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Abstract—Object detection in autonomous driving consists in
perceiving and locating instances of objects in multi-dimensional
data, such as images or lidar scans. Very recently, multiple works
are proposing to evaluate object detectors by measuring their
ability to detect the objects that are most likely to interfere
with the driving task. Detectors are then ranked according to
their ability to detect objects that are relevant, rather than the
general accuracy of detection. However, there is little evidence
so far that isolating the most relevant objects may contribute to
improvements in the safety and effectiveness of the driving task.
This paper defines and exercises a strategy to i) set-up and deploy
object detectors that successfully extract knowledge on object
relevance, and ii) use such knowledge to improve the trajectory
planning task. We show that, given the output of an object
detector, filtering objects based on their predicted relevance, in
combination with the usual confidence threshold, improves the
quality of trajectories produced by the downstream trajectory
planner. We conclude the paper showing that information on
object relevance should be further exploited and we sketch some
directions for future work.

Index Terms—Autonomous driving, object detection, trajectory
planning, safety, object relevance, object criticality

I. INTRODUCTION

Object detection is a fundamental task for autonomous
pipelines, which require object detection as part of their
perceptual interface to the environment [1]. Noteworthy, in
the autonomous driving domain, under the name of object de-
tectors are actually included perception models that go beyond
the mere identification of object location and classification, but
that instead also identify additional attributes such as object
size, distance from the observer, orientation, and velocity [2].

Autonomous driving pipelines (as opposed to end-to-end
autonomous driving [3]) provide several advantages, but they
generally incur the disadvantage that individual elements of
the pipeline do not optimize for system-wide or downstream
performance metrics [4]. For example, several initiatives aim
to perform safe and robust trajectory planning based on
the inputs acquired from an object detector, but under the
assumption that the object detector provides a sufficiently
accurate representation of the scene. However, most object
detectors are general-purpose components, whose results are
produced without considering the downstream tasks.

To overcome this problem, we argue that the steps of the
pipeline beyond object detection should consider the relevance
of detected objects, in addition to the plain list of detec-

tions that is typically provided by an object detector. Adding
information on the relevance of objects to the successive
pipeline tasks, and especially to trajectory planning, may allow
improving the overall safety and effectiveness of the driving
task. In this paper, we use the term relevance of an object
to mean its importance to a certain downstream task. In the
context of autonomous driving, criticality (e.g., distance of
an object to the ego vehicle) is a concrete example of object
relevance for the trajectory planning task.

Very recently, some works have proposed to evaluate object
detectors based on their ability to detect objects that are most
relevant to the scene, rather than based on their ability to detect
as many objects as possible, and as accurately as possible
[5], [6], [7], [8]. In this paper we move a step forward: we
propose that reasoning on object relevance is useful not only
for selecting the most suitable object detector, but it is of
fundamental support at runtime, in the successive steps of the
pipeline, to prioritize which objects to consider when detection
is uncertain.

More specifically, we investigate the impact of two ap-
proaches for filtering the output of object detectors taking
object relevance into account. To evaluate these two strategies,
we observe the performance of a trajectory planner when
different sets of predicted objects are selected. After defining
our problem and the proposed methodology, we experiment
with six state-of-the-art object detectors on the nuScenes [9]
dataset. As a measure of trajectory quality, we rely on the
planning KL-divergence metric [10] from the literature, which
measures the distance of the computed trajectory from a
ground truth reference.

The main contributions of our work are:
1) an approach to make the relevance of an object an

input to the planning task, to ultimately improve the
effectiveness and safety of the driving task. This contrasts
with the majority of works on object relevance, which
exploit the concept only for selecting the most suitable
object detector. In our proposal, the estimation of object
relevance is no longer used to assess object detectors only,
but it is a step of the autonomous driving pipeline.

2) experimental results showing that, while predicted objects
are traditionally selected based on a confidence thresh-
old only, more flexible approaches exist to decide on
the inclusion of a predicted object, and they may be



more convenient for trajectory planning. Such approaches
should include a combination of multiple parameters (in
our paper, predicted relevance and detection confidence).

3) evidence that further research is needed in this direction,
as more advanced ways to exploit relevance information
may further improve the quality of downstream tasks.

II. RELATED WORKS AND ADVANCEMENTS

In the literature, numerous works have focused on building
better and safer autonomous driving systems [11]. Among the
multitude of research activities [2], we concentrate on related
works that i) measure the object relevance in the context of
autonomous driving, and ii) exploit this information in the later
steps of the pipeline, for safe and effective trajectory planning.

Measuring object relevance. In the last four years, context-
aware and safety-aware metrics for object detection have been
proposed, to evaluate object detectors with respect to the safety
and reliability of the system in which they will operate.

