
1

Fail-Controlled Classifiers: Do they Know when they don’t Know?

Tommaso Zoppi1,*, Fahad Ahmed Khokhar1, Andrea Ceccarelli1, Leonardo Montecchi2, Andrea Bondavalli1
1 Dept. of Mathematics and Informatics, University of Florence, Viale Morgagni 65 - 50142 Florence, Italy

2 Dept. of Computer Science, Norwegian University of Science and Tech, SemSælands vei 7–9, 7034, Trondheim, Norway
{tommaso.zoppi, fahadahmed.khokhar, andrea.ceccarelli}@unifi.it, leonardo.montecchi@ntnu.no, bondavalli@unifi.it

Abstract — Domain experts are desperately looking to solve
decision-making problems by designing and training Machine
Learning algorithms that can perform classification with the
highest possible accuracy. No matter how hard they try,
classifiers will always be prone to misclassifications due to a
variety of reasons that make the decision boundary unclear.
This complicates the integration of classifiers into critical
systems, where misclassifications could directly impact people,
infrastructures, or the environment. The paper proposes to
consider a classifier as a structural part of the system instead of
an individual component to be tested in isolation and included
in the system afterward. This allows for omitting those
predictions that are suspected to be misclassifications,
triggering system-level mitigation strategies. The resulting fail-
controlled classifiers (FCCs) are software components that can
correctly classify, misclassify, or omit outputs: ideally, they
would omit all and only outputs that correspond to
misclassifications. After presenting the theoretical foundations
of FCCs, the paper proposes metrics to quantify their
performance, 5 software architectures for FCCs, and an
experimental analysis involving tabular data and image
classifiers. Overall, this paper advocates the need for a system
and software design in which ML classifiers are not separate
components, but should rather be considered building blocks
that interact with other components for improved performance.

Keywords - fail safe, software architectures, classifiers,
confidence, prediction rejection, critical systems

I. INTRODUCTION
“If you can't say something nice, don’t say nothing at all”

tells Thumper the rabbit to Bambi in the famous, 80-years-old
Disney cartoon. This small rabbit teaches us an important
lesson. There are cases in which omitting an answer that you
are not confident about may be more beneficial than trying the
“most likely” answer. This is true also when answering
questions in tests, where a correct answer provides you a
positive score, but a wrong answer may provide a non-neutral,
negative score. Obviously, the rate of omissions has to be
reasonably low: a decision-making entity that always omits
outputs will never be wrong but will also never be useful for
any purpose. These two aspects have to be carefully balanced,
aiming at an ideal trade-off that omits all and only wrong
answers. This is substantially different from crafting decision-
making entities that are always correct, which is usually an
unrealistic expectation.

Within the Information and Communication Technology
(ICT) domain, many software components act as decision-
makers, with the desideratum of being correct. In critical
systems engineering, a typical approach to guarantee safety

[5] is to equip a functional component with another
component that aims at triggering a fail-controlled, fail-safe,
or fail-stop behaviour whenever the correct functioning is not
guaranteed [1], [6], [41], [60]. System-wise, a critical function
would either i) deliver a correct result or ii) omit those results
that would have been incorrect i.e., the function should have
fail-omission failures only. Omissions should be handled by
the encompassing system, e.g., exercising diagnostic routines,
protecting key assets, and implementing automatized
commands [36], [37]. This is a solid approach in systems
engineering, which allows for the integration of Commercial
Off-The-Shelf (COTS) components or non-trustable
components in general into critical systems e.g., railway,
avionics, autonomous driving, provided that individual
components are orchestrated to achieve the desired non-
functional properties at system-level.

Nowadays, the real challenge system architects are dealing
with is integrating Machine Learning (ML)-based
components that perform classification (referred to as
“classifiers” in the paper) into critical systems such that their
wrong predictions do not trigger catastrophic failures.
Classifiers can effectively serve a wide variety of purposes: in
critical systems, they are usually used for detecting deviations
that may be due to the occurrence of faults or attacks, and
perform error detection, intrusion detection, or failure
prediction [6], [8], [20], [24], [50]. Moreover, classifiers can
perform high-quality classification of images, which is of
paramount importance for obstacle detection [32], [36] and
traffic sign recognition [51] for autonomous driving, or to
equip webcams (edge computing) and related components
(cloud/fog computing, and other standalone or centralized
architectures) with image quality checks, accurate access
control, or even classifying diseases in the medical domain
[39]. In the last decade, academia, industry, and also National
governments hugely invested in methodologies, mechanisms,
and tools to embed classifiers into ICT systems, especially
critical ones. Regardless of how much effort we put into
building classifiers that are more and more accurate, they
could still end up predicting a wrong class for a given input
data point, i.e., a misclassification.

