
Software: Practice and Experience

SPECIAL ISSUE PAPER OPEN ACCESS

Fail-Controlled Classifiers: A Swiss-Army Knife Toward
Trustworthy Systems
Fahad Ahmed Khokhar1 | Tommaso Zoppi1 | Andrea Ceccarelli1 | Leonardo Montecchi2 | Andrea Bondavalli1

1Department of Mathematics and Informatics, University of Florence, Florence, Italy | 2Department of Computer Science, Norwegian University of Science
and Tech, Trondheim, Norway

Correspondence: Tommaso Zoppi (tommaso.zoppi@unifi.it)

Received: 15 January 2025 | Revised: 2 September 2025 | Accepted: 26 October 2025

Funding: This work was supported by Ministero dell’Istruzione, dell’Università e della Ricerca and European Commission.

Keywords: classifiers | confidence | critical systems | fail-safe | prediction rejection | software architectures

ABSTRACT
Background: Modern critical systems often require to take decisions and classify data and scenarios autonomously without
having detrimental effects on people, infrastructures or the environment, ensuring desired dependability attributes. Researchers
typically strive to craft classifiers with perfect accuracy, which should be always correct and as such never threaten the encompass-
ing system. Unfortunately, this is a very unrealistic goal, as classification tasks are typically complex and may encounter a wide
variety of unexpected operating conditions and unknown inputs.
Methods: Classifiers should be considered as building blocks that interact with other components that help rejecting those
predictions that are suspected to be misclassifications, triggering system-level mitigation strategies instead. Fail-Controlled Clas-
sifiers (FCCs) are software components that can either correctly classify, misclassify, or reject outputs: ideally, they would reject
all and only outputs that correspond to misclassifications. Nine different FCCs are presented: Self-Checking Classifiers (SCC),
Watchdog Timers (WT), Input Processor (IP), Output processor (OP), Safety Wrapper (SW), Recovery Blocks (RB), weighted and
non-weighted Voting (VT, WVT) and Stacking (STK).
Results: These 9 FCCs are instantiated in experiments with tabular and image classifiers, showing their potential in rejecting
most misclassifications and paving the ways for trustworthy decisions to be deployed in critical systems. If the system can tolerate
more omissions, the IP FCC is a good choice. On the other hand, if achieving the highest accuracy is the priority, RB FCC performs
better.
Conclusions: Findings show that FCCs do not primarily aim at improving correct classifications, but allow for transforming many
misclassifications into rejections, which may be easily handled by the encompassing system and paving the way for trustworthy
decisions to be deployed in critical systems.

1 | Introduction

“If you can’t say something nice, don’t say nothing at all” tells
Thumper the rabbit to Bambi in the famous, 80-year-old Dis-
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ney cartoon. This small rabbit teaches us an important lesson.
There are cases in which rejecting an answer that you are not
confident about may be more beneficial than trying the “most
likely” answer. This is true also when answering questions in
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school tests, where a correct answer provides you a positive score,
but a wrong answer may provide a non-neutral, negative score.
Obviously, the rate of rejections has to be reasonably low: a
decision-making entity that always rejects outputs will never be
wrong but will also never be useful for any purpose. These two
aspects have to be carefully balanced, aiming at an ideal trade-off
that rejects all and only wrong answers. This is substantially dif-
ferent from crafting decision-making entities that are always cor-
rect, which is usually an unrealistic expectation.

Nowadays, the real challenge system architects are dealing with
is integrating machine learning (ML)-based components that per-
form classification (referred to as “classifiers” in the paper) into
critical systems such that their wrong predictions do not trig-
ger catastrophic failures. Classifiers can effectively serve a wide
variety of purposes: in critical systems, they are usually used
for detecting deviations that may be due to the occurrence of
faults or attacks, and perform error detection, intrusion detec-
tion, or failure prediction [1–5]. Moreover, classifiers can per-
form high-quality classification of images, which is of paramount
importance for obstacle detection [6, 7] and traffic sign recog-
nition [8] for autonomous driving, or even for webcams (edge
computing) and related components (cloud/fog computing, and
other standalone or centralized architectures) with image quality
checks, accurate access control, or even for classifying diseases in
the medical domain [9]. In the last decade, academia, industry,
and national governments have hugely invested in methodolo-
gies, mechanisms, and tools to embed classifiers into ICT sys-
tems, especially critical ones. Regardless of how much effort we
put into building classifiers that are more and more accurate, they
could still end up predicting a wrong class for a given input data
point, that is, a misclassification.

This paper advocates for a paradigm change, leaning towards
system thinking rather than component engineering. We should
consider the classifier as a component to be deployed into a
system rather than chasing the holy grail of perfect accuracy.
This provides more flexibility as it does not require the classi-
fier to be infallible “in isolation”, but allows for multi-component
or system-level mechanisms and protocols to handle uncertain
predictions that are suspected to be misclassifications [10]. For
example, in autonomous vehicles, a classifier detecting road
signs does not need to be 100% accurate; if uncertainty arises,
the system can trigger additional verification methods such as
querying GPS data or alerting the driver to take control. This
flexibility reduces reliance on perfect predictions and enables
multi-component systems to manage misclassifications. When
there is not enough confidence in the prediction, we shift the
responsibility from the classifier—which would have output its
“best guess”—to the encompassing system, which runs more
appropriate diagnostic or mitigation routines. The aim is not to
reduce the amount of misclassifications of the classifier; instead,
we aim at suspecting and rejecting most (if not all) of them
and trigger alternative strategies instead. Straightforwardly, find-
ing a solid way to suspect misclassifications is of paramount
importance for designing what we call a Fail-Controlled Classi-
fier (FCC).

After reviewing the existing literature, we motivate the need
for FCCs, motivating their importance with respect to key con-
cepts such as dependability and trust. This allows formulating

their basic mathematical notions and the concept of confidence
(or uncertainty) in predictions of classifiers. Then, we present
and discuss Self-Checking Classifiers (SCC), Watchdog Timers
(WT), Input Processor (IP), Output Processor (OP), Safety Wrap-
per (SW), Recovery Blocks (RB), weighted and non-weighted
Voting (VT, WVT) and Stacking (STK) software architectures to
build Fail-Controlled Classifiers (FCCs), discussing possible vari-
ants due to implementation and design choices. These are evalu-
ated for tabular data and image classification, computing metrics
and aiming at both low misclassifications and low probability of
rejections. Findings show that FCCs do primarily aim at improv-
ing correct classifications, but allow for transforming many mis-
classifications into rejections, which may be easily handled by
the encompassing system. The code for repeating experiments is
available in GitHub at [11].

The paper is structured as follows. Section 2 reports the back-
ground of the study, while Section 3 motivates FCCs, which are
then presented in Sections 4 and 5. Sections 6 and 7 present and
discuss the experimental results of FCCs, letting Section 8 list
threats to validity and conclude the work, by summarizing the
main takeaways.

2 | Background and Related Works

2.1 | Classification of Structured
and Unstructured Data

Decades of research and practice on ML provided us with plenty
of classifiers that are meant to always output a prediction. Super-
vised classifiers [12] and particularly those based on Deep Neural
Networks (DNNs) were proven to achieve excellent classification
performance in many domains. Additionally, the last couple of
years provided evidence that some classifiers are more suitable
to process structured rather than unstructured input data. This
is especially the case of tabular data, for which it is beneficial to
use tree-boosting ensembles [13–16], despite alternatives based
on DNNs existing [2]. Conversely, image classification employs
DNNs, which can learn strong features from pixel maps [17, 18].

2.2 | Confidence of Classifiers

Classifiers may exhibit high confidence even when misclassifying
data points; for example, “neural networks which yield a piece-
wise linear classifier function [ . . . ] produce almost always high
confidence predictions far away from the training data” [19]. This
issue highlights the central challenge: ideally, classifiers should
be highly confident about predictions that are correct and show
low confidence only for those that are misclassifications. Trusting
each prediction of a classifier, to the extent that the prediction can
be propagated toward the encompassing system and safely used
in a critical task, is very challenging [20]. Researchers and practi-
tioners are actively investigating ways to quantify uncertainty and
learning to reject [21] misclassifications. Some approaches rely
on statistical measures such as confidence intervals [22] or the
Bayes’ theorem [23]. Works such as [24] estimate uncertainty by
using ensembles of neural networks: scores from the ensembles
are combined in a unified measure that describes the agreement
of predictions and quantifies uncertainty. In [18], the authors
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processed SoftMax (i.e., a probability distribution over all pos-
sible classes obtained from raw outputs of the ML algorithm)
probabilities of neural networks to identify misclassified data
points. A new proposal came from [20, 25], where authors paired
a k-Nearest Neighbor classifier with a neural network to com-
pute uncertainty. The work [7] computed the cross-entropy on
the SoftMax probabilities of a neural network and used it to detect
out-of-distribution input data that is likely to be misclassified.
Authors of [26] use probabilistic neural networks to model pre-
dictive distributions and, as a result, quantify predictive uncer-
tainty using methods such as adversarial training. In [27], the
authors use distance measurements of the Empirical Cumula-
tive Distribution Function as a trigger for the failure detector
to actively track the behavior and operational context of the
data-driven system. The study [28] suggests a simple monitoring
architecture to improve the model’s robustness to different harm-
ful inputs, particularly those resulting from adversarial attacks
on neural networks. Finally, the authors of [3] combine a voting
strategy with a safety monitor to build a safe and secure classifier
for application in embedded systems. While these methods pro-
vide valuable advances, none fully solve the problem of misplaced
confidence, underscoring the need for Fail-Controlled Classifiers
(FCCs) that explicitly incorporate mechanisms to detect and han-
dle untrustworthy predictions.

2.3 | Unknown Inputs: Threats to Classification

Tackling very complex problems naturally exposes classifiers to
a high probability of misclassifications, which can be reduced
but not avoided at all. The sub-optimal choice of suitable ML
algorithm(s), the poor availability or quality of training data,
and biased pre-processing and analyses may all constitute addi-
tional causes of misclassifications that instead should be avoided.
On top of that, there may be other problems due to the opera-
tional environment in which the classifier is expected to oper-
ate [29], which may expose classifiers to unknown, unexpected
inputs. There is no universally accepted taxonomy of threats
[30]. In this paper, we structure the discussion around three
widely recognized categories—out-of-distribution data, adver-
sarial attacks, and distributional shifts—while treating the sim-
ulation of unknown inputs as a mitigation strategy rather than as
a new threat category.

2.3.1 | Out-of-Distribution Data, Anomalies,
and Outliers

Systems and software components may encounter anomalous
inputs or operating conditions [4, 18, 29, 31] even with semi-static
systems and in the absence of security threats that may be inten-
tionally willing to damage our system. For tabular data, these
are known as point or contextual anomalies (global or local out-
liers), whereas for recent image-based applications, those events
are usually referred to as out-of-distribution (OOD) data. Over-
all, those inputs do not belong to the distribution of training data;
thus, the behavior of the classifier may become unpredictable [18]
and prone to misclassifications. Conversely, what makes OOD
data and outliers tricky to classify also makes them detectable,
provided that we can precisely characterize the “in-distribution”
data [18, 31, 32].