Lyssenko et al. [5] measure the maximum distance at which
pedestrian detection does not fail, while Wolf et al. [6] weight
detections according to the position and estimated time-to-
collision with the object. Volk et al. [7] propose a detection
metric that includes the relevance of predicted objects with
respect to the observer, Ceccarelli et al. [8] associate a criti-
cality to each object based on distance from the observer and
the estimated velocity, and Topan et al. [12] present a model to
compute safety zones and define safety evaluation metrics for
analyzing perception performance of an autonomous vehicle.
Further, Liao et al. [13] propose a safety metric, especially
for 3D object detectors in autonomous driving contexts, by
combining an Intersection-over-Ground-Truth (IoGT) measure
and a distance ratio.

The effects of object detection in the pipeline. Some authors
propose to consider the whole system level or the effect of
misdetection in the entire pipeline, rather than specifically
to assess the object detector. McAllister et al. [4] propose
an approach that considers how predictions will be used
downstream to improve accuracy whenever prediction errors
would cause a large change in control outputs. Similarly, but
focusing on security and adversarial attacks, Wang et al. [14]
question whether previous works can achieve system-level
effects (e.g., vehicle collisions, traffic rule violations) under
real autonomous driving settings. They then study the effect
of adversarial attacks on the whole driving task, resulting in
system-level effects rather than just a misclassification.

While the impact of object detection on the planning task
is well understood, only very recently there have been efforts
to quantify it with metrics. Most notably, the work in [15]
and [16] evaluates the impact of object detection on driving
performance, with the aim to propose metrics for comparing
object detectors. The best detection models should make the
planner compute a trajectory as close as possible to the one
computed using ground truth information [16].

Differences from previous works. In this paper, we bring
forward the position that it is necessary to exploit the predicted
object relevance to improve trajectory planning, as a crucial

step of the autonomous driving pipeline. Most of the reviewed
works do not provide evidence that their solution actually
increases the safety and effectiveness of the planning task.
We demonstrate that object detection should be studied not
just to maximize detection accuracy, but for the higher-level
purpose of safety and effectiveness: for this purpose, additional
information as object relevance needs to be produced during
the object detection process, and a deeper integration with the
trajectory planner is required in the evaluation of detectors.

III. BACKGROUND

A. Object Detection

The task of object detection consists in locating and classi-
fying semantic objects of certain object classes within an input
sample, with the sample consisting of visual images acquired
from visual cameras, or 3D point clouds from lidar scans.
The output of an object detection model is a list of predicted
bounding boxes (BBs), with confidence scores and labels [17].
BBs are tightly-bound boxes encompassing objects in the
sample, represented in 2D and 3D as rectangles and cuboids,
respectively. The confidence score reflects the confidence of
the detection model in each predicted BB. The label is the
predicted semantic class of each BB.

Noteworthy, models developed for autonomous driving tasks
typically do not stop at identifying BBs, but they also deter-
mine the kind of object (i.e., they perform classification) and
further, they compute key attributes like orientation, velocity,
and distance from the observer.

B. Metrics to evaluate object detectors

To evaluate the predictions produced by an object detector,
a comparison between the predicted BBs and the ground truth
BBs is performed. In practice, an object detector predicts
many BBs, each with a confidence score in the interval [0, 1].
Typically, most of the BBs in the raw output of an object
detector have a low confidence score, and some of them may
refer to the same ground truth object. To retain only the
most credible bounding boxes, a confidence threshold θ is
established as a configuration parameter: all the BBs with
a confidence score above θ are then considered as actual
predictions, while the others are discarded.

Once BBs have been filtered, the identification of true pos-
itives (TPs), false positives (FPs), and false negatives (FNs),
is based on some definition of distance between the predicted
BBs and the ground truth BBs. Typically, the distance between
center points is used [9]. If the distance is below a distance
limit, it is considered a correct detection (true positive, TP). If
no predicted BB matches the distance limit, then the object is
not detected and it counts as a false negative (FN). Predicted
bounding boxes that are farther than the distance limit from
all ground truth bounding boxes are considered false positives
(FPs). True negatives (TNs) are not taken into account, because
there are infinite BBs that should not be detected within any
given image [18].

Several aggregated measures based on TPs, FPs, and FNs,
can summarize the performance of object detectors; most



typically, precision, recall, and average precision are used.
Precision, P = TP/(TP + FP), indicates how many of
the selected items are relevant; conversely, Recall, R =
TP/(TP + FN), indicates how many items from the ground
truth are correctly selected. Computing precision and recall for
varying confidence thresholds, results in the precision-recall
curve. This curve offers a graphical summarizing view of the
precision-recall tradeoff.

