion terminates the HSMP execution.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 11

4.2 FaultFlow-to-Pyramis transformation

Instances of the Pyramis metamodel can be derived from
instances of the FaultFlow metamodel, provided that the
system failure logic is defined by an SSFT that: i) does
not include repeated events at any level; ii) contains gates
of type AND and OR. While repeated events cannot be
modeled due to a structural limitation of both the HSMP
formalism and the related solution technique, VOT(k/N)
gates could be managed by the M2M transformation by
explicitly modeling the (ﬁ) combinations of events that lead
to the VOT(k/N) event. Specifically, VOT(k/N) can be ex-
pressed as the disjunction (OR) of the conjunction (AND) of
all subsets of k over N inputs, e.g., VOT(2/3) with inputs =,
x2,and x3 is equivalent to OR{AND{x1, z2}, AND{z1, 23},
AND({z2,z3}}. Based on the transformation rule R3 illus-
trated in the following, VOT(k/N) can be translated into
a composite step of type FIRST with (%) regions, each
containing a composite step of type LAST with k regions
(modeling a different combination of k out of IV events).

In the implemented M2M transformation, a top-down
visit of the FaultFlow metamodel instance is performed
starting from the FailureMode instance representing the
top-level failure, by applying two transformation rules R3
and R4 which concern representation of fault-to-failure and
failure-to-fault propagations, respectively. In particular, R3
maps each time-to-fault PDF and each fault-to-failure PDF
into a simple step with the same duration PDF:

e R3. Each ErrorMode instance is mapped to a Com-

positeStep instance derived from attribute acti-
vationFunction, whose nextlocationisa Simple-
Step instance with attribute durationPDF equal
to attribute faultToFailurePDF. In turn, the ac-
tivation function is decomposed into atomic propo-
sitions on faults: AND and OR operators are repeat-
edly mapped to nested CompositeStep instances of
type LAST and FIRST, respectively, with a number
of Region instances equal to the number of children
of the boolean logic operator; atomic propositions
associated with InternalFaultMode instances are
translated into SimpleStep instances with attribute
durationPDF equal to attribute timeToFaultPDF
of InternalFaultMode; and atomic propositions
associated with ExternalFaultMode instances are
translated by applying rule R4.
For example, the ErrorMode instance GDB_Errorl
of Fig. 3b is translated into the namesake Compos-
iteStep instance of Fig. 8a (also shown in Fig. 8b),
which is of type LAST and contains two Region
instances, i.e., GDB_EF1_Reg and OR_F7_F8_Reg,
given that the attribute activationFunction of
GDB_Errorl is a boolean logic formula connecting
two sub-formulas through the OR operator.

e R4. Each PropagationPort instance references:
i) an ExternalFaultMode instance; ii) a Failure-
Mode instance referencing an ErrorMode instance.
If attribute failureToFaultProbability of the
PropagationPort instance has value p = 1, then
rule R3 is applied to the ErrorMode instance, yield-
ing a sequence made of a CompositeStep instance
and a SimpleStep instance whose next location is

the FinalLocation of its region. For example, the
PropagationPort instance IB_Failurel_to_-
GDB_EF1_PPort in Fig. 3b is mapped in Fig. 8a
to the CompositeStep instance IB_Errorl,
SimpleStep instance IB_F5_F6_to_Failurel,
and final location of region GDB_EF1_Reg.
Conversely, as shown in Fig. 9, if attribute failure-
ToFaultProbability has value p < 1, then the
next location of the SimpleStep instance (i.e., IB_-
Failurel PROPAGATED_to_GDB_EF1 in Fig. 9) is:
i) the FinalLocation instance of its region with
probability p; ii) an absorbing step (i.e., whose next
location is itself) with probability 1 —p (i.e., IB_Fail-
urel NOT_PROPAGATED_to_GDB_EF1 in Fig. 9).

/ GDB_Errorl \

IB Errorl

GDB_EF1_Reg

ﬁB_Failurel_PROPAGATED_to_GDE_EFﬂ 0
k DET(0) 1p

ﬂs_s‘ailure 1_NOT_PROPAGATED_to_GDB_EF1
k DET(0) J

OR_F7_F8_Reg

Fig. 9. Fragment of the HSMP of Fig. 8b if the attribute routingProb-
ability of IB_Failurel_to_GDB-_EF1_PPort in Fig.3bis p; < 1.

Theorem 1 proves the soundness of this M2M trans-
formation, showing that, for any failure, the time-to-failure
CDF computed by analyzing the STPN encoding the Pyra-
mis metamodel instance is equal to the time-to-failure CDF
computed by analyzing the STPN encoding the FaultFlow
metamodel instance. As a by-product, the proof shows that
the Pyramis semantics can be expressed by a variant of the
set of STPN models that defines the FaultFlow semantics.

Theorem 1. If a FaultFlow metamodel instance is defined by
an SSFT with no repeated event at any hierarchy level, then, for
any failure, the time-to-failure CDF computed by analyzing the
STPN encoding the FaultFlow metamodel instance is equal to the
time-to-failure CDF computed by analyzing the STPN encoding
the corresponding Pyramis metamodel instance (Proposition 1).
Otherwise, the FaultFlow metamodel instance cannot be repre-
sented by a Pyramis metamodel instance (Proposition 2).

4.3 Time-to-failure CDF and importance measures

FaultFlow exploits Pyramis to evaluate the numerical form
of the time-to-failure CDF Fyfail(t) of a given failure y, as
specified in Definition 4, i.e., Ejaﬂ(t) is the CDF of the
duration elapsing from the initial time to the occurrence of
failure y. In particular, once the FaultFlow metamodel in-
stance is translated into an HSMP, encoded as an instance of
the metamodel of the Pyramis library, F_,faﬂ (t) can be derived
through the solution technique implemented by Pyramis.
This method performs transient analysis until absorption
of the HSMP, deriving the CDF of the time to reach each
step of the failure process, and thus also the time-to-failure
CDF F}*(t). Efficiency of computation is achieved through
a bottom-up procedure that, starting from the lowest-level