2.3.2 | Adversarial Attacks

Second, classifiers may operate in situations in which malicious
entities may be willing to actively disturb the behavior of clas-
sifiers, triggering misclassifications with targeted attacks. For
image classification, this is the case of adversarial attacks, whose
popularity saw an outstanding growth in the last decade after the
first findings on data poisoning [33], adversarial patches [34], and
gradient-based attacks [35]. As it happens with security-related
issues, the likelihood of occurrence of adversarial attacks is a
compound quantity that depends on the attacker’s intent, the
attack surface of the system, the knowledge of the attacker (i.e.,
white-box or black-box attacks) and many other attributes. Con-
versely to OOD and anomaly detection, ways to deal with adver-
sarial attacks are still being actively researched as the topic is
rather new. Many solutions already exist [31, 36], but nothing that
can be considered proven-in-use yet.

2.3.3 | Distribution Shifts, Emerging and Unexpected
Events

Third, ML often works under the Independent and Identically
Distributed (IID) or “closed world” assumption [37]. In a closed
world, train, validation and test data are independently and ran-
domly sampled from the same underlying distribution. However,
most (if not all) of the operational environments are dynamic,
evolving, or complex enough to make this assumption very
restrictive and valid only in a very small subset of static stan-
dalone systems. As a result, research moved to deploying classi-
fiers that go beyond this assumption and are meant to operate in
an open world [37] where test data may be distributed (slightly)
differently from training and validation data. These classifiers
have to be robust to environmental changes, distribution shifts,
emerging and unexpected behaviors, and even changes in the
threat landscape [6, 38].

2.4 | On Simulating Unknown Inputs

Unknown inputs are intrinsically unpredictable in their entirety:
however, there is a growing need to design and evaluate
techniques whose behavior is stable even when processing
unknowns. To do that, unknown inputs have to be simulated
and used when testing research proposals and artifacts. When a
testbed of the case study is available, these unknown inputs can
be simulated or obtained after monitoring campaigns in which
the operational environment is different from that used for train-
ing the classifier. Examples include, but are not limited to: collect-
ing images during specific weather events, monitoring hardware
in untested temperature and humidity setups, crafting and exer-
cising novel attacks, and simulating software bugs.

When only a dataset is available, unknown inputs may be simu-
lated or generated. One approach is to remove specific classes of
anomalous behaviors from the training set, letting them appear
only in the test set, being unknown to the classifier. Then, if the
classifier is a binary intrusion detector trained with normal data
and with data about three attacks (say a1, a2, a3), an unknown
input can be simulated by providing data about a novel attack (say
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a4) only during testing. Here, a4 is not a real zero-day attack (it is
logged in the existing dataset), but it is a zero-day to the classifier.

The generation of in-distribution and out-of-distribution data is
typically up to Generative Adversarial Networks (GANs), which
can learn how to generate samples on the tail of a (known) data
distribution. Often, the approach includes an autoencoder, which
aims to reconstruct the original input, with the reconstruction
error used as a way to understand if the generated data complies
with the user needs, that is, if it belongs or not to a target distri-
bution [39]. Another approach is applying gradient-descend tech-
niques as Fast Gradient Signed Method (FGSM) [40], which intro-
duces adversarial perturbations by adding a scaled sign of the gra-
dient to the input. Other options rely on statistical methods: a Soft
Brownian Offset [41] defines an iterative approach to translate a
point x ∈ X by a most likely distance 𝑑 away from the distribu-
tion X, and as such can be used for generating out-of-distribution
inputs as follows. Suitable representations of an in-distribution
dataset are found through an encoder; then, those are trans-
formed via the Soft Brownian Offset and then decoded into the
original data shape.

2.5 | Replicas, Redundancy, Diversity,
and Adjudication

Redundancy is a key principle in fault-tolerant systems, ensuring
continuous operation by adding extra components or systems as
backups in case of failure [42]. N-version Programming (NVP),
or software redundancy, runs multiple replicas of software on
diverse hardware, operating systems or diverse versions of the
software itself. Diversity plays a major role also in ML-based soft-
ware and is a staple for ensemble learning. Diversity in ML can
focus on three main areas: data diversification, model diversifica-
tion, and inference diversification [43]. Employing different train-
ing data potentially makes for learning diverse ML models. Model
diversity, on the other hand, promotes variety in how models are
structured or combined, which reduces repetition and enhances
their ability to represent complex systems. Inference diversifica-
tion allows models to consider multiple plausible outcomes, and
is often used in object detection scenarios.

An important part of NVP or ensembles is to combine out-
puts from replicas or versions, which is typically done via an
adjudicator [44], or meta-learner. A meta-learner uses knowl-
edge from base classifiers—along with their outputs, called
meta-features—to compute a unified prediction [14, 16, 45].
Techniques like voting, stacking, cascading, and arbitrating have
been developed for this purpose. Majority voting is common in
bagging and boosting, while STK is particularly effective for com-
bining heterogeneous classifiers. Noticeably, combining classi-
fiers is not always beneficial: misleading models can make the
ensemble lean towards misclassifications if not carefully man-
aged [46].

2.6 | Diversity Metrics for Ensemble Classifiers

The paper [47], despite being 20 years old, provides an excellent
overview of metrics to quantify the diversity of classifiers, from
different viewpoints. Authors list pair-wise metrics, which allow

for estimating the diversity of pairs of classifiers, but also provide
metrics that apply to sets of n> 2 classifiers. In the vast major-
ity of cases, pair-wise metrics can be extended to a formulation
that works also for sets of classifiers. Two metrics introduced in
[47] are particularly relevant for our work, which we report below
using a test set TS and a set of classifiers CLFset.

• The disagreement (DIS), defined as “the ratio between the
number of observations where two classifiers predict differ-
ent results to the total number of observations.”

DIS
(
CLF1,CLF2,TS

)
=

∑
dp∈TS

{
1 if CLF1.predict(dp) ≠ CLF2.predict(dp)

0 otherwise

and scales as follows with 𝑛 ≥ 2 classifiers:

DIS
(
CLFset,TS

)
=

∑
𝑖=0 to 𝑛−1

∑
𝑗=𝑖+1 to 𝑛

DIS
(
CLF𝑖,CLF𝑗 ,TS

)
• The Double Fault (DF), defined as the “proportion of the

cases that have been misclassified by both classifiers,” which
scales as the “proportion of the cases that have been misclas-
sified by all classifiers” for more than two classifiers. This
metric quantifies the probability of having all classifiers mis-
classifying the same data point, which is the same as hav-
ing replicas with a common mode failure on a specific input,
which is typically recognized as one of the most—if not the
most—critical situations to avoid in critical systems engi-
neering [48].

DF
(
CLFset,TS

)
=

∑
dp∈TS

⎧⎪⎨⎪⎩
1

⋀
fc∈CLFset

fc misclassifies dp

0 otherwise

Ideally, classifiers in an ensemble will always agree on the cor-
rect prediction, which is not the case in real applications. Thus,
ensembles should be built to minimize DF and maximize DIS, to
ensure diversity of opinions: there is no benefit in orchestrating
multiple classifiers if all of them never disagree, or always predict
the same output.

3 | Fail-Controlled Classifiers: An Opportunity?

The desideratum is a classifier that has excellent classification
performance when dealing with in-distribution data, but that is
also pretty robust to unknown events [49].

3.1 | The Rationale and Motivation

Having both characteristics is quite difficult to achieve, and typ-
ically it makes classifiers “bet” on a prediction they are unsure
of. This best-effort behavior does not pair well with critical
systems, which require guarantees of correct component and
system-level behavior. Practically speaking, the probability of fail-
ure on demand of a critical component or system should be
proven to be lower than specific thresholds.

However, not all the failures have the same impact, and it would
be beneficial to change the failure semantics of classifiers from
uncontrolled content failures (i.e., misclassifications) to omis-
sion, or rejection, failures. Ideally, we want to reject all and only

4 Software: Practice and Experience, 2025

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.70033 by L

eonardo M
ontecchi - N

tnu N
orw

egian U
niversity O

f S , W
iley O

nline L
ibrary on [16/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the erroneous predictions: on the downside, the availability of
said component may be negatively affected when correct pre-
dictions are rejected in the process. Ways to build fail-controlled
components [48] are well known in the literature and often rely
on safety wrappers or monitors [1, 10, 50]. Safety wrappers are
intended to complement an existing critical component or task
by continuously checking invariants, or processing additional
data to detect dangerous behaviors, and blocking the erroneous
output of the component before it is propagated through the
system. Finding trade-offs between safety and availability is of
utmost importance when dealing with critical systems [51]: this
approach is not different.

3.2 | FCCs: Building Trust

How can FCCs be dependable to an extent to which they can be
trusted and deployed even in critical systems? Generally speak-
ing, dependability is achieved when there is the possibility to
“avoid service failures that are more frequent of more severe
than acceptable” [48]. Trust is the accepted dependence of system
A on a component B: the extent to which System A’s depend-
ability is (or would be) affected by that of B. In a nutshell, a
critical system (e.g., autonomous car, infrastructures) relies on a
trustworthy component or function because it can be confident
that this reliance will not compromise its reliability or perfor-
mance. This means that a (complex) classifier function should
be designed, implemented, verified, and validated to be trust-
worthy in its operational environment and within the encom-
passing system. This has a massive impact on software architec-
ture: trust does not imply correctness; thus a component may
be trustable even if not always correct. Therefore, there is no
need to strive for very specific solutions that aim at maximiz-
ing the accuracy [52, 53], which are exceedingly common when
dealing with ML-based software. Instead, a classifier has to be
considered as an unreliable component to be supported by addi-
tional (software) mechanisms to ensure trustworthiness. As per the
ISO/IEC TR24028 [54]—overview of trustworthiness in artificial
intelligence—guidelines, ML-based software “must incorporate
diagnostic measures to safely manage abnormal behavior, ensur-
ing a transition to a secure state.”

This pairs very well with the general formulation of FCCs we
introduced at the beginning of this section: the focus shifts from
correctness—which is desirable indeed—to trust, or rather the
ability to avoid misclassifications. Typical ML algorithms for clas-
sifications see these two quantities as opposed: the higher the
accuracy, the lower the misclassifications. However, when rejec-
tions come into play, the bond between correct predictions and
misclassifications is loosened, allowing for a wide variety of solu-
tions that are not constrained only to “raising accuracy”.

Takeaway 1. FCCs do not aim at improving classification
performance; they aim at rejecting (all and only) misclassifica-
tions, allowing for predictions to be justifiably trusted even if
there is misclassification.

3.3 | Handling Rejections at the System Level

For an adequate deployment of FCCs, the encompassing system
should know how to promptly act to guarantee that the system

will not be negatively affected in case of rejections of the output
of the FCC (or notification of suspicious prediction). Intuitively,
automatic or semi-automatic reaction and mitigation strategies
are both domain-specific and system-specific. There are multi-
ple examples in which rejecting potentially wrong predictions has
clear benefits in the behavior of a software or a system, even at the
cost of rejecting a non-negligible amount of correct predictions.

FCCs could find wide application in the control system of
semi-autonomous vehicles. Tasks such as semaphore or traf-
fic sign recognition should avoid misclassifications of red/green
semaphores or confusing a traffic sign with another, but can typi-
cally afford to occasionally reject uncertain predictions, provided
that the correct recognition happens early enough for mitigations
such as emergency braking or evasive steering [7] to take place.
Other tasks such as obstacle or pedestrian detectors may still pre-
fer a rejection over a misclassification, with rejections that are
likely triggering emergency braking to avoid hitting a potentially
undetected pedestrian [55].