Average Precision (AP), first presented in [19], is currently
deemed the most suitable measure to compute and rank the
performance of object detectors [20]. AP summarizes the
precision-recall curve as the weighted mean of precision scores
achieved at different confidence thresholds. More precisely,
AP =

∑
n (Rn −Rn−1)Pn, where Pn and Rn are the

precision and recall at the n-th confidence threshold. The
mean Average Precision (mAP) is used to summarize the AP
obtained on different classes of objects and different distance
limits.

C. Object Criticality Model

While the above metrics indicate the ability of object
detectors to accurately predict instances of objects in a scene,
they do not consider the relevance of such objects within
the specific scenario. Research on object detection in safety-
critical environments has raised the problem of defining safety-
aware evaluation metrics. In this paper, we use object relevance
as defined by the Object Criticality Model (OCM, [8]).

In the OCM, a criticality value is assigned to each object
in a specific scene, based on safety-relevant factors relating
the object and the ego vehicle. Three factors are considered
for computing the criticality of an object B: distance, col-
liding trajectory, and time-to-collision, which result in three
individual criticality scores, κD(B), κR(B), and κT (B). Each
of these scores ranges in the interval [0, 1], with 1 meaning
maximum criticality. The overall criticality of an object, κ(B),
is then defined as a combination of the three above scores.
Criticality values can be computed for any object B, being it
a ground truth or a predicted object. In the former case, the
computation uses ground truth information on position and
velocity (resulting in ground truth criticality); in the latter
case, the estimated position and velocity are used (resulting
in predicted criticality).

The model depends on three parameters, D, R, and T ,
which define a threshold after which the corresponding crit-
icalities κd(B), κr(B), and κt(B) assume value 0. For ex-
ample, D = 30 means that for objects farther than 30 meters
κd(B) = 0. In the same way, the triple D,R, T = 15, 20, 6
means that criticality is assigned from 0 to 1 to objects that are
estimated to have at least one of the following characteristics:
i) being closer than 15 meters from the ego vehicle; ii) being
on a potential colliding trajectory within 20 meters from the
ego vehicle; or iii) approaching a potential collision point
within 6 seconds.

The performance of a detector is then measured in terms
of “how much criticality” it can detect, comparing the
ground truth criticalities against the predicted criticalities.

More specifically, the authors of [8] define two metrics called
reliability-weighted precision (PR), and safety-weighted recall
(RS ), as variants of the Precision and Recall metrics in which
objects are weighted based on their criticality score. Further,
the Average Critical Precision (APcrit) is a variant of AP,
computed using PR and RS . Consequently, a mean Average
Critical Precision mAPcrit can also be computed.

D. Planning KL-divergence

In [16], Philion et al. argue that the evaluation of the
performance of perception systems in autonomous vehicles
should be aligned with the downstream task of trajectory
planning. Planning is a crucial part of the autonomous pipeline,
so the “best” detection models should be those that make
the planner compute a trajectory as close as possible to the
one computed on ground truth information. Based on this
observation, they propose the Planning KL-divergence (pkl)
metric, as a measure of the difference between the trajectory
planned based on ground truth objects, and the trajectory
planned based on the output of an object detector. Being a
measure of divergence, a perfect detection would receive a
pkl score of 0, corresponding to no divergence between the
trajectories. Further details can be found in [16].

In this paper we use pkl as an estimate of the quality
of the planned trajectory, and we investigate how different
strategies for filtering objects impact on such metric. Our
hypothesis is that prioritizing object relevance improves the
planned trajectory.

IV. TECHNICAL ENVIRONMENT

A. The nuScenes Dataset

Recent years have seen the release of several sophisticated
datasets which have played important roles in the advancement
of 3D object detectors in autonomous driving. For our work,
we used nuScenes [9], as it is the one that was used by the
original works on pkl [16] and OCM [8].

nuScenes [9] was released in 2019 as a multimodal dataset
for the task of training and evaluating perception systems
for autonomous driving. nuScenes comprises 1000 driving
scenes of 20 seconds each, acquired in Boston and Singapore,
under a wide array of situations and environmental conditions.
Samples are collected at 2Hz frequency, for a total of 40
samples per scene. Highly accurate annotations of objects
from 23 classes are provided, including the semantic cate-
gory, bounding boxes, and attributes like speed, coordinates,
visibility (line of sight with the ego vehicle), and orientation.

The full nuScenes dataset is split into three parts, namely
the training, validation, and test sets, consisting of 700, 150,
and 150 scenes, respectively. Annotations are only provided
for the training and validation sets, as the test set is utilized
for scoring online submissions to the nuScenes challenges on
detection [9].

B. The MMDetection3D Toolbox

MMDetection3D [21] is a part of the open-source object
detection toolbox MMDetection [22], implementing a large



set of detection methods and components related to 3D object
detection. MMDetection3D provides specific integration with
the nuScenes dataset, which makes it particularly suited for
our work.