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 12

HSMPs, separately evaluates the duration CDF of the Semi-
Markov Process (SMP) underlying each region, and com-
bines them to derive the duration CDF of the HSMP at
the next higher level. Fig. 8c shows the duration CDF of
the failure process that determines GDS_Failurel in Fig. 6,
i.e., the top-level failure, computed with time step 2h and
time limit 8000 h in nearly 16.69s, which, as expected, is
lower than the time needed to compute the duration CDF
of the failure process that determines the lower-level failure
GDB_Failurel using Sirio (i.e., 60.63 s, see Section 3.2).
Listing 3 shows the Java code to translate the FaultFlow
metamodel instance created by Listing 1 into an instance of
the Pyramis metamodel, and to analyze it to derive the CDF
of the duration of the GDS failure process (shown in Fig. 8c):

System SoS = GasDetectionSystemBuilder.getInstance () .getSystem();

2 double timeStep = 2;
3 double timeLimit = 8000;

TreeParser treeParser = new TreeParser (SoS);

5 HSMP hsmp = HSMPParser.parseTree (treeParser.createTree (

GasDetectionSystemBuilder.getErrorMode ("GDS_Failurel")));

7 HierarchicalSMPAnalysis analysis = new HierarchicalSMPAnalysis (hsmp, 0);
8 analysis.evaluate(timeStep, timeLimit);

Listing 3. Java code snippet that translates the FaultFlow metamodel
instance created by Listing 1 into an instance of the Pyramis metamodel
and then analyzes it (through the Pyramis library) to derive the CDF of
the duration of the failure process of the GDS (shown in Fig. 8c).

FaultFlow uses Pyramis also to calculate the importance
measures of faults, as specified by Definitions 5 to 7. Specif-
ically, to compute the Birnbaum measure of fault , the sys-
tem time-to-failure CDF given that = has occurred by time ¢
or not, i.e., stgél (t)|prawe (1)=1 and st)‘j‘él (t) | Fsaut (1)=0, TESpec-
tively, can be derived as follows: i) two SSFTs are obtained
from the system SSFT by assuming that fault = has occurred
at the initial time (i.e., by replacing the time-to-fault PDF
flault(+) with a Dirac Delta function centered at t = 0) and
by assuming that fault z will never occur (i.e., by removing
fault x and the related fault-to-failure propagations from the
system SSFT), respectively; ii) according to the data flow
diagram of Fig. 1b, the obtained SSFTs (and the system
BDD) are translated first into two FaultFlow metamodel
instances and then into two HSMPs, encoded as instances of
the Pyramis metamodel, which are analyzed by the Pyramis
solution technique to derive the system time-to-failure CDF
(as discussed at the beginning of this subsection), yielding
st;i‘;l(t)‘ Frautt (1= and st;;l(t)‘ Frautt (10, Tespectively.

Similarly, to compute the Fussell-Vesely measure of
fault z, the probability that MCS I'; has occurred by time ¢,
i.e., F((t), can be derived as follows: i) an SSFT is derived
from the system SSFT by removing the faults that do not
belong to I'; and the related fault-to-failure propagations;
ii) the obtained SSFT (and the system BDD) are translated
first into a FaultFlow metamodel instance and then into
an HSMP, encoded as instance of the Pyramis metamodel,
which is analyzed by the Pyramis solution method to derive
the system time-to-failure CDF (as discussed at the begin-
ning of this subsection), yielding F,(t).

TABLE 1
Minimal cut sets of the GDS of Fig. 3, consisting of 2 or 4 faults.

F10, F11 F10, F12 F11, F9 F12, F9
F1,F3,F5, F7 | F1,F4,F5,F7 | F2,F3,F5, F7 | F2, F4, F5, F7
F1,F3,F5,F8 | F1,F4,F5 F8 | F2,F3, F5, F8 | F2, F4, F5, F8
F1,E3,F6,F7 | F1,F4,F6,F7 | F2,F3,F6,F7 | F2, F4, F6, F7
F1,F3,F6,F8 | F1,F4,F6, F8 | F2,F3,F6, F8 | F2, F4, F6, F8

To show that the ranking of faults may vary over time,
Figs. 10a and 10b plot the importance measures of the
internal faults of the GDS of Fig. 6 far beyond the time
limit of 8000h, i.e., up to time 60000 h, with time step 4 h.
Evaluation takes 43.05 min for the Birnbaum measures and
19.38 min for the Fussel-Vesely measures (evaluation with
time limit 8000h and time step 2h would require just
5.46 min for the Birnbaum measures and 2.44 min for the
Fussel-Vesely measures). Note that derivation of the Birn-
baum measures requires to compute, for each fault, the
time-to-failure CDF of the GDS twice, once assuming that
the fault has occurred and once that it has not, thus ana-
lyzing 24 HSMPs with depth 5 containing 12 simple steps
modeling the internal faults F1, ..., F12, and 7 simple steps
modeling fault-to-failure propagations. Conversely, deriva-
tion of the Fussel-Vesely measures requires to compute the
time-to-failure CDF of all MCS, shown in Table 1, thus
analyzing 4 HSMPs with depth 5 containing 2 simple steps
modeling internal faults and 3 simple steps modeling fault-
to-failure propagations, and 16 HSMPs with depth 5 con-
taining 4 simple steps modeling internal faults and 5 simple
steps modeling fault-to-failure propagations. Thus, for our
example, evaluation of the Birnbaum measures is more
computationally intensive than that of the Fussel-Vesely
measures, which occurs also in general, unless the number
of MCSs is significantly larger than the that of internal faults.

In the first 10-20 thousand hours, the Birnbaum measure
is larger for internal faults with lower depth in the SSFT
of Fig. 6b and, for each pair of internal faults of the same
component (children of the same OR gate), in most cases
the Birnbaum measure is larger for the component with
larger mean time-to-fault, e.g., I5,(t) > IB ,(t) V t. The
Fussel-Vesely measure also ranks faults F9 and F11 as the
most important ones, at least until around 20-22 thousand
hours. Such result is compatible with the GDS failure logic
in Fig. 6b. In fact, F9-F10 and F11-F12 are connected to
two OR gates, whose combined activation causes the system
failure. Moreover, F9 and F11 have a mean time-to-fault that
is shorter than the one of the other internal fault connected
to the same OR gate (i.e., F10 and F12, respectively), and
each of them is part of two MCSs containing only 2 faults
(see Table 1). Furthermore, one of those MCS contains
exactly these two faults, which are then enough to make
the system fail. Conversely, counter-intuitively, the Fussel-
Vesely measure of faults F10 and F12 is lower than that of
all the other faults. This behavior can be ascribed to the fact
that the otdetermined by each time-to-fault PDF and each
fault-to-failure PDF in the model not just their mean values
or moments (as well as by the SSFT structure and the failure-
to-fault probabilities)in the implementedher faults are part
of a larger number of MCSs, though composed of 4 faults
rather than 2. Also, due to their occurrence distributions,
the other faults connected to the OR gate (which are exactly
F9 and F11, respectively) are most likely to have occurred
before, and thus the importance of F10 and F12 in causing
the system failure is reduced. Again, note that the ranking
of faults may change over time, highlighting the significance
of the evaluated measures, and the fact that thery are deter-
mined by the entire time-to-fault and fault-to-failure PDFs
(as well as by the SSFT structure and the failure-to-fault
probabilities) not just by their mean values or moments.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR

0.5

F1

F2
0.4 1 F3

F4

F5

F6
0.3 1 F7

F8

F9 T
0.2 1 F10

F11

F12
0.1
0.0 I I . : === TI I x o

0 10000 20000 30000 40000 50000 60000
time (h)

(@)

13
0.7
F1
0.6 F2
— F3
--- F4
0.5+ Fs
F6
0.4 1
0.3 1
0.2 1
0.1 1
0.0 ' T R L bttt s
0 10000 20000 30000 40000 50000 60000
time (h)

(b)

Fig. 10. GDS of Figs. 3 and 6: (a) Birnbaum measures and (b) Fussell-Vesely measures of faults F1, F2, ..., F12.

The complexity of the solution technique implemented
in Pyramis is cubic in the number of steps per region,
quadratic in the number of time points, and linear in the
number of regions of the HSMP hierarchy [13]. By trans-
formation rules R3 and R4, an HSMP obtained through the
FaultFlow-to-Pyramis transformation contains, collectively,
one region for each internal fault, and one region for each
child of each non-bottom-level gate of the SFT; in turn, each
region contains at most 2 steps. Therefore, to test the anal-
ysis scalability for the this class of HSMPs, we modify the
SSFT of Fig. 6b by increasing its depth and number of inter-
nal faults, without increasing its number of failure-to-fault
propagations, which in fact would just increase the number
of steps of the corresponding regions from 1 to 2 (i.e., it
would result in adding a simple step modeling the duration

[
unif(0,24) unif(0,24)
unif(0,24)

7
%unif(0,24)

dirac(ojq dirac(0)
—

=

O—>|

$ g 16 faults 32 faults
$ 3 8 faults 16 faults
8 faults 16 faults O S S 1.5 8.8
=~ = e i
8 faults 8 faults 16 faults 16 faults

(d)

Fig. 11. Variants of the sub-SSFT modeling the failure of a gas detector
in Fig. 6b, including (a) 8, (b) 16, (c) 16, and (d) 32 internal faults per
component, i.e., 48, 96, 96, and 192 internal faults for the entire GDS.

TABLE 2
Execution times of the analysis of variants of the system of Fig. 6,
obtained by replaing the sub-SSFT modeling the failure of each gas
detector with the sub-SSFT of Figs. 11a to 11d.

SFT no. internal | top event Birnbaum Fussel-Vesely
depth faults CDF measures measures

5 48 24.44s 35.89 min 47.75s

5 96 38.65s 1.87h 71.09s

6 96 41.87s 2.06 h 2.13 min

6 192 67.72s 6.91h 3.23 min

of the propagation, like step IB_F5_F6_to_Failurel in
Fig. 8b). In particular, we derive 4 different system SSFTs
by replacing the sub-SSFT modeling the failure of each gas
detector with the sub-SSFT of Figs. 11a to 11d, respectively.
The obtained SFTs have depth 5, 5, 6, and 6, respectively,
and contain 48, 96, 96, and 192 internal faults, respectively.
Each added internal fault is characterized by an Exponential
or Erlang time-to-fault CDF, with shape and rate in the same
order of magnitude as those of Fig. 6b. Table 2 shows the
execution times needed to compute the time-to-failure CDF
of the system and the importance measures of all internal
faults, with time limit 8000h and time step 2h. For the
evaluation of the time-to-failure CDF of the system, the
execution time is less than doubled when the number of
internal faults doubles, mainly due to fixed costs of solution.
As expected, the execution time needed to evaluate the
Birnbaum measures is in the order of twice the time needed
to compute the time-to-failure CDF of the system, multiplied
by the number of internal faults (given that, for each fault,
the time-to-failure CDF of the system is evaluated twice,
once assuming that the fault has occurred and once that it
has not). Conversely, evaluation of the Fussel-Vesely mea-
sures is quite fast, mainly due to the fact that the number
of MCSs is much smaller than the number of internal faults.
Overall, it is worth noting that evaluation is still feasible and
far from bottleneck even in the case with 192 internal faults.

5 FAULTFLOW USE CASES

In this section, we illustrate two use cases about the manip-
ulation of FaultFlow metamodel instances (Section 5.1) and
the estimation of time-to-fault PDFs from statistical data to
compute quantitative dependability measures (Section 5.2).

5.1

The Pressure Tank System (PTS) of [64] is commonly used
as reference use case and appears in the FFORT collection
of fault tree models [56]. Fig. 12a shows the UML object
diagram of the PTS structure, made of a tank T maintained
in a filled and pressurized condition by a motorized pump.

Manipulating FaultFlow metamodel instances

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 14

| Knowledge level % ----- | Operational level %

[PTS: SystemType |<_
-topLevelComponent \|/ \I/-components[O]

| T: ComponentType

-children[0]
T_S: CompositionPortType |

S: ComponentType

T_Failure1

PTS_1: System
-serial = "PTS_001"

T_1: Component
"T_001"

-serial =

S_1: Component
"S_001"

-children[1] -serial =
T_S1: CompositionPortType |
i | S1_1: Component

"S1_001"

) s1:C T
_children[2) [2Z=0mponent7ype

1 | ~serial =

T_R: CompositionPortType |

R_1: Component
-serial = "R_001"

R: CompoenentType
-children[3] R: CompoenentT]
—|T K1: ComposmonPortType|

K1: ComponentType [

K1_1: Component
-serial = "K1_001"

-children[4] '
T_K2: CompositionPortType |

1| K2_1: Component S1_EF1 p=1 S EF2 p=1
K2: ComponentType K1 _Failure1 R Failure1

1 | -serial = "K2_001"

(1 Reflection >

) dlrac(D)
frx f FR

1.0 — T
FK2
0.8 FS
FS1
FK1
FR

0.6

0.2

0.0
0.0

0.5 1.0 15

time (108 h)

©

2.0 25

1.0

0.8

0.6 FK2

FS1
FK1 |

0.2

0.0

0 5 10 15 20 25 30
time (10° h)

(d)

Fig. 12. Pressure tank system [56], [64]: (a) UML object diagram (structure); (b) SSFT (failure logic); (c) Birnbaum and (d) Fussell-Vesely measures.