That’s where the paper advocates for a paradigm change,
leaning towards system thinking rather than component
engineering. We should consider the classifier as a component
to be deployed into a system rather than chasing the holy grail
of perfect accuracy. This provides more flexibility as it does
not require the classifier to be infallible “in isolation”, but
allows for multi-component or system-level mechanisms or
protocols to handle uncertain predictions that are suspected to
be misclassifications. For example, in autonomous vehicles, a
classifier detecting road signs doesn't need to be 100%

2

accurate; if uncertainty arises, the system can trigger
additional verification methods such as querying GPS data or
alerting the driver to take control. This flexibility reduces
reliance on perfect predictions and enables multi-component
systems to manage misclassifications. When there is not
enough confidence in the prediction, we shift the
responsibility from the classifier - which would have output
its “best guess” - to the encompassing system, which runs
more appropriate diagnostic or mitigation routines. The aim is
not to reduce the amount of misclassifications of the classifier:
instead, we aim at suspecting and omitting most (if not all) of
them and trigger alternative strategies instead.
Straightforwardly, finding a solid way to suspect
misclassifications is of paramount importance for designing
what we call a Fail-Controlled Classifier (FCC).

After detailing the related works, we dive into FCCs,
motivating their importance, formalizing their basic
mathematical notions and the concept of confidence or
uncertainty in predictions of classifiers. Then, we present and
discuss Self-Checking Classifiers (SCC), Watchdog Timers
(WT), Input Processor (IP), Output processor (OP), Safety
Wrapper (SW) software architectures to build Fail-Controlled
Classifiers (FCCs), discussing possible variants due to
implementation and design choices. Further, we conduct a
preliminary experimental analysis in which we apply FCCs to
tabular data and image classification, comparing their
performance with those of traditional classifiers, discussing
differences and highlighting the main takeovers. As a last
contribution of the paper, we discuss how more complex
safety and reliability engineering paradigms as recovery
blocks, N-Version Programming, voting [41], [42], [44],
could be used for building FCCs that potentially have both low
misclassifications and low probability of omissions.

The rest of the paper is structured as follows: Section II
reports background on ML classifiers, while Section III
introduces the theoretical foundations of FCCs, whose
software architectures are presented in Section IV. Section V
presents our preliminary experimental analysis, letting
Section VI discuss other potential approaches for FCCs.
Section VIII concludes the paper.

II. BACKGROUND ON ML CLASSIFIERS

A. Classification of Structured and Unstructured Data
Decades of research and practice on ML provided us with

plenty of classifiers that are meant to always output a
prediction. Supervised classifiers [18] and particularly those
based on Deep Neural Networks (DNNs) were proven to
achieve excellent classification performance in many
domains. Additionally, the last couple of years provided
evidence that some classifiers are more suitable to process
structured rather than unstructured input data. This is
especially the case of tabular data, for which it is beneficial to
use tree-boosting ensembles [46], [48], [75], despite
alternatives based on DNNs exists [8]. Conversely, image
classification employs DNNs, which can learn strong features
from pixel maps [7], [11].

Regardless of their complexity and structure, a classifier
clf first devises a mathematical model from a training dataset

[7], which contains a given amount of data points. Each data
point dp contains a set of f feature values and describes a
specific input of the classification problem. Once the model is
learned, it can be used to predict the label of a new data point,
different from those in the training dataset. The classification
performance is usually computed by applying clf to data
points in a test dataset and computing metrics such as
accuracy [17], i.e., the percentage of correct predictions of a
classifier clf over all predictions. Noticeably, 1 – accuracy
quantifies the misclassification probability by difference.