We selected six different pre-trained models from the
MMDetection3D model zoo [22], briefly described in the
following. The links to the trained models, with details on
weights and configuration parameters, are available in our
repository [23].

POINTP: PointPillars [24] was proposed as an encoder
that learns features from vertical columns (pillars) of point
clouds resulting from lidar scans. The PointPillars archi-
tecture consists of three stages: a feature encoder network,
to transform a 3D point cloud into a pseudo-image; a 2D
convolutional backbone, for extracting high-level features from
the pseudo-image; and a detection head for BB classification
and regression. We use the PointPillars model combined with
Feature Pyramid Network (FPN, [25]), which generates a
pyramid of feature maps [26].

SECFPN: The model relies on the SECOND (Sparsely
embedded convolutional detection, [27]) backbone, combined
also in this case with FPN. Also this model uses point clouds.

SSN: The model relies on the shape-aware grouping heads
used in the Shape Signature Networks (SSN, [28]). SSN is
presented as a novel solution for shape encoding; its shape-
aware grouping heads bring objects with similar shapes to-
gether, to share weights based on the object size, e.g., the bus
and truck classes need a heavier head than the car class. We
used the PointPillars model combined with the SSN shape-
aware grouping heads.

FCOS3D: FCOS3D [29] uses visual cameras only. The
backbone is a pre-trained ResNet101 with deformable con-
volutions. The neck is the Feature Pyramid Network (FPN),
which generates a pyramid of feature maps. Finally, the head
that produces the final predictions (object class, location, etc.)
relies on a strategy similar to RetinaNet, which applies shared
heads to operate the detection of multiple targets.

PGD: PGD [30] is another approach that relies on visual
cameras. PGD is a simple yet effective monocular 3D detector.
It enhances the FCOS3D model by involving local geometric
constraints and improving instance depth estimation.

REG: The implementation of the RegNetX model from
[31] is based on PointPillars. The model is the resultant of
a methodology to produce a low-dimensional design space
consisting of simple, regular networks called RegNet.

C. Developed code and experimental setup

The experimental work presented in this paper exploits the
nuScenes devkit [32] and the pkl library [33], which have been
customized for this work. The nuScenes devkit implements
an API for parsing and loading data from nuScenes, and
functionality related to object detection. We extended the
library with the ability to measure the estimated criticalities
of predicted objects, and to attach such information to the
returned objects. The pkl library includes the trajectory planner
already pre-trained for nuScenes, together with the code to

compute pkl in [33]. We customized the library to facilitate the
integration with our code, and to customize the visualization
of results.

The modified libraries, together with the code and in-
structions to reproduce results, are available at [23]. All the
experiments have been executed on a server with Intel(R) Core
(TM) i5-8350U, 192GB RAM, and NVIDIA Quadro RTX
6000 GPU. The generation of results required above 20 full
days of computation.

V. METHODOLOGY

A. Research Questions

To understand whether object relevance improves the effec-
tiveness of the planning task, we discuss and experimentally
explore the following two research questions.

RQ1: Can we improve the effectiveness of trajectory
planning by filtering objects based on predicted relevance?:
We argue that filtering out BBs based on the predicted rel-
evance, i.e., removing predicted objects that may be deemed
not relevant for the planning task, has a positive impact on the
trajectory planner. Our hypothesis is that the reduction of un-
necessary elements avoids creating unnecessary confusion to
the trajectory planner, and consequently, reduces unnecessary
actions such as braking or steering. Note that the filtering in
this case occurs after objects have been filtered for detection
confidence.

RQ2: Can we further improve trajectory safety and ef-
fectiveness by exploiting information on object relevance?:
The above approach may neglect safety issues, because objects
that are detected with a low confidence score but that may be
relevant for the driving task (high predicted relevance) would
be excluded. Including all the objects with predicted relevance
above a given threshold, independently of the confidence
score, would mitigate this issue, but at the cost of additional
false positives and thus potentially a reduction of the effective-
ness of the driving task. We want to investigate whether it is
possible to further the planned trajectory by better exploiting
relevance information. In particular, we aim at improving
trajectory safety while still retaining its effectiveness.

B. Methodological approach

As mentioned earlier, we use criticality as defined by the
OCM as a measure of object relevance. For this reason, we
will use the term criticality in the rest of the paper.

1) Addressing RQ1: After the initial filtering on prediction
confidence, we establish a criticality threshold κ and we
filter out predicted objects that have a value of predicted
criticality lower than a criticality threshold κ. That is, we
select predictions based on both a confidence threshold θ and
a criticality threshold κ. Then, the pkl is computed for each
sample in the validation set, using the predictions that are
retained after filtering. Note that setting different θ and κ
thresholds results in different pkl values.