Traditional railway systems have cyclic interactions with sensors,
actuators, and communication channels, where information is
supposed to be continuously shared (i.e., request of data, or “I
am alive” pings). When no information is exchanged across many
subsequent cycles, the component is deemed as malfunctioning
[56]. This does not pair well with classifiers, which do not account
for “rejections,” limiting their usage despite the many possi-
ble applications, for example, automatic visual inspection, rail
maintenance management [57]. Differently, FCCs pair extremely
well with this paradigm as they can minimize misclassifications,
knowing that subsequent rejections will likely trigger safe states
where the component will be stopped.

Stopping is not an option in aerospace systems: therefore, the
rejection of a prediction cannot trigger routines that completely
stop or shutdown equipment, but that instead aim at handling or
tolerating this potentially adverse situation [58].

4 | Basics of FCCs

As depicted in Figure 1, Fail-Controlled Classifiers (FCCs) should
perform runtime monitoring for suspecting misclassifications of
the classifier itself.

4.1 | Evaluation Metrics

Regardless of how it is implemented, a fail-controlled classifier
FCC(clf ) transforms a classifier clf which has 0≤ 𝛼 ≤ 1 accuracy
and a misclassification probability 𝜀, 0≤ 𝜀= (1− 𝛼)≤ 1, into a
component that has:

• accuracy 𝛼w ≤ 𝛼;

• rejection probability 0≤𝜑≤ 1. The FCC(clf ) may reject mis-
classifications (𝜑m, desirable and to be maximized), or cor-
rect predictions (𝜑c, unnecessary rejections to be mini-
mized). Overall, 𝜑=𝜑m +𝜑c, and 𝛼w +𝜑c = 𝛼;

• residual misclassification probability 𝜀w, 0<𝜀w ≤ 𝜀≤ 1; over-
all, 𝜑m + 𝜀w = 𝜀.
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FIGURE 1 | Transitioning from traditional classifiers (left) to fail-controlled classifiers (right), which may reject predictions.

TABLE 1 | 𝛼w, 𝜀w, 𝜑c, 𝜑m, and compound probabilities.

clf behavior→
FCC(clf)
behavior↓

Correct
prediction

Mis-
classification Sum

Not rejected 𝛼w 𝜀w 1−𝜑

Rejected 𝜑c 𝜑m 𝜑

Sum 𝛼 𝜀 1

All those probabilities are sketched in Table 1. Ideally, FCC(clf )
has almost the same accuracy as clf (i.e., 𝛼w ≈ 𝛼, or 𝜑c ≈ 0), a sub-
stantially lower residual misclassification probability, 0≈ 𝜀w <𝜀,
and a rejection probability close to 𝜀, thus 𝜑≈ 𝜀. The following
compound metrics may be calculated for a complete understand-
ing of its performance:

• 𝜑m ratio=𝜑m/𝜑, the ratio of rejected misclassifications over
all rejections of the FCC(clf ), to be maximized;

• 𝜀 drop= (𝜀− 𝜀w)/𝜀=𝜑m/𝜀, which is the drop in misclassifi-
cations due to FCC, to be maximized.

A FCC(clf ) will typically have lower accuracy than clf (i.e., 𝛼w ≤ 𝛼

aside from corner cases), as it does not primarily aim at improving
correct classifications. It aims at transforming most of the erratic
misclassifications, which are difficult to manage, into rejections,
that is, having a high 𝜀 drop. Whereas at the component level, this
may seem a negligible improvement, at the system level it pro-
vides a way to prevent a misclassified prediction from propagating
through the system, potentially causing (catastrophic) failures.

Takeaway 2. Researchers interested in lowering misclassifi-
cations should primarily focus on maximizing the 𝜀 drop, but
should also make sure that the 𝜑m ratio is high enough.

Another important aspect is related to comparing predictions of
different FCCs. Generally speaking, any measure that works for
comparing predictions of multi-class classifiers works even with
FCCs, as the “reject” option is simply considered an additional
class to the problem in this formulation. Specifically, for the diver-
sity metrics we already reviewed in Section 2.5, some of them
already apply to FCCs as they are, but they cannot catch the
behavior of FCCs with respect to rejections. It is important to
quantify the probability of having different FCCs that both reject
their prediction on the same inputs. Using a formulation similar
to that of the DF metric from [47], we define the double reject DR
measure between FCCi and FCCj as

DR
(
FCC𝑖,FCC𝑗 , dp

)
=
⎧⎪⎨⎪⎩

1 if FCC𝑖 rejects dp prediction
∧FCC𝑗 rejects dp prediction
0 otherwise

Notably, this pair-wise metric can be extended to group FCCs into
FCCset as follows.

DR
(
FCCset, dp

)
=
⎧⎪⎨⎪⎩

1
⋀

fc∈FCCset

fc rejects dp prediction

0 otherwise

4.2 | Confidence of FCCs

FCCs run additional components alongside the main classifier
to complement its execution and potentially trigger rejections
whenever desired conditions are not met. This has an obvious
impact on its output, but it may also affect the confidence in the
prediction, even when the output remains unchanged.

Assume that a main classifier clf is a binary classifier predicting
a tabular data point to belong to normal or anomalous network
data of a specific target machine. On top of the clf , we instanti-
ate three different FCCs: Alice(clf ), Bob(clf ) and Carl(clf ). Alice
rejects all predictions for which the confidence is lower than 0.99,
Bob rejects those where confidence is lower than 0.9, and Carl
rejects those under 0.7. Let us suppose that a data point is fed into
clf , which classifies it as normal with a probability of 0.91, and
as being collected when the network was under attack with the
remaining 0.09 probability. To keep things simple, this example
considers the (softmax) probability assigned to the most likely
class as the confidence of the classifier prediction, which is 0.91
in this case. Alice(clf ) rejects the prediction, resulting in a differ-
ent output with respect to the main clf . Conversely, Bob(clf ) and
Carl(clf ) do not reject it, leading to the same output of clf ; how-
ever, the confidence in the output may change a lot due to the
additional components run by Bob(clf ) and Carl(clf ). The confi-
dence of 0.91 is very close to Bob’s threshold, but is very far from
Carl’s; thus, Carl is rejecting the prediction with a higher confi-
dence than Bob.

A precise quantification of the confidence of FCCs depends on
the specific design of the FCC itself; thus, we will elaborate more
on this aspect in Section V.

4.3 | Detecting and Suspecting
Misclassifications

Ways to suspect misclassifications of classifiers, and thus trig-
ger rejections, can be partitioned into two groups: black-box and
white-box approaches.

Black-box approaches do not assume any knowledge about the
classifier, thus observing its inputs and outputs without any
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access to internals. They allow for building statistical machin-
ery that conveys input pre-processing [22], output analysis [18]
and even ensembles of them [59] for complex and quite effective
techniques for suspecting misclassifications. They mostly check
if inputs and outputs belong to specific statistical distributions,
and deem the prediction as non-trustworthy otherwise. Other
approaches aim at identifying unstable regions of the input space
in which the classifier may be likely to output misclassifications
[60, 61], or use external classifiers (e.g., nearest neighbors [20]) to
validate the output of the target classifier.

When insights on the classifiers are at least partially disclosed,
it is possible to apply white-box approaches. Those take advan-
tage of specific features of the algorithm or the resulting model
and use them to suspect misclassifications. For neural networks,
a common approach is to check the activation patterns of neurons
[18, 28]—which vary from one DNN model to another. Classi-
fiers that orchestrate ensembles may use the degree of agreement
or the diversity of predictions of the classifiers in the ensemble
[26, 56] as a way to estimate the confidence in a given prediction:
the looser the agreement, the more likely the misclassification.
Tree-based classifiers have their own unique features that may
be exploited for building custom trust measures [62]. Last but
not least, knowing the structure of the classifier allows for a more
careful interpretation of the computed confidence score, with the
potential of limiting the problem of high-confidence, erroneous,
predictions [19].

4.4 | Learning to Reject

A recent survey summarizes possible approaches for rejecting
predictions of classifiers [21]. As advocated there, “human intel-
ligence is usually modest and prudent, but, contrarily, machine
intelligence is always omniscient and conceited, resulting in
ridiculous and overconfident errors. To match this gap, learn-
ing to reject is actually an urgently needed skill for machines.”
From the survey [21], there are three categories of predictions
to reject:

• Failure rejection: This is the primary aim of prediction rejec-
tion strategies, which should suspect wrong predictions due
to classifier errors. These are not necessarily triggered by
unknown or malicious inputs, but mostly happen due to an
imperfect training phase.

• Unknown rejection: Data are seen as either in-distribution
or unknown, that is, out-of-distribution. Unknown data
fed into a classifier may result in unpredictable outcomes:
despite not necessarily leading to misclassifications, some-
times it is better to be safe than sorry and discard predictions
related to unknown data.

• Fake rejection, where unnatural, modified, and forged sam-
ples need to be rejected in order to guarantee the correct
behavior of a system. This is typically due to adversarial
attacks or other mechanisms to forge realistic (but fake) data.

In the last decade, relevant research was conducted primarily
within the community of ML, aiming at crafting rejection tech-
niques that are suitable for rejecting failures, whereas others are

tailored to reject overconfident predictions due to unknown (i.e.,
anomalous, out-of-distribution) or fake inputs.

Some rejection techniques were found to be beneficial for all
three rejection tasks. Using the maximum a posteriori probability,
the gap between top-two class scores, or the entropy of the prob-
ability array, seemed to help for understanding when to reject
failures [63, 64]. Other strategies exploit the concept of stability
under perturbation, that is, a correct decision should be invari-
ant to small perturbations [65], which is easier to apply in image
classification compared to dealing with tabular data. Specifically
for unknown rejection, it has been proposed to compute a dis-
tance score as the Euclidean distance between the input and the k
neighbors from the training set and reject if such a score is exceed-
ingly high [66].

Nevertheless, rejecting overconfident predictions due to
unknown inputs mostly revolves around strategies to compute
confidence values that remain well-calibrated when encoun-
tering out-of-distribution (OOD) data or inputs from shifted
distributions. Whereas many uncertainty and confidence esti-
mation methodswere made available throughout the years, most
of them were tested under the closed world (IID) assumption.
This has a negative drawback on the representativeness of these
metrics when dealing with unknowns, as there is no way to
understand if these quantities lean towards overconfidence
in specific situations. To the best of the authors’ knowledge,
this is still an open problem that has suggestions but no best
practices yet.

5 | Software Architectures for FCCs

This section reviews and adapts existing architectures for criti-
cal systems engineering that focus on pre-processing/input vali-
dation (IP), post-processing/output validation (OP), component
monitoring (WT, SW), or use built-in functionalities (SCC), for
crafting the FCCs in Figure 2. These FCCs allow for reducing
misclassifications thanks to the rejection mechanisms, which has
an obvious downside: whenever the FCC rejects many correct
predictions alongside misclassifications, it becomes almost unus-
able as it hardly provides a beneficial behavior for the encom-
passing system. To address this problem, we present additional
approaches based on ensembles of FCCs: Voting (VT), Weighted
Voting (WVT), Recovery Blocks (RB), and STK, which aim to
reduce misclassifications and at the same time keep unnecessary
rejections as low as possible. The numbering of sections matches
the alphabetic numbering of subfigures of Figure 2, for example,
Section 5.1 details what is shown in Figure 2a.