B. Confidence of Classifiers
Trusting each prediction of a classifier, to the extent that

the prediction can be propagated toward the encompassing
system and safely used in a critical task, is very challenging
[13]. Researchers and practitioners are actively investigating
ways to quantify uncertainty and learning to reject [71]
misclassifications. Some approaches use confidence intervals
[9] or the Bayes theorem [10]. Works as [12] estimate
uncertainty by using ensembles of neural networks: scores
from the ensembles are combined in a unified measure that
describes the agreement of predictions and quantifies
uncertainty. In [11], authors processed softmax (i.e., a
probability distribution over all possible classes obtained from
raw outputs of the ML algorithm) probabilities of neural
networks to identify misclassified data points. A new proposal
came from [13] and [14], where authors paired a k-Nearest
Neighbor classifier with a neural network to compute
uncertainty. The work [34] computed the cross-entropy on the
softmax probabilities of a neural network and used it to detect
out-of-distribution input data that is likely to be misclassified.

Ideally, we want classifiers to be highly confident about
predictions that turn out to be correct, and show low
confidence for all and only the predictions that will instead be
misclassifications. However, classifiers may have high
confidence even when misclassifying data points e.g., “neural
networks which yield a piecewise linear classifier function
[…] produce almost always high confidence predictions far
away from the training data” [15].

C. Towards Trustworthy Classifiers
Tackling very complex problems naturally exposes

classifiers to a high probability of misclassifications, which
can be reduced but not avoided at all. The sup-optimal choice
of a suitable ML algorithm(s), the poor availability or quality
of training data, and biased pre-processing and analyses may
all constitute additional causes of misclassifications that
instead should be avoided. On top of that, there may be other
problems due to the operational environment in which the
classifier is expected to operate [74], once deployed in a real-
world or simulated scenario.

1) Out-of-Distribution Data and Outliers
Systems and software components may encounter

anomalous inputs or operating conditions [24], [11], [26], [74]
even with semi-static systems and in the absence of security
threats that may be intentionally willing to damage our
system. For tabular data, these are known as point or
contextual anomalies (global or local outliers), whereas for
recent image-based applications, those events are usually

3

referred to as out-of-distribution (OOD) data. Overall, those
inputs do not belong to the distribution of training data: thus,
the behaviour of the classifier may become unpredictable [11]
and prone to misclassifications. Conversely, what makes
OOD data and outliers tricky to classify also makes them
detectable, provided that we can precisely characterize the
“in-distribution” data [11], [26], [28].

2) Adversarial Attacks
Second, classifiers may operate in situations in which

malicious entities may be willing to actively disturb the
behaviour of classifiers, triggering misclassifications with
targeted attacks. For image classification, this is the case of
adversarial attacks, whose popularity saw an outstanding
growth in the last decade after the first findings on data
poisoning [29], adversarial patches [30], and gradient-based
attacks [31]. As it happens with security-related issues, the
likelihood of occurrence of adversarial attacks is a compound
quantity that depends on the attacker’s intent, the attack
surface of the system, the knowledge of the attacker (i.e.,
white-box or black-box attacks) and many other attributes.
Conversely to OOD and anomaly detection, ways to deal with
adversarial attacks are still being actively researched as the
topic is rather new. Many solutions already exist [23], [26],
but nothing that can be considered proven-in-use yet.

3) Distribution Shifts, Emerging and Unexpected Events
Third, Machine Learning often works under the

Independent and Identically Distributed (IID) or “closed
world” assumption [27]. In a closed world, train, validation
and test data are independently and randomly sampled from
the same underlying distribution. However, most (if not all)
the operational environments are dynamic, evolving, or
complex enough to make this assumption very restrictive and
valid only in a very small subset of static standalone systems.
As a result, research moved to deploying classifiers that go
beyond this assumption and are meant to operate in an open-
world [27] where test data may be distributed (slightly)
differently from training and validation data. These classifiers
have to be robust to environmental changes, distribution
shifts, emerging and unexpected behaviours, and even
changes in the threat landscape [25], [32].

III. FAIL-CONTROLLED CLASSIFIERS: AN OPPORTUNITY?
The desideratum is a classifier that has excellent

classification performance when dealing with in-distribution
data, but that is also pretty robust to the above events [33].