Then, we compare the best pkl value obtained with this
strategy (across all threshold values) with the pkl baseline,
that is, the best value obtained using the optimal confidence



Fig. 1. The colored area represents predicted BBs that are kept, as opposed
to using a single confidence threshold θ = 0.65 (vertical line) or a single
criticality threshold κ = 0.45 (horizontal line).

threshold. Lower values (better pkl) would mean that discard-
ing objects that are estimated as less relevant to the scene, as
perceived by the object detector, improves the quality of the
trajectory.

2) Addressing RQ2: While there can be different ways to
combine criticality and detection confidence, in this paper we
aim to show that further improvement is possible, and that
research in this direction is needed. Therefore, we the aim
to find a trade-off between confidence score and predicted
criticality that enables further improvement on the pkl score.

We define a confidence threshold θ, a criticality threshold
κ, and a correction factor λ. Then, given a predicted BB
with confidence score θs and predicted criticality κs, the BB
is included and used for trajectory planning if one of the
following two conditions hold:

θs > θ · λ (1)

κs > κ and θs > θ/λ (2)

The correction factor λ increases the confidence requirement
for objects with low criticality (1), and reduces it for objects
with high criticality (2). That is, if an object is estimated to
have high criticality, it is included even if we the confidence
in the detection is low. In other words, we decide if main-
taining or discarding a prediction based on a bi-dimensional
space, rather than on a single dimension. This is graphically
represented in Figure 1, for the case θ = 0.65, κ = 0.45, and
λ = 1.3. These are representative and plausible values, as will
be evident from the results in Section VI.

C. Practical setup and application of the methodology

To realize the above methodology we proceed as follows.
a) Download and validation of detectors: First, the six

object detectors described in Section IV-B are downloaded,
and they are executed against the nuScenes validation set of
150 scenes. Results are compared with the MMDetection3d
documentation to verify that the object detectors are working
as expected.

b) Establishing of a reduced validation set: We ran-
domly select 10 scenes out of the 150 scenes of the validation
set. This step is due to performance issues. In particular, the

TABLE I
PERFORMANCE OF THE OBJECT DETECTORS, FOLLOWING THE NUSCENES

EVALUATION LIBRARY [32], AND THE OCM FROM [8].

Model mAP mAP mAPcrit Best
150 scenes 10 scenes 10 scenes D, R, T

FCOS3D 0.32 0.32 0.407 25, 5, 4
PGD 0.33 0.35 0.40 20, 10, 16

POINTP 0.35 0.35 0.43 25, 5, 4
REG 0.44 0.45 0.53 25, 5, 4

SECFPN 0.35 0.35 0.419 25, 5,4
SSN 0.46 0.46 0.54 25, 5, 4

(a) Results for all the objects

Model mAP mAP mAPcrit Best
150 scenes 10 scenes 10 scenes D, R, T

FCOS3D 0.49 0.49 0.65 20, 5, 4
PGD 0.53 0.53 0.68 20, 5, 4

POINTP 0.78 0.78 0.89 25, 5, 4
REG 0.81 0.81 0.90 25, 5, 4

SECFPN 0.81 0.81 0.90 25, 5, 4
SSN 0.83 0.83 0.91 25, 5, 4

(b) Results for cars

computation of a single pkl value is already very computation-
ally expensive, and we need to compute multiple pkl values
under different configurations. Applying the entire methodol-
ogy under multiple configurations, on the entire validation set,
and for the whole set of object detectors, would be exceedingly
time-consuming, in the order of months of execution. We refer
to the 10 selected scenes as the reduced validation set. Note
that each scene still contains 40 annotated samples.

c) Collection of raw BB outputs from all the detectors:
The object detectors are exercised against the reduced vali-
dation set. This allows collecting, for each object detector, a
json file that describes all the predicted BBs, independently of
their confidence scores, for each nuScenes sample. This list is
not filtered according to any confidence threshold.

From this, we compute the Average Precision (AP) of the
six object detectors for each of the 23 object classes, as well as
the mAP, which is the mean of the average precision amongst
all classes and amongst the different distance limits. The
nuScenes official evaluation library uses four distance limits,
namely 0.5, 1.0, 2.0, and 4.0 meters.

d) Representativeness of the reduced validation set:
Table I(a) reports the mAP on the reduced validation set and on
the 150 scenes of the full validation set. We observe that values
are very similar, meaning that the 10 scenes we have selected
are a good representation of the entire validation set. We also
compute the mean Average Critical Precision (mAPcrit), with
results that are compatible with those from [8]; for the mAPcrit,
we report the D, R, T parameters that lead to the highest
scores. Last, we repeat the investigation when only car BBs
are considered, as these are the most relevant object in the
nuScenes dataset, both in terms of frequency (an average of
20 cars per sample) and of semantics, as it is a dataset of a
vehicle driving in an urban area. Results are in Table I(b).