5.1 | SCC

Self-checking or self-testing hardware or software components
embed built-in and custom strategies to check for the quality of
their execution. This approach is required by many standards for
deploying transportation systems and usually involves crafting
hardware with redundancy and seeking an agreement of the out-
puts of the replicas [67], or employing testing libraries that are
periodically exercised on both hardware and software equipment
[68]. Whenever one of these checks fails, the target component
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FIGURE 2 | Software architectures for FCCs with accuracy 𝛼w, misclassification probability 𝜀w, and rejection probability 𝜑. (x) A simple (reference)
classifier, that provides correct or incorrect output against input. (a) Self-Checking Classifier (SCC), which already has built-in and non-trivial methods
for calculating trust in a prediction. (b) Watchdog Timer (WT), which measures inference time seeking for abnormal (too long or too short) executions.
(c) Input Processor (IP), which checks for integrity issues, anomalies or legitimacy of inputs. (d) Output Processor (OP), which checks if the output of
the classifier clf should be trusted or discarded. (e) Safety Wrapper (SW), which processes inputs, outputs and inference to compute confidence and
decide on trustworthiness. (f) Recovery Blocks (RB) pair the main FCC with other FCCs ran in sequence, seeking for the first that outputs a confident
prediction. (g) Voting VT. Different FCCs are run in parallel and their results used for adjudication by means of k out of n voting. (h) Weighted Voting
(WVT). Weights fw can be provided as a parameter or be derived during inference. (i) Stacking STK: FCCs are run in parallel as base-learners, creating
model-based meta-features to perform adjudication.
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is deemed failed and in need of being replaced or fixed. Replicas
refer instead to multiple redundant systems or components that
perform the same task independently. The system compares the
outputs of these replicas, and if they agree, the result is consid-
ered reliable. If there is a disagreement, further checks or fail-safe
mechanisms are triggered to ensure safety.

For classifiers, this approach translates into looking for measures,
indexes, or other variables that may be generated during the infer-
ence process and that provide a quantitative confidence or trust
score to assign to each prediction. In case the classifier computes
a score and then applies a threshold to decide on the class proba-
bilities, the distance of such score from the decision boundary can
be used as a confidence measure: the closer to the decision bound-
ary, the less confident the prediction. Applications of this way
of computing confidence can be found for unsupervised (binary)
classifiers, DNNs, and also for improving classification of noisy
data [60], but are not available by default in standard libraries
used for supervised learning, for example, Python’s scikit-learn,
PyTorch, Keras.

5.2 | WT

WTs aim at measuring the length of the execution of a target func-
tion to understand if the elapsed time conforms with expectations
[69]. In case the function completes too early, the WT generates
an alert that we can use to trigger rejections. If the function com-
pletes too late, it indirectly delivers a rejection as well.

The reader may see this as a trivial check; however, it has been
and currently is being used in many embedded or cyber-physical
systems as a runtime check of the state of IT machinery. Decades
ago, WTs were meant to check electronic or mechanical-related
functions [70], but transitioned to check the execution of soft-
ware [69] and thus constitute an additional way to build FCCs.
The clear advantage is that they add negligible overhead and
work with any black-box classifier. On the negative side, they
will be able to spot only a limited subset of issues (e.g., several
anomalous activation patterns of neurons in DNNs, long paths
in decision trees that may be due to an overfitted model, prob-
lems due to underlying hardware, operating system or virtual-
ized middleware, or slowdowns due to malicious or malfunc-
tioning software acting in the host system), resulting in a low
rejection probability but high residual misclassifications. Impor-
tantly, tuning timers is a system-specific process: a WT may work
well with specific hardware, but require re-tuning when the same
hardware gets updated; that is, the notion of normal prediction
time varies.

5.3 | IP

This FCC performs a pre-processing to seek anomalies, sus-
picious values, low quality of such input, and the like. The
pre-processing is implemented by an input checker, which could
exercise adversarial attack detectors [31], out-of-distribution
detectors [32], image corruption detectors [9], statistical distri-
butions [22], or unknown data detectors in general [4]. Detect-
ing one of the cases above could trigger a rejection of the out-
put of the FCC, without exercising the classifier at all. Should

these events be quite frequent, the IP will show a fairly high
amount of rejections. Importantly, some classifiers are “robust
enough” to successfully deal with minor issues in the input
data: in this situation, the FCC should reject the output only
when the issue or corruption will not be tolerated by the robust
classifier, reducing rejections. Some strategies pre-process the
input to identify issues, while also providing a “cleared up”
version of the same input at the end of the process. This is
especially common for image classifiers, where autoencoders
are often used to remove background noise, small alterations
or minor damage to the image [5]. The reconstruction error is
used as a symptom of corruptions, but the process also gener-
ates the “clean” image that can therefore be fed to the classifier
instead of the initial, potentially noisy, image. In this case, even
a “non-robust” classifier may still be able to correctly classify the
“clean” image.

5.4 | OP

This is the simplest FCC out of the ones that we present in this
paper, as it directly acts on the output probabilities of a predic-
tion [18], computing the entropy of the probabilities, or using
the absolute value of the highest probability as indicators of trust
in the prediction. Entropy, in this case, quantifies the inher-
ent uncertainty in the prediction, with lower entropy indicating
a more confident prediction where one class probability domi-
nates, and higher entropy suggesting greater uncertainty due to
more evenly distributed probabilities across multiple classes. In
case the entropy is too high or the highest probability is below
a given threshold, the prediction would be rejected, triggering a
rejection. The threshold can be arbitrarily defined by the user
or be classifier-specific; in the latter case, it is possible to end
up having very different rejection rates when using different
classifiers.

5.5 | SW

IP and OP FCCs act before or after the classifier. However, we
may think of a monitor or wrapper [1] that acts before, during
and after inference. This is the case of the SW, which builds an
envelope around the classifier to extract as much information as
possible, to quantify the uncertainty of a prediction.

SW FCCs are partitioned into two big groups depending on their
knowledge of the classifier. If the internals of the classifier are not
disclosed (i.e., the classifier is a black box), the SW can only act
on interfaces and can possibly use the classifier for additional pre-
dictions. Implementations of black-box SW may rely on Bayesian
approaches [23], ensembles of confidence measures [59], relative
positioning of input data with respect to the prediction [20] or
run other classifiers (e.g., kNN [25], probabilistic DNNs [24]) and
check for agreement with the main classifier.

Conversely, when the internals of the classifiers are fully avail-
able, it is possible to craft very specific mechanisms that seek very
specific information throughout the inference process. The acti-
vation patterns of neurons in a DNN or the length of a path in
a decision tree can provide information on the whole prediction
process and thus on its uncertainty [28].
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5.6 | RBs

Recovery blocks are known since many decades as one of the
strategies for reliable software design [71]. Practically speaking,
they consist of a set of m alternative implementations of a func-
tion that are called sequentially whenever the output of the main
function is deemed non-trustable. For classifiers, this translates
into calling a sequence of at most m+ 1 classifiers before obtain-
ing the prediction, or rejecting the result if none of the recov-
ery blocks is confident enough in its output. This concept is not
entirely new in the ML domain: delegating classifiers [72] define
a group of classifiers, each specialized to be confident in the anal-
ysis of a subset of the input space, choosing the classifier to use
for inference depending on the input alone.

A FCC based on recovery blocks does not use a single classifier
for inference: in fact, it delegates the decision to the first replica
whose output is trustable (see Figure 2f). The amount and the
diversity of replicas have a direct impact on the likelihood of rejec-
tions: it will be easier to find a “trustable” replica if the set of
replicas is wide and diverse instead of relying on a few replicas.
Note that such FCC may add a major overhead to the inference
process as—in the worst case—it may require exercising m+ 1
classifiers in sequence.

5.7 | Majority and k-o-o-n Voting VT

Other approaches rely on N-Version Programming, or exercising
different classifiers in parallel [44, 71] each acting independently
but processing the same inputs. Their predictions, along with
trust scores, are sent to the adjudicator, which is a function that
takes as input the predictions and the trust scores of the m clas-
sifiers, generates an aggregate prediction and a trust score, and
decides if the prediction has to be rejected or if it is trustworthy.
For a problem of m-class classification and n replicas, the adju-
dicator is a function that has (m+ 1)n floating point inputs and
outputs m probabilities plus a floating point trust score. Voting
(VT) is a simple adjudication function that applies a rule called
k-out-of-n: when at least k out of n replicas agree on the same out-
put, the “agreed upon” output becomes the output of the VT, with
a trust score that is higher the more replicas reach the agreement.
Conversely, the output is rejected.

5.8 | WVT

A variant of voting is the WVT, where replicas are assumed
to have different reputations: opinions of some replicas should
count more towards the final adjudication than others. There-
fore, WVT requires an array of weights fw of n floating point val-
ues. These could be provided as input, as shown in Figure 2h, or
could depend on the inference process. In the former case, WVT
requires information about the behavior of each FCC to be used as
weight, for example, their accuracy aw, the non-misclassification
probability 1− 𝜀w, or an arbitrary value assigned by domain
experts. When the weights depend on the inference of a specific
input, the reputation of replicas changes from prediction to pre-
diction. A straightforward way to define weights in this way is to
use the trust score of FCC replicas as weight: the more confident
an FCC is, the more it contributes towards the output of the WVT.

5.9 | STK

The adjudicator [71] of an NVP system can be implemented with
thresholds as in (weighted) voting, or can be a classifier itself, pro-
viding many degrees of freedom in finding the ideal function to
combine the n replicas. This builds a two-layer software archi-
tecture that is often referred to as STK, with n FCCs at the base
level, and a different, independent, classifier at the meta-level
[73]. The meta-level classifier expects 2×n inputs, or rather the
outputs and trust scores of FCCs that are run as the base-level:
these are called model-based meta-features (see the red vertical
array in Figure 2i). By design, the meta-level classifier can pro-
cess its inputs only after all FCCs have been executed at the first
stage: those two steps are necessarily sequential (cannot be paral-
lelized), and as such they add a relevant overhead to the inference
process.

5.10 | Other Notable Approaches

Decades of critical systems engineering and system-level think-
ing originated more architectures [44, 71] than those shown
above. Voting was explored in different formulations (i.e., hard,
soft, weighted), and can even be used to build a hierarchical
agreement structure that is known as n-self-checking program-
ming [71]. Boosting techniques were proven to be very effective
for classifying known [12, 14] and unknown tabular data points,
but boosting ensembles of DNNs for image classification are not
yet a thing and are still in their early stages [45]. Interestingly, dif-
ferent architectures may be combined into unified architectures.
For example, there are works that pair classifiers based on ensem-
bles with a monitor to check for trustworthiness [3], but this is
still quite uncharted territory in which there are no widespread
and solid proposals (yet).