A. The Rationale and Applicable Domains
These characteristics are quite difficult to achieve, and

typically make classifiers “bet” on a prediction they are unsure
of. This best-effort behaviour does not pair well with critical
systems, which require guarantees of correct component and
system-level behaviour. Practically speaking, the probability
of failure on demand of a critical component or system should
be proven to be lower than specific thresholds.

It would be beneficial to change the failure semantics of
classifiers from uncontrolled content failures (i.e.,
misclassifications) to omission failures. Ideally, we want to
omit all and only erroneous predictions: on the downside, the
availability of said component may be negatively affected

when correct predictions are omitted in the process. Ways to
build fail-controlled components [5] are well-known in the
literature and often rely on safety wrappers or monitors [1],
[6]. Safety wrappers are intended to complement an existing
critical component or task by continuously checking
invariants, or processing additional data to detect dangerous
behaviors and block the erroneous output of the component
before it is propagated through the system. Finding trade-offs
between safety and availability is of utmost importance when
dealing with critical systems [60]: this approach is not
different.

Fail-Controlled Classifiers (FCCs) should perform
runtime monitoring for suspecting misclassifications of the
classifier itself, building on top of studies as [2], [3], [4].
Authors of [2] use probabilistic neural networks to model
predictive distributions and, as a result, quantify predictive
uncertainty using methods such as adversarial training. In [3],
authors use distance measurements of the Empirical
Cumulative Distribution Function as a trigger for the failure
detector to actively track the behavior and operational context
of the data-driven system. The study [4] suggests a simple
monitoring architecture to improve the model’s robustness to
different harmful inputs, particularly those resulting from
adversarial attacks on neural networks. Finally, authors of [20]
combine a voting strategy with a safety monitor to build a safe
and secure classifier for application in embedded systems.

Regardless of how it is implemented, a fail-controlled
classifier FCC(clf) transforms a classifier clf which has 0 ≤ α
≤ 1 accuracy and a misclassification probability ε, 0 ≤ ε = (1 –
α) ≤ 1, into a component that has:
• accuracy αw ≤ α;
• omission probability 0 ≤ φ ≤ 1. The FCC(clf) may omit

misclassifications (φm, desirable and to be maximized),
or correct predictions (φc, unnecessary omissions to be
minimized). Overall, φ = φm + φc, and αw + φc = α;

• residual misclassification probability εw, 0 < εw ≤ ε ≤ 1;
overall, φm + εw = ε.

All those probabilities are sketched in Table 1. Ideally,
FCC(clf) has almost the same accuracy as clf (i.e., αw ≈ α, or
φc ≈ 0), a substantially lower residual misclassification
probability, 0 ≈ εw << ε, and an omission probability close to
ε, thus φ ≈ ε. The following compound metrics may be
calculated for a complete understanding of performance:
• φm ratio = φm / φ, the ratio of omitted misclassifications

over all omissions of the FCC(clf), to be maximised;
• ε drop = (ε - εw) / ε = φm / ε, which is the drop in

misclassifications due to FCC, to be maximized.
A FCC(clf) will never have better accuracy than clf (i.e.,

αw ≤ α), as it does not aim at improving correct classifications.

Table 1: αw, εw, φc, φm and compound probabilities.
clf behavior → Correct

Prediction
Mis-

classification Sum
FCC(clf) behavior ↓

Not omitted αw εw 1 – φ
Omitted φc φm φ

Sum α ε 1

4

It aims at transforming most of the erratic misclassifications,
which are difficult to manage, into omissions i.e., have a high
ε drop. Whereas at component-level this may seem a
negligible improvement, at the system level it provides a way
to prevent a misclassified prediction from propagating
through the system, potentially causing (catastrophic) failures.

B. Suspecting Misclassifications
Ways to suspect misclassifications of classifiers, and thus

trigger omissions, can be partitioned in two groups: black-box
and white-box approaches.

Black-box approaches do not assume any knowledge
about the classifier, thus observe its inputs and outputs without
any access to internals. They allow for building statistical
machinery that conveys input pre-processing [9], output
analysis [11] and even ensembles of them [19] for complex
and quite effective techniques for suspecting
misclassifications. They mostly check if inputs and outputs
belong to specific statistical distributions, and deem the
prediction as non-trustable otherwise. Other approaches aim
at identifying unstable regions of the input space in which the
classifier may be likely to output misclassifications [57], [59],
or use external classifiers (e.g., nearest neighbours [13]) to
validate the output of the target classifier.