Next, the following set of operations is repeated twice: first
considering the whole set of objects, and then when only car



TABLE II
BEST MEAN, MEDIAN AND MAXIMUM PKL, AND CONFIDENCE THRESHOLD
θ, FOR THE SIX OBJECT DETECTORS. BASE VALUES ARE OBTAINED WHEN

USING THE CONFIDENCE THRESHOLD ONLY.

Model Mean
θ

Median
θ

Maximum
θpkl pkl pkl

FCOS3D 4.10 0.15 0.99 0.25 98.92 0.25
PGD 4.78 0.05 1.03 0.05 116.46 0.05

POINTP 78.33 0.55 24.86 0.55 377.53 0.45
REG 78.95 0.55 22.75 0.55 377.47 0.40

SECFPN 65.56 0.50 16.49 0.50 372.93 0.40
SSN 3.49 0.25 0.71 0.30 118.75 0.30

(a) Results when all objects are considered

Model Mean
θ

Median
θ

Maximum
θpkl pkl pkl

FCOS3D 2.12 0.15 0.59 0.20 67.66 0.15
PGD 2.72 0.10 0.70 0.10 116.46 0.05

POINTP 74.91 0.55 23.67 0.55 322.71 0.55
REG 76.00 0.55 23.62 0.45 322.32 0.45

SECFPN 60.52 0.55 9.44 0.45 321.96 0.45
SSN 2.30 0.35 0.51 0.35 89.88 0.25

(b) Results when only car objects are considered

BBs are considered.
e) Computation of the pkl baseline (using only the confi-

dence threshold): We compute the pkl for the six object detec-
tors. The process to compute pkl using the library provided by
its authors [33] is the following. First, a confidence threshold is
set, and only objects predicted with a confidence score greater
than that are retained and fed to the pkl library. The library
will use these predicted objects to predict a trajectory, and to
measure its distance from the ground truth trajectory. To find
the best achievable pkl values, this process must be repeated
with different confidence thresholds: we repeatedly exercise
the pkl library using confidence thresholds θ in the range ]0, 1[,
with steps of granularity of 0.05. As a last note, according to
[10], the pkl should not be evaluated just as a single value,
but it is measured in terms of mean, median, and maximum
pkl, computed on all the samples of the validation set.

The six object detectors, the best obtained mean, median,
and maximum pkl values, and the confidence threshold θ used
to obtain such values are reported in Table II. We remind that
the closest pkl is to 0, the better. As already observed in other
works, pkl and mAP are quite unrelated; for example, REG
shows an excellent mAP but also the worst pkl. Note that
the optimal confidence threshold is strictly dependent on the
model: values of θ referring to different models should not be
compared.

This provides us with the basic information to start the
exploration of the two targets previously defined.

f) Exploring the two research questions: The practical
approach consists of repeating the steps for the computation
of the pkl just described above, but filtering objects based
on the different criteria, that is: i) considering the criticality
threshold κ and the confidence threshold θ; and ii) adding a
third parameter, the correction factor λ.

We consider multiple combinations of κ, θ and λ. Values
of κ and θ range in ]0, 1[, with steps of 0.05, while the
values tested for λ range in ]1.0, 1.6], with steps of 0.1.
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Fig. 2. Percentage improvement of pkl metric when objects with low
criticality are excluded from the trajectory planning task.

Given that the predicted criticality depends on three val-
ues D, R, T , as explained in Section III-C, proper exper-
imentation requires testing multiple combinations of these
values, in addition to the combinations of θ, κ, and λ.
Only in this way we can really identify the best pkl value
that can be achieved by taking into account criticality. The
D, R, T combinations are represented in a grid search
Dcandidate×Rcandidate×Tcandidate, such that: Dcandidate =
{5, 10, . . . , 45, 50} meters; Rcandidate = {5, 10, . . . , 45, 50}
meters; and Tcandidate = {4, 8, . . . , 36, 40} seconds. The
values of D and R are set in the established ranges because
the nuScenes object detection challenge only includes objects
closer to 50 meters; the range of T is from [8], where it
is practically shown that the contribution of T is irrelevant
beyond T = 40 seconds.

To avoid measuring an exceeding number of combinations
of D, R, T , κ, θ, λ, and also in light of the computational
time required to measure the pkl, we sample configurations
from the whole space of combinations following a uniform
distribution, and then we investigate the area where we get
the most promising results.

VI. RESULTS

A. RQ1: Improvement when filtering for criticality

We compare the baseline pkl (reported in Table II), and the
best pkl values obtained when we filter out objects with low
predicted criticality (below a threshold κ).