5.11 | Discussion

The SCC, WT, IP, OP, and SW FCCs all have their limitations
and advantages. Ideally, we want low rejection probability 𝜑, low
residual misclassifications 𝜀w, and low overhead. Since none of
the solutions above (and none at all, according to the knowledge
of the authors) guarantee these properties by design, the software
architect or engineer will need to choose the approach that brings
the most convenient trade-off depending on the specific use case.
A full white-box knowledge of the classifier and access to its inter-
nals pave the way for classifier-specific FCCs (i.e., safety wrap-
pers) that can be very accurate and have the potential to add
minimal overhead at runtime as they can be run in parallel while
the classifier is performing inference. On the downside, they may
require complex conceptualization, design, and implementation,
plus expensive sensitivity analyses to fine-tune the overall mech-
anism.

Takeaway 3. Different FCCs may be more suitable than oth-
ers under specific circumstances. The choice and combination of
FCCs is up to the system architect.

Complexity may be high also for RB, (W)VT and STK, which
exercise ensembles of FCCs. RB exercises FCCs in sequence: if the
i-th FCC rejects the output, the i+ 1-th FCC is invoked, until the
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last FCC in the RB is exercised. The fact that FCCs are exercised
in a given order and are not necessarily exercised at each predic-
tion makes the choice and the ordering of FCCs a major concern
in RBs. Generally speaking, it is beneficial to exercise fast FCCs
first, for promoting a quick inference process in the majority of
cases, using slow FCCs only later in the sequence. This guaran-
tees that the average time needed for inference is kept reasonably
low. Another concern is about the rejection probability 𝜑 of FCCs
used in RBs. If the first FCC in the RB ensemble rarely omits, the
behavior of the RB is going to be the same as that of the first FCC
with few exceptions. Thus, FCCs have to be ordered starting from
those with low residual misclassifications εw and potentially high
rejections 𝜑 to FCCs with low rejections 𝜑 at the end.

Takeaway 4. RB may be beneficial only if the first FCCs to be
executed have low residual misclassifications 𝜀w, and potentially
high rejections 𝜑, transitioning to FCCs with low rejections 𝜑 at
the end of the sequence.

(W)VT approaches exercise many FCCs in parallel and decide
on a (weighted) voting of their outputs, accounting for rejec-
tions. This is a very straightforward approach; however, the WVT
formulation requires a careful choice of weights, which may be
assigned to favor accurate classifiers (high 𝛼 or 𝛼w values) or,
more interestingly for limiting rejections of those that have low
residual misclassifications 𝜀. STK may increase the computa-
tional complexity even more since the adjudication is performed
by yet another FCC, and thus has to be used only when enough
resources are available.

6 | Experimental Setup

This section describes the experimental campaign to quantify
how the behavior of tabular and image classifiers changes when
FCCs are applied instead of typical classifiers for images (neu-
ral networks) or tabular data (ensembles of decision trees for the
most part).

6.1 | Experimental Methodology, Setup,
and Code

Our experiments are structured as follows. First, we choose a sub-
set of FCCs to be used in our experimental evaluation and the
main classifiers: IP, OP, SW, see Section 6.2. In Section 6.3, we
gather datasets for exercising tabular and image classifiers, span-
ning over a wide variety of classification tasks and simulating
unknown data (Section 6.4). Sections 6.5 and 6.6 report results
for tabular data and image classification, respectively. The perfor-
mance of classifiers and FCCs is quantified via the metrics from
Section 4.1. Experiments have been performed on a server with
Intel(R) Core (TM) i5-8350U CPU@1.7 GHz 1.9 GHz, using an
NVIDIA Quadro RTX 5000 GPU. The code for repeating exper-
iments is available in GitHub at [11].

6.2 | Selection of FCCs and Classifiers

Some of the FCCs that are presented in Section 5 cannot be
instantiated in general settings. This is the case of the WT which,

as a timer, depends on the typical inference time a classifier has
on a specific software–hardware platform and with a specific
workload. Results we get using this FCC may wildly change when
repeating experiments in a different setup; thus we avoid it. Also,
widely used ML algorithms for classification do not typically pro-
vide dedicated and custom ways for computing confidence in
predictions, and cannot be used as SCCs. Consequently, in this
first experimental analysis, we instantiate the IP, OP, SW FCCs as
follows.

6.2.1 | Tabular FCCs and Main Classifiers

Tabular data classifiers are preferably built over ensembles of
decision trees or statistical ML algorithms [13–15]. Thus, the five
binary tabular classifiers used as base classifiers in this study are
Decision Trees (DT), Random Forests (RF), XGBoost (XGB) Gaus-
sian Naïve Bayes (GNB), and Logistic Regression (LR). To imple-
ment the input checkers in the IP and SW FCCs, we rely on Extra
Trees (ET) and Linear Discriminant Analysis (LDA), which are
different from those that we use as main classifiers of FCCs. Out-
put checkers can rely either on static or dynamic thresholds for
deciding on rejections: for the sake of our study, either of the two
approaches forces us to choose an arbitrary value. Looking at the
results of the experiments and at the probabilities of classifiers,
we found that a threshold of 0.8 on probabilities (i.e., predictions
with probability lower than 80% are rejected) allows for a rea-
sonable amount of rejections. All tabular classifiers are exercised
using their default parameters from the scikit-learn, and xgboost
Python libraries [74]. This experimental setup created 10 IPs (i.e.,
five classifiers, each checked via ET or LDA), 5 OPs (one per clas-
sifier), and 10 SWs, obtained by combining each of the 10 IPs with
the OP. In this configuration, a SW is a combination of an IP and
an OP.

6.2.2 | Image FCCs and Main Classifiers

For image classification, the literature acknowledges how neural
networks are the preferred choice when dealing with unstruc-
tured data [6–8]. We chose AlexNet (AN), DenseNet121 (DN),
VGG11 (VGG), and InceptionV3 (IC) as image classifiers given
their wide usage in the last decade. Input checkers for images
use DNNs as well: ResNet50 (RN) and GoogLeNet (GN). OP and
SW are configured similarly to tabular classifiers: this results in
8 IPs, 4 OPs, and 8 SWs. Each of the six DNNs above brings
unique features: VGG is known for its simplicity, DN improves
the information flow with densely connected layers, and GN
introduces inception modules for computational efficiency. IC
builds on GN with further optimization, while RN’s residual
connections enable the training of deeper networks. AN, a pio-
neer in CNN architectures, laid the groundwork for modern
image classification. The final models are obtained by trans-
fer learning with learning rate= 0.001 and batch size= 32 from
pre-trained DNNs using ImageNet weights stored in PyTorch
Lightning [75].

Naming is as follows: IP, OP, and SW FCCs are tagged as
IP_< x> _< y>, OP_< x>, SW_< x> _< y>, where x is the
name of the main classifier, and y is the name of the classifier
used as input checker.
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6.3 | Datasets

This section lists image and tabular datasets used for experi-
ments. We split each dataset using a 50-20-30 train-validation-test
split.

6.3.1 | Tabular Datasets

We select three tabular datasets belonging to different domains
in which classifiers are typically willing to be applied: intrusion
detection (CICIDS18 [76]), error detection (ARANCINO [77]),
and control systems (MetroPT [78]). These datasets contain hun-
dreds of thousands of data points corresponding to the behavior
of the system under normal operating conditions or due to: attack
(six attack classes in CICIDS18), the manifestation of errors (nine
errors in ARANCINO), control system failures (air and oil leak
in MetroPT). For these datasets, we target a binary classification
problem, aiming at distinguishing normal operating conditions
from anomalies due to attacks, errors, or component failures.

6.3.2 | Image Datasets

We select three image datasets: Flower (9 classes [79]), FER2013
(7 classes [80]), and FOOD-101 (10 classes [76]). Out of the many
alternatives for image classification, we favored those since they
are publicly available, belong to different domains, have a vary-
ing number of classes, and allow for fast experimentation times.
Since the images vary in size, we apply a transformation to resize
them (at most 96× 96 RGB). The datasets contain on the order of
thousands or tens of thousands of images per dataset.

6.4 | Generation of Unknown Inputs

Public datasets are useful for experimentations, but may not
generalize well to real scenarios that are prone to encountering
unknown operating conditions, resulting in out-of-distribution
inputs, different from those used for training the classifier. This
typically makes the likelihood of misclassifications skyrocket;
thus it is of utmost interest to simulate these conditions as part
of our experiments.

6.4.1 | Unknown Image Data

We generate a first batch of unknown (out-of-distribution)
images by applying four different alterations, that is, Rotation,
Color Space, and Gaussian Noise [81] and GANs to 40% of images
from the test set, that is, unseen by the classifier in the training
set. We create the Gaussian noise image by generating a noise
map using mean 0 and st.d 25, and then overlapping it to images.
Color space anomalies result from chaining operations such as
Brightness 0.5, Contrast 1.5, Saturation 1.5, and Hue adjustment
at the scale of 20. For rotation, we rotate the image of 90˚ left.

The second batch of unknown images was generated via the Fast
Gradient Signed Method (FGSM), which leverages gradient infor-
mation to create perturbations that maximize the classifier’s error
(Figure 3). FGSM’s parameters are as follows: (i) input image size

FIGURE 3 | Example of generating unknown images in the Flower
Dataset, where input images are altered with the perturbation with a mul-
tiplier to form an unknown image.

FIGURE 4 | Unknown tabular data: The example of CICIDS18,
where some attack classes are removed from the training set occurring
only in the test set, being unknown to the classifier.

(𝑥, 𝑦) as in the dataset, 𝛾 = 0.2, 𝜃: AN, DN, IC, VGG model param-
eters, L: AN, DN, IC, VGG loss. These alterations were injected
using the OpenCV and PyTorch library, and the parameters above
are amongst the ones suggested in the documentation.

6.4.2 | Unknown Tabular Data

The generation of unknown tabular data is not as straightfor-
ward as it happens with images. Fuzzing or adding random noise
generates a new data point that may belong to the same distribu-
tion of the original data point, but may also fall into a different
class. To overcome this problem, we remove specific classes of
anomalous behaviors from the training set, letting them appear
only in the test set, being unknown to the tabular classifier.
For CICIDS18, SSH-Bruteforce, FTP-BruteForce, and Infiltration
attacks only appear in the test set (see Figure 4). For ARANCINO,
errors in the NodeRed, Redis, and Arancino-manager services only
appear in the test set, whereas in MetroPT data of the OilLeak
failure is removed from the train set as well.

This allows for building test sets that are composed of
in-distribution (those from the original dataset) and out-of-
distribution data, simulating the occurrence of unexpected opera-
tional conditions in real scenarios. The rate of out-of-distribution
data ranges from 20% of the test set in the Food-101, Flower,
FER2013 image datasets, to 20%, 12%, 8% for CICIDS18, MetroPT,
and ARANCINO tabular datasets, respectively.

6.5 | Results: Tabular Data Classification

We start commenting on the results of classifiers and FCCs using
tabular datasets with the aid of Table 2, which reports the percent-
age of misclassifications 𝜀 (for the main classifier), 𝜀w (for FCC),
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rejections𝜑, 𝜀 drop, and𝜑m ratio for different datasets, FCCs, and
main classifiers. The table has 25 lines, 5 for each of the five main
classifiers DT, GNB, LR, RF, XGB. The columns for 𝜑m ratio and
𝜀 drop are painted with a gradient of green that gets darker the
more these two metrics approach optimal results (the higher, the
better).