TABLE 3
Time-to-fault data for the SSFT of Fig. 12 (P5 denotes the 5th percentile, P95 the 95th percentile, 1. the mean value). Time is expressed in 10° h.

fault x time-to-fault statistics time-to-fault PDF

FT P95 = 7042.25 fiault(¢) = 4.53776 - 10~ 7t e~ 000067 ¢ ¢ [0, 00)

FS1 P95 = 123.609 fault(¢) = 0.00147¢ e~ 003838 v ¢ € [0, 00)

S P5 = 0.16667 Flait () = tel0-7895¢ vt € [0,0.16667)
P95 = 9.09091 FS T 0.253289t0-515452 Wt € [0.16667, c0)
P5 = 0.49020 te 285884t vt € [0,0.49020)

FR,FK1.FK2 P95 = 0.55866 fault (1) = 1¢6:1204¢ vt € [0.49020,0.55866] Yz € {FR,FK1,FK2}
1= 0.52356 96.0395t e~ 890495t /¢ € [0.55866, c0)

The pump is managed by a control system made of: a
manual switch S, a pressure switch S1 monitoring the tank
pressure, a timer relay R, two simple relays K1 and K2. The
PTS is activated by pressing S, which closes the contacts
of K1. In turn, this operation closes the contacts of K2,
which then activates the pump motor. When K1 is closed,
the timer in R is started: after 60s, it expires and opens K1,
deactivating the pump. If the limit pressure is reached, S1
triggers and deactivates K2, powering the pump off.

The diagram shows the objects of the classes at the
knowledge level, modeling the structure of the considered
PTS type (e.g., the Component Type object T modeling the
tank type), and objects of the classes at the operational
level, modeling a specific PTS instance (i.e., the one with
serial number PTS_001). In fact, thanks to the Reflection
architectural pattern, defining a new type of system or
a new instance of a specific type of system amounts to
implementing objects, not classes (in particular, 12 objects
are sufficient to represent the PTS type, while 7 objects are
needed to model each instance of PTS). This feature facilitates
code usage, maintenance, and extendibility, also enabling
instantiation at run-time without modifying the metamodel
source code. Moreover, changes to the structure of the sys-

tem impact the objects at the knowledge level only, without
affecting the many more objects at the operational level
(e.g., an interface between K1 and K2 is modeled just by
a CompositionPortType object). Similar considerations
apply to the metamodel instances of the system failure logic.

5.2 Deriving quantitative dependability measures

The rupture of the tank is a hazard, and we use FaultFlow to
estimate its likelihood and derive the importance measures
of faults. Fig. 12b shows the SSFT of the system failure logic.
The top event (tank rupture) may be caused by a physical
rupture of tank T itself, or by a malfunctioning of the control
system preventing the pump to stop, which may be caused
by a failure of relay K2 to actually disconnect the motor, or
by a hazardous failure of the logic that controls the pump
operation. A failure of either timer relay R or relay K1
may cause the pump to operate indefinitely; similarly, a
commission failure of switch S1 may cause the timer to be
reset continuously. However, for such failures to actually
cause the tank rupture, pressure switch S must also fail.

In [64], no quantitative data on failures is reported. In our
analysis, we use data carefully extracted from [14], i.e., the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 15

fault rate values that identify the 5th percentile (P5), the 95th
percentile, and the mean value (1) of the time-to-fault PDF
of various component categories. In particular, we use data
of the following categories: “Relays — Protective” for K1, K2,
and R; “Switches — Pneumatic — Pressure” for S; “Switches
— Electric — Pressure” for S1; and, “Catastrophic” failure
mode of “Vessel — Pressurized — Metallic” component for T.
To show the modeling flexibility provided by exponomial
PDFs, for each fault z, we define a different time-to-fault
PDF ffault(#) depending on the considered statistics by
using Wolfram Mathematica (details on the derivation are
reported in the Supplemental Material). In particular: we
fit P95 by an exponomial PDF with the same analytical
expression over [0,00); we fit P5 and P95 by a piece-wise
exponomial PDF with two different analytical expressions
over [0,P5) and [P5,0); and, we fit u, P5, and P95 by a
piece-wise PDF with three different analytical expression
over [0,P5), [P5,P95), and [P95,00). Table 3. shows the
considered statistics and the resulting time-to-fault PDFs .
Figs. 12c and 12d show the Birnbaum and Fussell-Vesely
measures, respectively, both ranking FK2 as the most impor-
tant fault within a large time interval of milliom hours. In
fact, FK2 has the lowest P95, like FR and FK1, and, unlike
them, comprises a single point of failure. This trend is also
shown by the top-level time-to-failure CDF (not shown due
to space limits), which is nearly equal to 1 at time 2 - 106 h.

6 COMPARISON WITH OTHER TOOLS

We compare the FaultFlow features with those of a selec-
tion of currently supported tools for dependability evalua-
tion, i.e.,, CHESS [9], [46], OSATE [20], [25], DFTCalc [4],
SAFEST [74], DFTRES [11], and SHyFTOO [15], and by more
general-purpose tools for quantitative evaluation of stochas-
tic models, i.e., Mobius [19], SHARPE [70], TimeNET [76],
and CPN IDE [72]. We consider modeling, evaluation,
and implementation issues, focusing on expressivity of for-
malisms, characheristics of solution techniques, and avail-
ability of source code. Other features beyond the scope of
this paper (e.g., safety properties) are not considered.
Modeling. FaultFlow supports high-level modeling of
the system structure and failure logic by BDDs and SS-
FTs, respectively, implementing automated translation into
STPNs and HSMPs, and supporting export of STPNs to
the XPN format of the ORIS tool, and modeling of indi-
rect couplings (i.e., fault propagations between components
that are not directly connected in the system architecture).
Under this perspective, FaultFlow shares some similarities
with the CHESS and OSATE tools, which are tailored to
the model-driven design of embedded systems. They in-
clude plugins that support the automated analysis of non-
functional properties, with OSATE also supporting model
export to PRISM [40] and EMFTA? [26]. While both CHESS
and OSATE enforce their specific design methodology and
language (i.e., CHESS ML and AADL, respectively), which
include also concepts and modeling steps that are not
relevant for dependability analysis, FaultFlow focuses on
dependability analysis and provides a compact and pre-
cise language to define dependability-related concepts: in