Figure 2 reports the percentage improvement in pkl, com-
puted as 1 minus the ratio between the pkl from Table II, and
the pkl computed after filtering out objects as described earlier.
The improvement is substantial for the mean and median pkl
of POINTP, REG, and SECFPN. Instead, it is very small
for FCOS3D and PGD, and in two cases negative for SSN
(the mean and median pkl when considering all the objects).
Noteworthy, FCOS, PGD, and SSN had already a very low
(i.e., good) baseline pkl, so even small improvements can
result in appreciable improvements.

Instead, for some cases, the best maximum pkl increases
(i.e., it gets worse). The maximum pkl represents the worst
case among the samples in the validation set, in which the



TABLE III
PARAMETERS USED TO MEASURE THE MEAN, MEDIAN, AND MAXIMUM

PKL FOR THE EFFECTIVENESS IMPROVEMENT TARGET.

Mean pkl Median pkl Maximum pkl
Model θ κ D, R, T θ κ D, R, T θ κ D, R, T

FCOS3D 0.15 0.15 50, 10, 24 0.25 0.30 50, 10, 24 0.25 0.30 50, 10, 24
PGD 0.05 0.15 50, 50, 24 0.05 0.20 50, 50, 24 0.05 0.20 50, 50, 24

POINTP 0.55 0.65 5, 5, 4 0.55 0.65 5, 5, 4 0.45 0.65 15, 10, 20
REG 0.55 0.60 5, 5, 4 0.5 0.65 5, 5, 4 0.4 0.35 15, 5, 4

SECFPN 0.4 0.65 15, 5, 4 0.4 0.65 10, 5, 8 0.4 0.65 25, 25, 20
SSN 0.25 0.15 45, 45, 40 0.3 0.15 45, 45, 40 0.3 0.15 45, 45, 40

(a) Configurations in use when all the objects are considered

Mean pkl Median pkl Maximum pkl
Model θ κ D, R, T θ κ D, R, T θ κ D, R, T

FCOS3D 0.15 0.20 50, 10, 16 0.20 0.25 50, 50, 24 0.15 0.40 50, 50, 24
PGD 0.1 0.20 50, 50, 24 0.1 0.20 50, 50, 24 0.05 0.40 50, 50, 24

POINTP 0.55 0.65 5, 5, 4 0.55 0.50 5, 5, 4 0.55 0.65 15, 5, 4
REG 0.55 0.60 5, 5, 4 0.55 0.65 5, 5, 4 0.55 0.65 10, 10, 20

SECFPN 0.55 0.65 10, 5, 8 0.55 0.65 5, 10, 20 0.55 0.65 15, 30, 20
SSN 0.35 0.10 50, 50, 24 0.35 0.10 50, 50, 24 0.30 0.40 30, 10, 24

(b) Configurations in use for the cars only case

pkl differs the most from the ground truth. This suggests that
the effectiveness of the driving task is in general improved,
except for particularly challenging scenarios, where filtering
objects as in the approach for RQ1 removes too many objects,
occasionally leading to a worse trajectory.

The parameters under which the new pkl value was com-
puted are reported in Table III. Recall that those parameters
are the configuration in which the best (i.e., lowest) pkl
value was achieved, for each detector. As we can see from
Table III, configuration parameters are strictly dependent on
the algorithm. The confidence threshold is always very similar
to Table II, while the criticality threshold κ and D, R, T
vary significantly among the six algorithms. In general, high
values of D, R, T mean that we are also including objects that
are relatively distant from the ego vehicle. This happens for
FCOS3D, PGD, and SSN which also have a better baseline
pkl. Low values of D, R, T tend to exclude a higher number of
objects. This is the case for POINTP, REG, and SECFPN. With
these detectors, the trajectory is computed only relying on
awareness of the vehicles that are very close to the ego vehicle.
Still, the trajectory is in general improved, which suggests that
those detectors provide unreliable detection results for more
distant objects.

B. RQ2: Further safety and effectiveness improvement

Last, we apply the solution described in RQ2 to improve
safety and effectiveness, where we further exploit criticality
information. In this case we use a combination of predicted
criticality and detection confidence to decide whether to retain
a predicted object (refer to Section V-B2).

The best pkl results obtained with this approach are reported
in Table IV. Only the 8 underlined values resulted in a worse
pkl than the approach for RQ1, while the 2 values in red are
the only cases in which pkl is worse than the baseline pkl
from Table II. In the large majority of cases (28 out of 36)
results are satisfying, meaning that we obtain an improvement

TABLE IV
PKL IMPROVEMENT WHEN MULTIPLE THRESHOLDS ARE USED.