Reading the table by dataset blocks (i.e., 3 groups of 5 columns),
we can observe the following. In the NIDS—CICIDS18 dataset,
the misclassifications 𝜀 of DT, GNB, LR, RF, and XGB are
respectively at 0.123 (1st–5th row), 0.269 (6th–10th row), 0.245
(11th–15th row), 0.123 (16th–20th row), and 0.123 (21st–25th
row). FCCs always lower misclassifications as 𝜀w values are lower
than 𝜀, at a cost of a nonzero amount of rejections 𝜑. Misclas-
sifications of the RF may drop from 0.123 to 0.025 using the
SW_RF_ET (19th row of Table 2), at a cost of 22.3% of rejec-
tions, or 𝜑= 0.223. Roughly, we are reducing misclassification
by a factor of 5, but 22% of the predictions of the FCC will be
rejected. This is because only 43.9% (𝜑m ratio) of rejections cor-
respond to misclassifications, meaning that the remaining 56.1%
of rejections would have been correctly predicted by the main
classifier. This is far from optimal, as it means that the price for
lowering misclassifications may be too high in terms of accuracy
degradation.

Results related to the MetroPT datasets, reported in the columns
in the middle of the table, offer a different example. In this case,
and for all FCCs employing an IP or SW that uses ET as an input
checker (i.e., IP_x_ET, SW_x_ET, where x is any main classifier),
it allows for rejecting almost all (high 𝜀 drop) and only (high 𝜑m
ratio) predictions that would have been misclassifications. This is
the optimal scenario in which the application of the FCC brings
misclassifications ε of XGB and RF from 12.3% to an 𝜀w of almost
zero, with an 𝜀 drop of almost 99.8% (see 16th, 19th, 21st, 24th
rows of the table, 8th to 11th column). In other words, the resid-
ual misclassifications are lowered by a factor of almost 1000, and
there are just a few rejections of correct predictions; that is, 𝜑m
ratio is 0.998, very close to the optimum 1. On the extreme right
of the table, we see results for the ARANCINO dataset. Here, we
see that FCCs can significantly lower the number of misclassifi-
cations, but they typically show non-optimal performance as they
either reject an exceedingly high amount of predictions (high 𝜑

and low 𝜑m ratio) in the process.

Other important information can be obtained by reading the table
horizontally. First, the OPs have very different results depending
on the main classifier, as the 0.8 confidence threshold is either
too low (thus rejections are almost non-existent 𝜑≈ 0 as for the
DT, which always predicts with probability 1, or maximum con-
fidence) or too high, delivering an obnoxious rejection probabil-
ity as for LR in CICIDS18, see OP_LR, 13th row, 5th column of
Table 2.

Takeaway 5. The OP adds virtually no overhead to the pro-
cess as it just computes basic thresholding on probabilities of
predictions and is typically helpful in suspecting most of the mis-
classifications, or achieving high 𝜀 drop, but it has to be calibrated
well for each main classifier.

The benefits of using IP are situational: there are cases in which
it is game-changing as in the MetroPT dataset, but there are also
cases in which it does not reduce misclassifications by much (i.e.,
Error Detection—ARANCINO dataset), or where it rejects many
correct predictions in the process, as quantified by the low 𝜑m
ratio in the NIDS—CICIDS18 dataset. Safety wrappers SW are
meant to reject predictions if either the input or the output check
highlights issues; thus they always have high rejection rates, at
the benefit of having very low residual misclassifications.

6.6 | Results: Image Classification

Results similar to those presented above can be obtained also for
image classifiers. To avoid being tedious, this section focuses on
a subset of FCCs for each dataset: using AN and DN main clas-
sifiers on the Flower dataset (Figure 5a), IC and VGG on FER13
(Figure 5b), DN and IC on Food (Figure 5c). These scenarios offer
interesting discussion items that we explore as follows.

Figure 5a shows a 12-bar chart, 6 bars for AN (up in the figure)
and 6 bars for DN used as main classifiers (down in the figure).
For each classifier, the 6 bars show 2 IPs, 1 OP and 2 SW FCCs,
plus the theoretical optimal performance assuming rejections of
all and only misclassifications. For each result, the bar is parti-
tioned into three blocks: blue solid for 𝛼w, striped for 𝜑, and red
solid for 𝜀w; also, 𝜀 drop and 𝜑m ratio are reported in the table on
the right. From a visual standpoint, the aim of a FCC is to reduce

FIGURE 5 | Bar charts showing the performance of image FCCs on different datasets. (a) FCCs using AN and DN as main classifiers on the Flower
dataset. (b) FCCs using IC and VGG as main classifiers on the FER13 dataset. (c) FCCs using DN and IC as main classifiers on the Food dataset.
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the red bar (𝜀w) as much as possible, keeping the blue bar (𝛼w)
untouched, and replacing the red area with the yellow-striped
rejections 𝜑. Whereas the OP and SW FCCs succeed in reducing
the red bar, they also have a shorter blue bar than the optimum:
this is due to a low 𝜑m ratio, which is around 40% for the OP and
SW with AN as the main classifier, and around 30% for OP and SW
built using DN as the main classifier. In this case, there is no FCC
that has both high 𝜑m ratio and high 𝜀 drop: all reduce misclas-
sifications, but with a major price to pay in terms of unnecessary
rejections.

Figure 5b has the same structure as Figure 5a, but refers to the
application of IC and VGG as main (image) classifiers in the
FER13 dataset. The trend is very similar to those of Figure 5a,
with OP and SW FCCs succeeding in rejecting misclassifications.
Importantly, 𝜀 drop is quite high here (e.g., 𝜀 drop= 89.61% for
SW_VGG_GN and SW_VGG_RN), meaning that these FCCs are
able to reject almost 90% of misclassifications, which is an impor-
tant achievement.

Last, Figure 5c shows the application of FCCs using DN and IC
main classifiers on the Food dataset, which confirms the trend
from the previous figures. IPs have low 𝜀 drop and low rejection
rate 𝜑 (the yellow-striped bar is always very short), whereas OP
and SW trigger more rejections, allowing for an increase in the 𝜀

drop. FCCs not shown in the figures followed a similar trend to
those shown here.

Takeaway 6. The IP proved to be more or less useful depend-
ing on the scenario, as it may also end up having quite low 𝜑m
ratio (i.e., many unnecessary rejections) when unknown data is
not easily distinguishable from in-distribution data or when the
classifier would have been robust enough to correctly classify
even unknown data.

7 | Diversity Analysis and FCC Ensembles

This section discusses how to design and experiment with FCCs
that use ensembles of FCC algorithms, as RB, VT, WVT, and STK.
First, we will discuss how to evaluate the diversity of FCCs and
the results in our experiments (Section 7.1). Then, we will pro-
ceed to instantiate different RB, VT, WVT, and STK FCCs for
tabular (Section 7.2) and image data (Section 7.3), discussing
their results and comparing them against FCCs from the previous
section.

7.1 | Computing Diversity

As already discussed in Section 2.5 and widely acknowledged in
the literature, diversity plays a major role when crafting ensem-
ble classifiers that depend on the opinions of multiple individ-
ual classifiers. This is no different when crafting FCCs ensem-
bles, which orchestrate multiple FCCs as part of the inference
process. Results discussed in the previous section are useful to
understand the individual performance of FCCs, but they can
also be used to quantify how diverse they are, and thus how bene-
ficial it is to build ensembles. Using non-diverse FCCs in an FCCs
ensemble often results in weaker performance, because similar

components tend to make the same predictions and errors, which
reduces the system’s ability to adapt and correct itself.

We compute three different diversity measures for pairs of FCCs:
disagreement (0 ≤ DIS ≤ 1, higher is better), double fault (0 ≤

DF ≤ 1, lower is better), and double reject (0 ≤ DR ≤ 1, lower is
better) using the formulas introduced earlier in the paper. This
allows for quantifying the diversity of FCCs and for maximizing
the performance of FCC ensembles. We use the same datasets and
ML algorithms as in the previous section: complete data about
diversity is provided in [12], whereas in the followings we will
only report the subset of diversity data that is most relevant for
the discussion.

7.2 | Tabular Data

Here, we discuss the diversity of IP, OP, SW FCCs for tabular data,
and how to exploit this information for creating diverse RB, VT,
WVT, STK ensembles.

7.2.1 | Diversity Analysis

7.2.1.1 | General Comments. Data about the performance
of IP, SW, OP tabular classifiers was already commented on in
the previous section and fully reported in Appendix A in Table
A.1 of [12]. Table A.2–Table A.4 of [12] report all diversity met-
rics DIS, DF, DR for tabular classifiers. OPs for tabular classifiers
have high accuracy and very few rejections, but tend to fail on
the same inputs, having high DF (see the middle of Table A.3
of [12]). IPs and SWs are more prone to rejections, with a low
residual misclassification rate, low DF but also a pretty high DR
(see the corners of Table A.4 of [12]) due to the many rejections
they output. Overall, the maximum DIS is reached when com-
paring IPs against OPs, especially when using GNB and LR as
main classifiers. This is due to the fact that FCCs using GNB
and LR as main classifiers have overall poor classification per-
formance, resulting in many misclassifications that tree-based
classifiers such as DT, RF, XGB do not have. The most relevant
combinations of FCCs are summarized in Table 3: note that these
report a very low DF, which is typically important for avoiding
common-mode failures.

7.2.1.2 | FCCs for RB. First, we aim at devising a group of
FCCs that have very low residual misclassifications (thus low DF)
and high DIS, to be used as building blocks of the RB FCC. From
Table 3, it makes sense to leave OP_DT and OP_LR out of the
picture as they have high 𝜀w. However, OP_DT has no rejections
with 𝜑= 0: using this as the last item of an RB will drop rejec-
tions of the RB as well, which may be beneficial in specific sce-
narios. Thus, we plan for two versions of RBs, where FCCs are
ordered by decreasing rejection probability 𝜑: (RB1) SW_LR_ET,
SW_XGB_LDA, IP_RF_LDA, IP_DT_ET, and (RB2) SW_LR_ET,
SW_XGB_LDA, IP_RF_LDA, IP_DT_ET, OP_DT. The only dif-
ference is that RB2 employs OP_DT as the last FCC, making it
have no rejections and maximizing accuracy compared to RB1.

7.2.1.3 | FCCs for (W)VT, STK. Voting approaches
demand maximum disagreement, thus requiring a more careful
analysis of DIS values in Table 3. OP_LR and SW_LR_ET exhibit
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low disagreement of 0.03, see the 4th–5th row, 8th–9th column
of Table 3. These two have high disagreement with others, up
to almost 0.3, which is very high. Therefore, we choose IP_DT
_ET, IP_RF_LDA, OP_DT, SW_LR_ET, and SW_XGB_LDA
as FCCs to build VT FCCs. WVT requires weights to be
assigned to each of the three classifiers. In our case, we use the
“non-misclassification probability,” which is 1− 𝜀w: this gives
more weight to FCCs that are rarely wrong. STK requires a meta-
level classifier, which is RF in our case. We tried other (faster)
classifiers such as LR, GNB, LDA in its place, but they delivered
very unsatisfactory performance.