7. https:/ / github.com/cmu-sei/emfta

this respect, it is similar to the Intermediate Dependability
Model (IDM) defined in the CHESS “State-Based Analysis”
plugin (CHESS-SBA) [46]. DFTCalc, SAFEST, and DFTRES
support failure logic specification by DFTs, thus considering
the timing behavior of components in determing a failure,
and supporting modeling of a variety of dependability pat-
terns such as spare management (also note that duration of
fault propagations can be represented by DFTs through SEQ
gates). SHyFTOO model stochastic hybrid multi-state® sys-
tems by Stochastic Hybrid Fault Tree Automata (SHyFTA),
with system failure and repair processes modeled by a DFT.
The other tools are mainly focused on directly creating
Petri net models for the entire system: although most of
them include modularity mechanisms to some extent, the
user is still expected to have significant modeling expertise.
Both Mobius and SHARPE also support other formalisms,
e.g.,, SHARPE facilitates failure logic specification through
FTs and RBDs. Still, they do not combine those formalism
with a system architecture view, like instead FaultFlow does.
A distinguishing feature of FaultFlow is the modeling of
non-Markovian (expolynomial) duration distributions [70],
possibly with bounded support. The FaultFlow metamodel
also supports the representation of repeated events and
probabilities of failure modes, while it currently does not
support repair activities. CHESS represents selected non-
Markovian duration distributions, as well as failure mode
probabilities and repair actions. OSATE models Exponential
durations and repair activities, while it does not represent
repeated events and failure mode probabilities. DFTCalc,
SAFEST, DEFTRES, and SHyFTOO model Exponential du-
rations, with DFTCalc and DFTRES supporting also phase-
type distributions, and SAFEST and SHyFTOO modeling
also the Weibull distribution. All these four tools support
repeated events and, except for SAFEST, repair activities.
Evaluation. FaultFlow offers different complementary
strategies through M2M transformation (see also Fig. 1b).
The CDF of the time-to-occurrence of any failure in the
model (not necessarily the top-level one) can be obtained
either through the SIRIO library (by performing semi-
symbolic analysis based on the method of stochastic state
classes), or, if the failure logic does not include any re-
peated event, through the Pyramis library. In the latter
case, also importance measures of faults can be computed.
Furthermore, interactive evaluation can also be performed
by exporting the STPN model to the ORIS GUI In CHESS,
two plugins address dependability evaluation: CHESS-SBA
[47] and CHESS-FLA [28]. CHESS-FLA focuses on qual-
itative analysis, through a formalism based on the Fault
Propagation and Transformation Calculus (FTPC); CHESS-
SBA is instead based on SPNs and supports quantitative
analysis, but the evaluation can be performed only by
discrete-event simulation. OSATE implements evaluation of
the system failure probability through numerical analysis,
mainly exploiting the external tools PRISM and EMFTA.
DFTCalc, SAFEST, DFTRES, and SHyFTOO evaluate de-
pendability measures such as reliability and Mean Time To
Failure (MTTEF), mainly using probabilistic model checking
or simulation, also including Rare Event SImulation (RES).

8. A multi-state system is a system that can be in multiple degrading
states (unlike dyadic systems that can be either operational or failed).

https://github.com/cmu-sei/emfta

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 16

TABLE 4
Comparison among tools for dependability evaluation of systems: main modeling (top), evaluation (center), and implementation aspects (bottom).
Tools are grouped by abstraction level: in FaultFlow, CHESS, OSATE, DFTCalc, SAFEST, DFTRES, and SHyFTOO, the user reasons on the
system architecture level, while in the others the user directly edits Petri nets or similar models. For the latter group, some dimensions are marked
as n.a. (not applicable): they are able to support repeated events or repair activities, for example, but the user has to model them explicitly.

tool/library h.l gh-level . duration distributions 1nd1r.ect repeated failure ‘n}o.de repair
modeling formalism couplings events probabilities activities
FaultFlow & Sirio SysML BDDs, SSFTs general (expolynomial) yes yes yes no
FaultFlow & Pyramis SysML BDDs, SSFTs general (expolynomial) yes no yes no
CHESS CHESS-ML general (selected) yes yes yes yes
OSATE AADL, SFTs, RBDs Exponential no no no yes
DFTCalc DFTs Exponential, phase-type no yes no yes
SAFEST SFTs, DFTs Exponential, Erlang, Weibull, log-normal no yes no no
DFTRES DFTs Exponential, phase type no yes no yes
SHyFTOO DFTs (in SHyFTA) Exponential, Weibull no yes no yes
SHARPE FTs, RBDs general (expolynomial)
Mobius FTs general
TimeNET - general (expolynomial) na na na na
CPN IDE - general
tool/library evaluation formalism solution engine supported quantitative dependability measures
FaultFlow & Sirio STPNs semi-symbolic analysis time-to-failure CDF
FaultFlow & Pyramis HSMPs numerical analysis time-to-failure CDF, fault importance measures
CHESS SPNs, CTMCs FTA, simulation reliability, availability
OSATE DTMCs, CTMCs numerical analysis failure probability
1I/0-MC probabilistic model checking reliability, MTTF
SAFEST CTMCs probabilistic model checking unreliability, MTTF, component criticality
DFTRES CTMCs statistical model checking, RES reliability, availability, MTTF
SHyFTOO SHyFTA simulation unreliability
SHARPE GSPNs numerical analysis
Mobius SAN, CTMCs, PEPA numerical analysis, simulation n.a. (generic reward-based measures)
TimeNET DSPNs numerical analysis, simulation a8
CPN IDE CPNs simulation
tool/library export to external tool API GUI open-source
FaultFlow & Sirio yes (ORIS) yes no yes
FaultFlow & Pyramis no yes no yes
CHESS partially (PNML) no yes partially
OSATE yes (PRISM, EMFTA) yes yes yes
DFTCalc yes (CADP, MRMC, IMCA) no yes yes
SAFEST no no yes yes
DFTRES yes (DFTCalc) no no yes
SHyFTOO no no no yes
SHARPE no no yes no
Mobius no no yes no
TimeNET no no yes no
CPN IDE no no yes no

Similar dependability measures could be computed through
the other tools, though increasing user effort. Mobius pro-
vides different evaluation options, including a very robust
discrete-event simulator that also supports distributed pro-
cessing. Efficient exact solvers are available, but most of
them assume Exponential distributions for timed events.
More precisely, for the analysis engines of SHARPE, Mobius,
and TimeNET, numerical evaluation is constrained to the
limitation of having at most one timer with general dis-
tribution enabled in each state (enabling restriction) [29],
[30]. These tools typically support the evaluation of different
measures, based on rewards, but the user has to explicitly
define the reward structure manually.