Model pkl λ κ θ D,R, T

M
ea

n
pk

l

FCOS3D 3.97 1.10 0.95 0.15 25, 15, 4
PGD 4.62 1.50 0.65 0.05 15, 10, 16
POINTP 40.14 1.35 0.95 0.70 15, 5, 4
REG 42.56 1.30 0.95 0.75 10, 10, 4
SECFPN 37.11 1.40 0.95 0.65 20, 10, 4
SSN 3.25 1.10 0.30 0.30 10, 20, 4

M
ed

ia
n

pk
l

FCOS3D 1.15 1.10 0.95 0.15 25, 15, 4
PGD 1.05 1.20 0.5 0.05 20, 10, 12
POINTP 7.83 1.35 0.95 0.70 15, 5, 4
REG 9.35 1.30 0.95 0.75 10, 10, 4
SECFPN 9.05 1.40 0.95 0.65 20, 10, 4
SSN 0.60 1.10 0.90 0.30 30, 50, 8

M
ax

pk
l

FCOS3D 62.01 1.30 0.70 0.15 10, 10, 4
PGD 116.46 1.35 0.85 0.05 10, 10, 8
POINTP 345.00 1.4 0.8 0.65 20, 15, 10
REG 344.41 1.35 0.8 0.7 20, 10, 4
SECFPN 343.20 1.5 0.4 0.6 15, 15, 4
SSN 69.92 1.25 0.8 0.2 10, 30, 8

(a) pkl values when all the objects are considered.

Model pkl λ κ θ D,R, T

M
ea

n
pk

l

FCOS3D 1.99 1.20 0.40 0.20 5, 10, 8
PGD 2.79 1.10 0.85 0.10 35, 45, 12
POINTP 28.67 1.10 0.90 0.90 10, 5, 4
REG 36.44 1.50 0.60 0.65 5, 5, 4
SECFPN 25.56 1.60 0.90 0.75 10, 5, 4
SSN 2.05 1.35 0.80 0.40 55, 10, 12

M
ed

ia
n

pk
l

FCOS3D 0.59 1.35 0.5 0.25 55, 25, 12
PGD 0.45 1.3 0.90 0.05 25, 5, 4
POINTP 4.68 1.5 0.9 0.8 10, 5, 4
REG 6.11 1.5 0.6 0.65 5, 5, 4
SECFPN 5.80 1.6 0.9 0.75 10, 10, 12
SSN 0.34 1.4 0.90 0.20 5, 5, 4

M
ax

pk
l

FCOS3D 32.31 0.90 0.15 5 5, 5, 12
PGD 71.52 0.5 0.05 10 10, 10, 4
POINTP 300.27 0.8 0.8 20 20, 5, 4
REG 281.29 0.80 0.6 5 5, 5, 4
SECFPN 264.57 0.90 0.60 5 5, 5, 4
SSN 65.62 0.5 0.40 25 25, 10, 4

(b) pkl values when only cars are considered.

in the quality of the trajectory. Those results suggests that more
effective ways to exploit information on object criticality exist,
and further research is needed in such direction.

VII. CONCLUDING REMARKS

A. Summary

This paper advocates that the relevance of an object, as
predicted by an object detector, is an important input to
increase the effectiveness and safety of the driving task. The
paper explores alternatives to improve trajectory planning
relying on such information, showing that better (safer, and
more effective) trajectories are computed. This concept builds
on a paradigm shift where the quality of an object detector is
not weighted based on the correctness of the detections, but
on the impact of the detections on the driving task.

B. Limitations and Future Work

1) Extending the validation set: This preliminary work is
limited by the reduced validation set. This was necessary
for computational time, since we have explored and reported



results on multiple configurations of various object detec-
tion approaches. Building on the results here discussed, it
is possible to focus on fewer object detectors and specific
configurations, and consequently perform a more thorough
analysis.

2) Further exploitation of object criticality: Our strategy
for exploiting predicted criticality, even when investigating
RQ2, is still very simple. The relation between θ (detection
confidence) and κ (object relevance) may be more complex.
We need to identify a relation between detection confidence
and predicted relevance, such that an improvement in both
effectiveness and safety is obtained. To decide if a BB should
be maintained or discarded, we plan to investigate alternative
strategies, including the application of decision trees.

3) More accurate investigation of safety aspects: Evidence
of safety improvement should be further detailed. The fitness
of pkl as a safety metric for object detection has been analyzed
experimentally in [34], where the impact of object detection
errors on such metric is evaluated from different perspectives.
Results showed that, although pkl is a good indicator of the
quality of the planned trajectory, it is not able to differentiate
between safe and hazardous deviations from the ground truth
trajectory. Therefore, a different approach must be adopted
to identify possible collisions and to estimate the safety of
different trajectories.

4) Relevance model: Last, we are using a criticality model
specifically crafted for vehicles [8] for all the objects in
the dataset, while other models could be better suited for
pedestrians [5], or for static objects like traffic cones. Further, a
similar approach could be investigated with other definition of
object relevance, and potentially for other downstream tasks.
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