7.2.2 | Experiments With RB, VT, WVT, STK

Figure 6 reports the comparison of the performance of RB1, RB2,
STK, VT, WVT against a regular (RF) classifier and IP, OP, SW
FCCs from the previous section. We report results related to Error
Detection (Figure 6a) and MetroPT (Figure 6b), avoiding NIDS as
it was showing a trend very similar to that of Error Detection. Bar
charts in Figure 6 follow the same color scheme as Figure 5: blue
solid bar for 𝛼w, orange-striped bars for 𝜑 and red bars for 𝜀w.
On top of the bar charts, we find the performance of RF used as
a traditional classifier, thus with no rejections. Then, we report
on IP, OP, SW and the ensemble FCCs using RF as the main
classifier in both datasets. Noticeably, the OP_RF has the same
behavior as the RF alone, as the RF always answers with a con-
fidence higher than 0.8, which is the threshold we chose for OPs
in our experiments. SW and VT have short red bars in both cases,
showing a very low number of residual misclassifications; how-
ever, the blue part tends to be shorter than that of the RF main
classifier, meaning that this result is achieved at a cost of lower-
ing correct classifications. RB1 and RB2 bring a similar amount
of correct classifications as the regular RF classifier. RB1 trans-
forms many misclassifications into rejections, but is less effective
than VT overall. WVT allows for rejecting misclassifications, but
has a detrimental impact on accuracy, or the fraction of correct
classifications.

Noticeably, STK is able to improve 𝛼w, which rarely happens in
FCCs. This is because the meta-level STK classifier learns that
when base learners reject a prediction, this is likely to be an
anomaly. This allows not only for rejecting some predictions, but
also to correct others. In the case of the MetroPT dataset, where
IPs are able to reject almost all misclassifications, this means that
the STK FCC achieves a near perfect accuracy, which is a rare but
indeed beneficial case.

Takeaway 7. The STK FCC is the only FCC that allows
for improving correct classifications of binary classifiers, as the
meta-level classifier may even learn to interpret rejections as
anomalies. Does not apply for multi-class.

7.3 | Image Data

Here we report the diversity analysis for devising RB, VT, WVT,
STK FCCs for image data, discussing results of these classifiers.

7.3.1 | Diversity Analysis

7.3.1.1 | General Comments. Data about the performance
of IP, SW, OP image classifiers was already commented on in the
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FIGURE 6 | Comparison of FCCs using RF as the main classifier on the Error Detection (a, left) and MetroPT (b, left) tabular datasets. The color
scheme complies with that of Figure 5.

previous section and fully reported in [12] in Table A.5. Table
A.6–Table A.8 of [12] report all diversity metrics DIS, DF, DR
for image classifiers. IPs for image classifiers have high accuracy
and very few rejections, but tend to fail on the same inputs, hav-
ing high DF (see Table A.7 of [12]). OPs and SWs are more prone
to rejections, with a low residual misclassification rate, low DF
but also a pretty high DR (Table A.8 of [12]), due to the many
rejections they output. Overall, the maximum DIS is reached
when comparing IPs against OPs or SWs, as in the top-right
and bottom-left of Table A.6 of [12]. That said, the most rele-
vant combinations of FCCs are summarized in Table 4: note that
these report a very low DF, which is typically important to avoid
common-mode failures.

FCCs for RB. First, we aim at devising a group of FCCs that have
very low residual misclassifications (thus low DF) and high DIS,
to be used as building blocks of the RB FCC. From Table 4, it
makes sense to leave IP_DN_RN out of the picture as it has high
𝜀w. However, it is the only FCC that has reasonably low rejec-
tions with 𝜑= 0.032: using this in a RB will dramatically lower
rejections of the RB as well, which may be beneficial in spe-
cific scenarios. Thus, we plan for two versions of RBs, where
FCCs are ordered by decreasing rejection probability 𝜑: (RB1)
SW_AN_GN, SW_VGG_RN, OP_DN, SW_IC_GN, OP_IC and
(RB2) SW_AN_GN, SW_VGG_RN, OP_DN, SW_IC_GN, OP_IC,
IP_DN_RN. The only difference is that RB2 employs IP_DN_RN
as the last FCC, making it have fewer rejections and higher accu-
racy (but more misclassifications) than RB1.

7.3.1.2 | FCCs for (W)VT, STK. Focusing on DIS, OPs
exhibit relatively low disagreement among themselves; see the
intersection of OP_DN and OP_IC (0.12) in the 2nd–3rd row,
5th–6th column of Table 4. The IP has a high disagreement with
others, and also OP_IC and SW_AN_GN show DIS> 0.20, which
is pretty high compared to other scores. Therefore, we choose
IP_DN_RN, OP_IC, and SW_AN_GN as FCCs to build VT FCCs.
We followed the approach used for tabula data for crafting WVT
and STK.

7.3.2 | Discussion: Performance of RB, VT, WVT, STK

Figure 7 reports image data in the same format as what Figure 6
did with tabular data, but is related to FCCs using DN as the main

classifier on the FER13 (Figure 7a) and Food (Figure 7b) image
datasets. Results of the Flower dataset are omitted as they had
a trend very similar to that of Food and provided no additional
information. The IP and the RB2 FCCs tend to behave similarly
to the DN classifier, with few rejections and many misclassifica-
tions. Other FCCs are instead rejecting a noticeable amount of
predictions (i.e., the orange-striped bars are longer than those of
IP and RB2 in both Figure 7a,b): VT is the one that allows for min-
imal misclassifications. STK here is not performing particularly
well as it has lower accuracy than others, and the misclassifica-
tions are still pretty high.

Takeaway 8. The VT FCC allows for the biggest reduction of
misclassifications overall, showing the lowest 𝜀w across tabular
and image datasets.

7.4 | Rejections of Unknown Inputs

The last result we present concerns the ability of FCCs to reject
unknown inputs in particular. Results we saw up to this point
are related to a test set composed of both known and unknown
inputs and do not suffice for quantifying the ability of rejecting
unknown inputs specifically. Thus, Table 5 reports the rejection
probability 𝜑 computed for different FCCs in tabular and image
datasets, using a test set composed of unknown inputs alone. Ide-
ally, FCCs should have 𝜑= 1, or 100% rejections of these items.

As shown in Table 5, the results highlight significant performance
differences among various FCCs, overall confirming what was
already discussed in the previous sections. IP, SW, WVT and, to
a lesser extent, RB1 FCCs are more likely to trigger rejections,
and end up having a very high rejection probability also in case of
unknowns, reaching even perfect rejections in some cases (IP and
VT on MetroPT, SW and WVT on FER13). Conversely, RB2 and
STK try to balance accuracy and rejections; as such, they result
in a very low likelihood of omitting predictions due to unknown
inputs (even flat 0 for the three tabular datasets), potentially trig-
gering unhandled misclassifications.

8 | Concluding Remarks

This paper called for a paradigm shift towards the conceptualiza-
tion, design and deployment of ML classifiers in critical systems,
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where misclassifications may have catastrophic consequences.
Researchers typically strive to craft classifiers with perfect accu-
racy, which should be always correct and as such never threaten
the encompassing system. Unfortunately, this is a very unreal-
istic goal, as classification tasks are typically complex and may
encounter a wide variety of unexpected operating conditions and
unknown inputs, for which there are no guarantees of correct
functioning.

We advocate that classifiers should not be conceptualized in isola-
tion and only at a later stage deployed into their final operational
environment. Instead, they should be conceptualized, designed
and evaluated as a building block of their encompassing (criti-
cal) system, actively cooperating with additional components to
achieve dependability-related properties. Fail-Controlled Classi-
fiers (FCCs) are classifiers that complement a ML algorithm with
additional components that primarily aim at suspecting misclas-
sifications, and rejecting the corresponding predictions of the
ML classifiers. This changes the failure semantics from unhan-
dled content failures to omissions, which can be managed by
system-level mechanisms (e.g., triggering recovery strategies, or
bringing the system into a safe state, if possible).

Ideally, all and only misclassifications should be rejected: exceed-
ingly likely rejections may turn FCCs into a liability, making them
unpractical in real scenarios. Nine different FCCs are presented,
discussed and evaluated in the paper: SCC, WTs, IP, OP, SW, RB,
VT, WVT and STK. Each has its own advantages and disadvan-
tages, which are highlighted as Takeaways 1–8 through the paper.
Overall, the selection of FCCs for a system depends on factors
like availability and the system’s criticality. If the system can tol-
erate more omissions, the IP FCC is a good choice. On the other
hand, if achieving the highest accuracy is the priority, the RB FCC
performs better. However, these decisions aren’t limited to just
accuracy or omissions; other factors, such as the environment in
which the system operates, also play a crucial role in determining
the most suitable FCC.

Findings of this paper are supported by an experimental evalu-
ation which intrinsically has (a few) threats to its validity. ML
algorithms and classifiers have hyperparameters whose tuning
critically affects results or may lead to a wide variety of prob-
lems when learning a model for each dataset during training (e.g.,
under/overfitting, poor quality of features, feature selection to
leave out noisy features). Our experimental evaluation aims to
compare the performance of classifiers (main classifiers in the
paper) against FCCs built on top of these classifiers. The compar-
ison and the discussion that is carried out throughout the paper
compare the performance of the classifier against FCCs and do
not aim at optimizing performance in a specific scenario. Unless
changing the hyperparameters turns it into a perfect classifier,
which is unlikely, then FCCs will be able to provide a useful con-
tribution anyway. Also, this is one of the few studies that uses
many datasets from both tabular and image domains, ensuring
solid and general findings.

The usage of public data and public tools to run classifiers was a
prerequisite of our analysis to allow reproducibility and to rely on
proven-in-use data. All datasets are publicly available and refer-
enced in the paper; code is available at [11].
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FIGURE 7 | Comparison of FCCs using DN as the main classifier on the FER13 (a, left) and Food (b, left) image datasets. The color scheme complies
with that of Figures 5 and 6.

TABLE 5 | Rejection probability 𝜑 of unknown inputs for different FCCs.

Tabular
datasets NIDS Error detection MetroPT

Image
datasets FER13 Flower Food

IP_RF_ET 0.83 0.82 1.00 IP_DN_RN 0.99 0.83 0.86
OP_RF 0.00 0.04 0.00 OP_DN 0.90 0.32 0.26
SW_RF_LDA 0.78 0.50 0.98 SW_DN_RN 1.00 0.87 0.89
RB1 0.73 0.48 0.98 RB1 0.82 0.19 0.12
RB2 0.00 0.00 0.00 RB2 0.82 0.17 0.11
VT 0.83 0.82 1.00 VT 0.90 0.37 0.25
WVT 0.78 0.49 0.98 WVT 1.00 0.80 0.86
STK 0.00 0.00 0.00 STK 0.90 0.22 0.20

Author Contributions

Fahad Ahmed Khokhar: and Tommaso Zoppi: provided the problem
statement and perform Experimentations. Leonardo Montecchi: and
Andrea Ceccarelli: contributed to technical writing and analytical writ-
ing. Andrea Bondavalli: performed technical proofreading and result
gathering.