Implementation. The FaultFlow API is released open-
source under the AGPLvV3 licence; being implemented in
Java, it is compatible with the most common platforms.

Both the OSATE GUI and API are released under the EPLv2
licence, and the GUI is implemented as a customization of
the Eclipse platform. The main modeling environment of
CHESS is also based on Eclipse, and it is now maintained
as an Eclipse project under the Eclipse PolarSys initiative;
consequently, it is also released under the EPLv2 licence.
However, some specific components are excluded from the
main package, most notably the simulator used in the
CHESS-SBA plugin, which is released separately. The other
tools also provide a GUI, except for DFTRES and SHyFTOO,
and none of them provides a documented API. DFTCalc,
SAFEST, DFTRES, and SHyFTOO are released open-source,
while most of the remaining tools are free for academic and
research use, but are distributed under commercial licenses
otherwise. CPN IDE has recently replaced the former CPN
Tools framework. While CPN Tools was released under an

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR 17

open source license, at the time of writing its successor CPN
IDE is not released open-source and it is only available as
pre-compiled binary for the Windows platform.

Remark. This discussion is summarized in Table 4, with
additional comparison viewpoints. Some dimensions are
not applicable to tools like M&bius or TimeNET, where the
user directly creates Petri net models and, for example, has
to explicitly model repeated events or repair activities.

7 CONCLUSIONS

We presented an MDE approach to dependability evalu-
ation of component-based coherent systems, implemented
by the open-source FaultFlow Java library. A custom-made
metamodel represents the system structure and failure logic,
which can be derived from a SysML BDD and an SSFT,
respectively, representing durations with non-Markovian
distribution possibly with bounded support. The approach
derives the distribution of the time to the occurrence of
given failures and importance measures of faults over time.

Flexibility and extensibility of the FaultFlow metamodel
enable further developments, notably including: definition
of an observation metamodel to generate synthetic data sets
of failure propagation events during model simulation, a
preliminary version of which has been presented in [12];
integration with other design tools (e.g., Eclipse Papyrus)
and dependability tools (e.g., CHESS) by implementing ap-
propriate M2M transformations; and, dynamic management
of metamodel instances to support co-evolution of software
artifacts and runtime evaluation of dependability.

ACKNOWLEDGMENTS

This work was partially supported by the European
Union under the Italian National Recovery and Re-
silience Plan (NRRP) of NextGenerationEU, partnership on
“Telecommunications of the Future” (PE00000001 - pro-
gram “RESTART”), and by the MUR PRIN 2022 PNRR
P2022A492B project ADVENTURE (ADVancEd iNtegraTed
evalUation of Railway systEms).

REFERENCES

[1] ISO 26262: road vehicles functional safety, 2011.

[2] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized
stochastic Petri nets for the performance evaluation of multipro-
cessor systems. ACM Trans. on Computer Systems, 2(2):93-122, 1984.

[3] E.G.Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Frances-
chinis. 30 years of GreatSPN. Principles of performance and reliability
modeling and evaluation, pages 227-254, 2016.

[4] E Armnold, A. Belinfante, F. Van der Berg, D. Guck, and
M. Stoelinga. DFTCalc: a tool for efficient fault tree analysis. In
SAFECOMP, pages 293-301. Springer, 2013.

[5] A. Avizienis,].-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
IEEE Trans. on Dependable and Secure Computing, 1(1):11-33, 2004.

[6] S.Bernardi,]J. Merseguer, and D. C. Petriu. A dependability profile
within MARTE. Soft. & Sys. Model., 10(3):313-336, 2011.

[7] J. Boardman and B. Sauser. System of systems-the meaning of of.
In IEEE/SMC Int Conf. on SoS Eng., pages 6—pp. IEEE, 2006.

[8] H. Boudali, A. Nijmeijer, A. Nijmeijer, and M. 1. A. Stoelinga.
Dftsim: A simulation tool for extended dynamic fault trees. In
42nd Annual Simulation Symposium (ANSS), page 31. ACM, 2009.

[9] L. Bressan, A. L. de Oliveira, L. Montecchi, and B. Gallina. A
systematic process for applying the CHESS methodology in the
creation of certifiable evidence. In EDCC, pages 49-56. IEEE, 2018.

[10] C. E. Budde. Fig: the finite improbability generator v1. 3. ACM
SIGMETRICS Performance Evaluation Review, 49(4):59-64, 2022.

[11] C. E. Budde, E. Ruijters, and M. Stoelinga. The dynamic fault
tree rare event simulator. In International Conference on Quantitative
Evaluation of Systems, pages 233-238. Springer, 2020.

[12] L. Carnevali, S. Cerboni, B. Picano, L. Scommegna, and E. Vicario.
An observation metamodel for dependability tools. In European
Dependable Computing Conf. (EDCC), pages 169-172. IEEE, 2024.

[13] L. Carnevali, R. German, F. Santoni, and E. Vicario. Compositional
Analysis of Hierarchical UML Statecharts. IEEE Trans. on Soft. Eng.,
48(12):4762-4788, 2021.

[14] Center for Chemical Process Safety. Guidelines for Process Equip-
ment Reliability Data with Data Tables. American Institute of Chem-
ical Engineers, January 1989.

[15] E. Chiacchio, J. I. Aizpurua, L. Compagno, and D. D’Urso. Shyftoo,
an object-oriented monte carlo simulation library for the modeling
of stochastic hybrid fault tree automaton. Expert Systems with
Applications, 146:113139, 2020.

[16] H. Choi, V. G. Kulkarni, and K. S. Trivedi. Markov regenerative
stochastic petri nets. Performance evaluation, 20(1-3):337-357, 1994.

[17] G. Ciardo and A. S. Miner. Smart: The stochastic model checking
analyzer for reliability and timing. In Int. Conf. on the Quantitative
Evaluation of Systems, pages 338-339. IEEE, 2004.