Acknowledgments

This work was supported in part by the 202297YF75 PRIN 2022 project
S2: Safe and Secure Industrial IoT, by the B53D23012930006 PRIN PNRR
2022 project FLEGREA - Federated Learning for Generative Emulation of
Advanced Persistent Threats, by the project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the Euro-
pean Union—NextGenerationEU, by the Cognitive Safety with Point
Clouds (CogniSafe3D) Eurostars 3, Call 6 (Eureka E6085) by the Euro-
pean Union and by the 101194245 Shift2SDV HORIZON-JU-IA HORI-
ZON JU 2024 Innovation Actions. Open access publishing facilitated by
Universita degli Studi di Firenze, as part of the Wiley - CRUI-CARE
agreement.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated
or analyzed during the current study.

References

1. J. Guérin, R. S. Ferreira, K. Delmas, and J. Guiochet, “Unifying Eval-
uation of Machine Learning Safety Monitors,” in 2022 IEEE 33rd Inter-
national Symposium on Software Reliability Engineering (ISSRE) (IEEE,
2022), 414–422.

2. S. Ö. Arik and T. Pfister, “Tabnet: Attentive Interpretable Tabular
Learning,” Proceedings of the AAAI Conference on Artificial Intelligence
35, no. 8 (2021): 6679–6687.

3. A. Biondi, F. Nesti, G. Cicero, D. Casini, and G. Buttazzo, “A Safe,
Secure, and Predictable Software Architecture for Deep Learning in
Safety-Critical Systems,” IEEE Embedded Systems Letters 12, no. 3 (2019):
78–82.

4. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Sur-
vey,” ACM Computing Surveys 41, no. 3 (2009): 1–58.

5. A. Sar𝚤kaya, B. G. K𝚤l𝚤ç, and M. Demirci, “RAIDS: Robust
Autoencoder-Based Intrusion Detection System Model Against Adver-
sarial Attacks,” Computers & Security 135 (2023): 103483.

6. M. J. Mirza, C. Buerkle, J. Jarquin, et al., “Robustness of Object Detec-
tors in Degrading Weather Conditions,” in 2021 International Intelligent
Transportation Systems Conference (ITSC) (IEEE, 2021), 2719–2724.

7. C. G. Keller, T. Dang, H. Fritz, A. Joos, C. Rabe, and D. M. Gavrila,
“Active Pedestrian Safety by Automatic Braking and Evasive Steering,”
IEEE Transactions on Intelligent Transportation Systems 12, no. 4 (2011):
1292–1304.

8. M. Mathias, R. Timofte, R. Benenson, and L. Van Gool, “Traffic Sign
Recognition—How Far Are We From the Solution?,” in The 2013 Inter-
national Joint Conference on Neural Networks (IJCNN) (IEEE, 2013), 1–8.

Software: Practice and Experience, 2025 19

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.70033 by L

eonardo M
ontecchi - N

tnu N
orw

egian U
niversity O

f S , W
iley O

nline L
ibrary on [16/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



9. A. Ceccarelli and F. Secci, “RGB Cameras Failures and Their Effects
in Autonomous Driving Applications,” IEEE Transactions on Dependable
and Secure Computing 20 (2022): 2731–2745.

10. B. Sayin, T. Zoppi, N. Marchini, F. A. Khokhar, and A. Passerini,
“Bringing Machine Learning Classifiers Into Critical Cyber-Physical Sys-
tems: A Matter of Design,” IEEE Access 13 (2025): 94858–94877.

11. “FCC,” accessed January 09, 2024, https://github.com/
fahadahmedkhokhar/FCC.git.

12. F. A. Khokhar, T. Zoppi, A. Ceccarelli, L. Montecchi, and
A. Bondavalli, “Fail-Controlled Classifiers: A Swiss-Army Knife Towards
Trustworthy Systems (Appendices),” 2025, https://doi.org/10.17605/
OSF.IO/YU75K.

13. R. Shwartz-Ziv and A. Armon, “Tabular Data: Deep Learning Is Not
All You Need,” Information Fusion 81 (2022): 84–90.

14. L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why Do Tree-Based
Models Still Outperform Deep Learning on Typical Tabular Data?,”
Advances in Neural Information Processing Systems 35 (2022): 507–520.

15. T. Zoppi, S. Gazzini, and A. Ceccarelli, “Anomaly-Based Error and
Intrusion Detection in Tabular Data: No DNN Outperforms Tree-Based
Classifiers,” Future Generation Computer Systems 160 (2024): 951–965.

16. T. Zoppi and P. Popov, “Confidence Ensembles: Tabular Data Classi-
fiers on Steroids,” Information Fusion 120 (2025): 103126.

17. C. M. Bishop, “Pattern Recognition,” Machine Learning 128, no. 9
(2006).

18. D. Hendrycks and K. Gimpel, “A Baseline for Detecting Misclassified
and out-Of-Distribution Examples in Neural Networks,” in International
Conference on Learning Representations (2016).

19. M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why Relu Networks
Yield High-Confidence Predictions Far Away From the Training Data and
How to Mitigate the Problem,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (IEEE, 2019), 41–50.

20. H. Jiang, B. Kim, M. Guan, and M. Gupta, “To Trust or Not to
Trust a Classifier,” in Advances in Neural Information Processing Systems
(Neurips foundation, 2018), 31.

21. X. Y. Zhang, G. S. Xie, X. Li, T. Mei, and C. L. Liu, “A Survey on Learn-
ing to Reject,” Proceedings of the IEEE 111, no. 2 (2023): 185–215.

22. G. J. Hahn and W. Q. Meeker, Statistical Intervals: A Guide for Practi-
tioners and Researchers, vol. 541 (John Wiley & Sons, 2017).

23. W. J. Krzanowski, T. C. Bailey, D. Partridge, J. E. Fieldsend, R. M.
Everson, and V. Schetinin, “Confidence in Classification a Bayesian
Approach,” Journal of Classification 23, no. 2 (2006): 199–220.

24. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Safety and
Scalable Predictive Uncertainty Estimation Using Deep Ensembles,”
Advances in Neural Information Processing Systems (2017): 6405–6416.

25. Z. Bilgin and M. Gunestas, “Explaining Inaccurate Predictions of
Models Through k-Nearest Neighbors,” in ICAART (ICAART, 2021),
228–236.

26. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
Scalable Predictive Uncertainty Estimation Using Deep Ensembles,”
Advances in Neural Information Processing Systems 30 (2017): 6405–6416.

27. K. Aslansefat, I. Sorokos, D. Whiting, R. T. Kolagari, and
Y. Papadopoulos, “SafeML: Safety Monitoring of Machine Learning
Classifiers Through Statistical Difference Measures,” in International
Symposium on Model-Based Safety and Assessment (Springer, 2020),
197–211.

28. G. Rossolini, A. Biondi, and G. Buttazzo, “Increasing the Confidence
of Deep Neural Networks by Coverage Analysis,” IEEE Transactions on
Software Engineering 49, no. 2 (2022): 802–815.

29. G. Baye, P. Silva, A. Broggi, L. Fiondella, N. D. Bastian, and G. Kul,
“Performance Analysis of Deep-Learning Based Open Set Recogni-
tion Algorithms for Network Intrusion Detection Systems,” in NOMS
2023–2023 IEEE/IFIP Network Operations and Management Symposium
(IEEE, 2023), 1–6.

30. R. S. Ferreira, J. Guérin, K. Delmas, J. Guiochet, and H. Waeselynck,
“Safety Monitoring of Machine Learning Perception Functions: A Sur-
vey,” Computational Intelligence 41, no. 2 (2025): e70032.

31. K. Lee, K. Lee, H. Lee, and J. Shin, “A Simple Unified Framework
for Detecting Out-of-Distribution Samples and Adversarial Attacks,”
Advances in Neural Information Processing Systems 31 (2018): 7167–7177.

32. Y. Zhou, “Rethinking Reconstruction Autoencoder-Based
Out-of-Distribution Detection,” in Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (IEEE, 2022), 7379–7387.

33. B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks Against Sup-
port Vector Machines,” in Proceedings of the 29th International Conference
on Machine Learning (ICML, 2012), 1807–1814.

34. T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” arXiv Preprint (2017): 1712.09665.

35. N. Carlini and D. Wagner, “Towards Evaluating the Robustness of
Neural Networks,” in 2017 IEEE Symposium on Security and Privacy (sp)
(Ieee, 2017), 39–57.

36. J. Su, Z. Zhang, P. Wu, X. Li, and J. Zhang, “Adversarial Input Detec-
tion Based on Critical Transformation Robustness,” in 2022 IEEE 33rd
International Symposium on Software Reliability Engineering (ISSRE)
(IEEE, 2022), 390–401.

37. R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” in 2010 IEEE Sym-
posium on Security and Privacy (IEEE, 2010), 305–316.

38. M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and Rapid
Adaption for Concept Drift in Software System Anomaly Detection,” in
2018 IEEE 29th International Symposium on Software Reliability Engineer-
ing (ISSRE) (IEEE, 2018), 13–24.

39. X. Ran, M. Xu, L. Mei, Q. Xu, and Q. Liu, “Detecting
Out-of-Distribution Samples via Variational Auto-Encoder With Reliable
Uncertainty Estimation,” Neural Networks 145 (2022): 199–208.

40. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harness-
ing Adversarial Examples,” arXiv Preprint (2014): 1412.6572.

41. F. Moller, D. Botache, D. Huseljic, F. Heidecker, M. Bieshaar, and
B. Sick, “Out-of-Distribution Detection and Generation Using Soft Brow-
nian Offset Sampling and Autoencoders,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (IEEE, 2021),
46–55.

42. V. Bandari, “Proactive Fault Tolerance Through Cloud Failure Pre-
diction Using Machine Learning,” ResearchBerg Review of Science and
Technology 3, no. 1 (2020): 51–65.

43. Z. Gong, P. Zhong, and W. Hu, “Diversity in Machine Learning,” IEEE
Access 7 (2019): 64323–64350.

44. F. Di Giandomenico and L. Strigini, “Adjudicators for
Diverse-Redundant Components,” in Proceedings 9th Symposium
on Reliable Distributed Systems (IEEE, 1990), 114–123.

45. M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan,
“Ensemble Deep Learning: A Review,” Engineering Applications of Arti-
ficial Intelligence 115 (2022): 105151.

46. S. Džeroski and B. Ženko, “Is Combining Classifiers With Stack-
ing Better Than Selecting the Best One?,” Machine Learning 54 (2004):
255–273.

47. L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in Clas-
sifier Ensembles and Their Relationship With the Ensemble Accuracy,”
Machine Learning 51 (2003): 181–207.

20 Software: Practice and Experience, 2025

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.70033 by L

eonardo M
ontecchi - N

tnu N
orw

egian U
niversity O

f S , W
iley O

nline L
ibrary on [16/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/fahadahmedkhokhar/FCC.git
https://github.com/fahadahmedkhokhar/FCC.git
https://github.com/fahadahmedkhokhar/FCC.git
https://doi.org/10.17605/OSF.IO/YU75K
https://doi.org/10.17605/OSF.IO/YU75K
https://doi.org/10.17605/OSF.IO/YU75K


48. A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE Trans-
actions on Dependable and Secure Computing 1, no. 1 (2004): 11–33.

49. P. W. Koh, S. Sagawa, H. Marklund, et al., “Wilds: A Benchmark of
In-the-Wild Distribution Shifts,” in International Conference on Machine
Learning (PMLR, 2021), 5637–5664.

50. A. Tiwari, B. Dutertre, D. Jovanović, et al., “Safety Envelope for Secu-
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