[18] A. R. Da Silva. Model-driven engineering: A survey supported
by the unified conceptual model. Computer Languages, Systems &
Structures, 43:139-155, 2015.

[19] D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. G. Webster. The Mobius framework
and its implementation. IEEE Tran. Soft. Eng., 28(10):956-969, 2002.

[20] J. Delange, P. Feiler, D. P. Gluch, and J. Hudak. AADL fault
modeling and analysis within an ARP4761 safety assessment.
Technical report, Carnegie-Mellon Univ. Soft. Eng. Inst., 2014.

[21] J. B. Dugan, K. J. Sullivan, and D. Coppit. Developing a low-cost
high-quality software tool for dynamic fault-tree analysis. IEEE
Transactions on reliability, 49(1):49-59, 2000.

[22] P.R. D’Argenio, M. D. Lee, and R. E. Monti. Input/output stochas-
tic automata: Compositionality and determinism. In FORMATS,
pages 53-68. Springer, 2016.

[23] EUROCAE. ARP4754A - Guidelines for Development of Civil Aircraft
and Systems, 2010.

[24] FaultFlow. https://doi.org/10.5281/zenodo.14615110, 2025.

[25] P. Feiler. The open source AADL tool environment (OSATE).
Technical report, Carnegie Mellon Univ. Soft. Eng. Inst., 2019.

[26] P. Feiler and J. Delange. Automated fault tree analysis from aadl
models. ACM SIGAda Ada Letters, 36(2):39-46, 2017.

[27] P. H. Feiler, B. A. Lewis, and S. Vestal. The SAE Architecture
Analysis & Design Language (AADL) a standard for engineering
performance critical systems. In CACSD-CCA-ISIC, pages 1206—
1211. IEEE, 2006.

[28] B. Gallina, M. A. Javed, F. U. Muram, and S. Punnekkat. A model-
driven dependability analysis method for component-based archi-
tectures. In Euromicro Conf. on Software Engineering and Advanced
Applications, pages 233-240. IEEE, 2012.

[29] R. German and C. Lindemann. Analysis of stochastic Petri nets
by the method of supplementary variables. Performance evaluation,
20(1-3):317-335, 1994.

[30] R. German, D. Logothetis, and K. S. Trivedi. Transient analysis
of Markov regenerative stochastic Petri nets: A comparison of
approaches. In Int. Work. PNPM, pages 103-112. IEEE, 1995.

[31] L. Grunske and B. Kaiser. Automatic generation of analyzable
failure propagation models from component-level failure annota-
tions. In Int. Conf. on Quality Software, pages 117-123, 2005.

[32] J. Hillston. A compositional approach to performance modelling.
1996.

[33] A.Horvath, M. Paolieri, L. Ridi, and E. Vicario. Transient analysis
of non-Markovian models using stochastic state classes. Perform.
Eval., 69(7-8):315-335, July 2012.

[34] Int. Organization for Standardization. ISO 9241 - Ergonomic re-
quirements for office work with visual display terminals (VDT5), 2000.

[35] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and
practical use, volume 1. Springer Science & Business Media, 1996.

[36] S. Kabir. An overview of fault tree analysis and its application in
model based dependability analysis. Expert Systems with Applica-
tions, 77:114-135, 2017.

[37] B. Kaiser, P. Liggesmeyer, and O. Mickel. A new component
concept for fault trees. In Austr. Work. on Safety Critical Sys. and
Soft., volume 33, page 37-46. Austr. Comp. Society, Inc., 2003.

https://doi.org/10.5281/zenodo.14615110

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH YEAR

[38]

[39]

[40]

[41]
(42]

[43]

[44]

(45]

[46]

(47]

(48]

[49]
[50]

[51]

(52]

(53]
[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

H. Kopetz, B. Fromel, and O. Hoftberger. Direct versus stigmergic
information flow in systems-of-systems. In 2015 10th System of
Systems Engineering Conference (SoSE), pages 36-41, 2015.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model checker. In TOOLS, pages 200-204. Springer, 2002.
M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verifica-
tion of probabilistic real-time systems. In International conference
on computer aided verification, pages 585-591. Springer, 2011.

C. Lindemann. Performance modelling with deterministic and
stochastic petri nets. ACM Sigm. Perf. Eval. Rev., 26(2):3, 1998.

O. Lisagor. Failure logic modelling: a pragmatic approach. PhD thesis,
University of York, 2010.

G. Manno, F. Chiacchio, L. Compagno, D. D'Urso, and N. Trapani.
Conception of Repairable Dynamic Fault Trees and resolution
by the use of RAATSS, a Matlab® toolbox based on the ATS
formalism. Reliability Eng. & System Safety, 121:250-262, 2014.

G. Manno, F. Chiacchio, L. Compagno, D. D’Urso, and N. Trapani.
MatCarloRe: An integrated FT and Monte Carlo Simulink tool for
the reliability assessment of dynamic fault tree. Expert Systems with
Applications, 39(12):10334-10342, 2012.

S. Montani, L. Portinale, A. Bobbio, and D. Codetta-Raiteri. Rady-
ban: A tool for reliability analysis of dynamic fault trees through
conversion into dynamic bayesian networks. Reliability Engineering
& System Safety, 93(7):922-932, 2008.

L. Montecchi, P. Lollini, and A. Bondavalli. Towards a mde
transformation workflow for dependability analysis. In IEEE Int.
Conf. on Eng. of Complex Comp. Sys., pages 157-166. IEEE, 2011.

L. Montecchi, P. Lollini, and A. Bondavalli. A Reusable Modular
Toolchain for Automated Dependability Evaluation. In Int. Conf.
on Perf. Eval. Meth. and Tools, pages 298-303, Torino, Italy, 2013.

L. Montecchi, A. Refsdal, P. Lollini, and A. Bondavalli. A
model-based approach to support safety-related decisions in the
petroleum domain. In DSN, pages 275-286. IEEE, 2016.

Object Management Group. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems v1.0, 2009.

Object Management Group, www.omg.org/spec/SysML/1.6/.
OMG Systems Modeling Language 1.6 (OMG SysML), 2019.

M. Paolieri, M. Biagi, L. Carnevali, and E. Vicario. The ORIS
Tool: Quantitative Evaluation of Non-Markovian Systems. IEEE
Transactions on Software Engineering, 47(6):1211-1225, 2021.

J. Parri, S. Sampietro, and E. Vicario. Faultflow: a tool supporting
an mde approach for timed failure logic analysis. In European
Dependable Computing Conference, pages 25-32. IEEE, 2021.

Radio Tech. Commis. for Aeronautics. DO-178C, Software Consid-
erations in Airborne Systems and Equipment Certification, 2011.
Radio Tech. Commis. for Aeronautics. DO-331: model-based devel-
opment and verification supplement to DO-178C and DO-278A, 2011.
A.-E. Rugina, K. Kanoun, and M. Kaaniche. The ADAPT tool:
From AADL architectural models to stochastic petri nets through
model transformation. In EDCC, pages 85-90. IEEE, 2008.

E. Ruijters et al. FFORT: A Benchmark Suite for Fault Tree
Analysis. In ESREL. Research Publishing, Singapore, 2019.

E. Ruijters and M. Stoelinga. Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools. Computer science
review, 15:29-62, 2015.

SAE International. AADL Error Model Annex, Standards Document
AS5506/1, 2006.

F. Salfner, M. Lenk, and M. Malek. A survey of online failure
prediction methods. ACM Computing Surveys, 42(3):1-42, 2010.

W. H. Sanders and J. F. Meyer. Stochastic activity networks:
formal definitions and concepts. In School organized by the European
Educational Forum, pages 315-343. Springer, 2000.

D. C. Schmidt. Model-driven engineering. Computer-IEEE Com-
puter Society-, 39(2):25, 2006.

B. Silva, G. Callou, E. Tavares, P. Maciel,]. Figueiredo, E. Sousa,
C. Araujo, F. Magnani, and F. Neves. Astro: An integrated environ-
ment for dependability and sustainability evaluation. Sustainable
computing: informatics and systems, 3(1):1-17, 2013.

B. Silva, R. Matos, G. Callou, J. Figueiredo, D. Oliveira, J. Ferreira,
J. Dantas, A. Lobo, V. Alves, and P. Maciel. Mercury: An integrated
environment for performance and dependability evaluation of
general systems. In IEEE/IFIP Int. Conf. Depend. Sys. and Net., 2015.
M. Stamatelatos et al. Fault Tree Handbook with Aerospace
Applications. NASA Office of Safety and Mission Assurance, 2002.
D. H. Stamatis. Failure mode and effect analysis: FMEA from theory to
execution. Quality Press, 2003.

[66]

[67]

[68]
[69]
[70]
[71]

[72]

[73]

[74]

[75]

[76]

18

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

D. Stewart, J. J. Liu, M. Heimdahl, D. Cofer, and M. Peterson.
Safety annex for the architecture analysis and design language.
2018.

Z. Tang and J. B. Dugan. Minimal cut set/sequence generation for
dynamic fault trees. In Sym. Rel. & Maint., pages 207-213, 2004.
K. S. Trivedi and A. Bobbio. Reliability and availability engineering:
modeling, analysis, and applications. Cambridge Univ. Press, 2017.
K. S. Trivedi and R. Sahner. Sharpe at the age of twenty two. ACM
SIGMETRICS Performance Evaluation Review, 36(4):52-57, 2009.

M. Van der Borst and H. Schoonakker. An overview of PSA
importance measures. Rel. Eng. & Sys. Safety, 72(3):241-245, 2001.
E. Verbeek and D. Fahland. CPN IDE: An Extensible Replacement
for CPN Tools That Uses Access/CPN. In Int. Conf. on Process
Mining Doctoral Consortium and Demo Track, pages 29-30, 2021.

E. Vicario, L. Sassoli, and L. Carnevali. Using stochastic state
classes in quantitative evaluation of dense-time reactive systems.
IEEE Trans. on Software Engineering, 35(5):703-719, 2009.

M. Volk, F. Sher, J.-P. Katoen, and M. Stoelinga. Safest: Fault tree
analysis via probabilistic model checking. In Annual Reliability and
Maintainability Symp. (RAMS), pages 1-7. IEEE, 2024.

W. Wang, J. Loman, and P. Vassiliou. Reliability importance of
components in a complex system. In Annual Symposium Reliability
and Maintainability, 2004-RAMS, pages 6-11. IEEE, 2004.

A. Zimmermann. Modelling and performance evaluation with
TimeNET 4.4. In QEST, pages 300-303. Springer, 2017.

Laura Carnevali is Associate Professor of Com-
puter Science at the School of Engineering, Uni-
versity of Florence, ltaly, where she received
the Ph.D. degree in Informatics, Multimedia, and
Telecommunications Engineering in 2010. Her
research is focused on quantitative evaluation of
stochastic models and on its application to vari-
ous domains through model driven engineering.

Stefania Cerboni is Research Fellow at the
School of Engineering, University of Florence,
Italy, where she received the B.S. degree in
Computer Engineering in 2019. Her research is
in the area of Software Engineering, specifically
in software architectures and methodologies and
Model Driven Engineering practices. As part of
her research, she contributed to the design and
development of the FaultFlow API.

Leonardo Montecchi is Associate Professor
at the Norwegian University of Science and
Technology in Trondheim, Norway. Previously,
he was Assistant Professor at the University
of Campinas, Brazil. He received the Ph.D. in
Computer Science, Systems and Telecommuni-
cations (2014) from the University of Florence,
Italy, where he also was Postdoctoral Fellow until
2017. His expertise revolves around modeling of
complex systems, including formal models, prob-
abilistic models, and model-driven engineering,

applied to verification and validation of complex systems.

Enrico Vicario is a Professor of Computer Sci-
ence and Engineering and Head of the Depart-
ment of Information Engineering at the Univer-
sity of Florence, Italy. His research is in the area
of Software Engineering, with a present focus
on quantitative evaluation of stochastic models,
software architecture and methodologies, and
on their connection through Model Driven Engi-
neering practices.

	Introduction
	FaultFlow overview
	Component-based systems
	Dependability measures
	FaultFlow workflow

	FaultFlow syntax and semantics
	Abstract syntax
	Semantics
	Concrete syntax

	Integration with the Pyramis library
	Pyramis syntax and semantics
	FaultFlow-to-Pyramis transformation
	Time-to-failure CDF and importance measures

	FaultFlow use cases
	Manipulating FaultFlow metamodel instances
	Deriving quantitative dependability measures

	Comparison with other tools
	Conclusions
	References
	Biographies
	Laura Carnevali
	Stefania Cerboni
	Leonardo Montecchi
	Enrico Vicario