When insights of the classifiers are at least partially
disclosed, it is possible to apply white-box approaches. Those
take advantage of specific features of the algorithm or the
resulting model and use them to suspect misclassifications.
For neural networks, a common approach is to check the
activation patterns of neurons [4], [11] – which vary from a
DNN model to another. Classifiers that orchestrate ensembles
may use the degree of agreement or the diversity of
predictions of the classifiers in the ensemble [2], [34] as a way
to estimate the confidence in a given prediction: the looser the
agreement, the more likely the misclassification. Tree-based
classifiers have their own unique features that may be
exploited for building custom trust measures [21]. Last but not
least, knowing the structure of the classifier allows for a more
careful interpretation of the computed confidence score, with
the potential of limiting the problem of high-confidence,
erroneous, predictions [15].

C. Motivation
The encompassing system should know how to promptly

act to guarantee that the system will not be negatively affected
in case of omission of the output of the FCC (or notification
of suspicious prediction). Intuitively, automatic or semi-
automatic reaction and mitigation strategies are both domain-
specific and system-specific. There are multiple examples in
which omitting potentially wrong predictions has clear
benefits in the behaviour of software or a system, even at the
cost of rejecting a non-negligible amount of correct
predictions.

FCCs could find wide application in the control system of
semi-autonomous vehicles. Tasks as semaphore or traffic sign
recognition should avoid misclassifications of red/green
semaphores or confusing a traffic sign with another, but can
typically afford to occasionally reject uncertain predictions,
provided that the correct recognition happens early enough for

mitigations as emergency braking or evasive steering [36] to
take place. Other tasks as obstacle or pedestrian detectors may
still prefer an omission over a misclassification, with
omissions that are likely triggering emergency braking to
avoid hitting a potentially unseen pedestrian [37].

Traditional railway systems have cyclic interactions with
sensors, actuators, and communication channels, where
information is supposed to be continuously shared (i.e.,
request of data, or “I am alive” pings). When no information
is exchanged across many subsequent cycles, the component
is deemed as malfunctioning [34]. This does not pair well with
classifiers, which do not account for “omissions”, limiting
their usage despite the many possible applications e.g.,
automatic visual inspection, rail maintenance management
[73]. Differently, FCCs pair extremely well with this
paradigm as they can minimize misclassifications, knowing
that subsequent omissions will likely trigger safe states where
the component will be stopped.

Stopping is not an option in aerospace systems: therefore,
the omission of a prediction cannot trigger routines that
completely stop or shutdown equipment, but that instead aim
at handling or tolerating this potentially adverse situation [35].

IV. SOFTWARE ARCHITECTURES FOR FCCS
This section reviews and adapts existing architectures for

critical systems engineering that focus on pre-processing
/input validation (IP), post-processing /output validation (OP),
component monitoring (WT, SW), or use built-in
functionalities (SCC), for crafting FCCs in Figure 1. The
numbering of sections matches the alphabetic numbering of
subfigures of Figure 1, e.g., Section IV.A details what it is
shown in Figure 1a.

A. Self-Checking Classifier SCC
Self-checking or self-testing hardware or software

components embed built-in and custom strategies to check for
the quality of their execution. This approach is required by
many standards for deploying transportation systems and
usually involves crafting hardware with redundancy and
seeking for an agreement of the outputs of the replicas [55], or
employing testing libraries that are periodically exercised on
both hardware and software equipment [56]. Whenever one of
these checks fail, the target component was deemed as failed
and in need to be replaced or fixed. Whereas replicas refer to
multiple redundant systems or components that perform the
same task independently. The system compares the outputs of
these replicas, and if they agree, the result is considered
reliable. If there is a disagreement, further checks or fail-safe
mechanisms are triggered to ensure safety.

For classifiers, this approach translates into looking for
measures, indexes or other variables that may be generated
during the inference process and that provide a quantitative
confidence or trust score to assign to each prediction. In case
the classifier computes a score and then applies a threshold to
decide on the class probabilities, the distance of such score
from the decision boundary can be used as a confidence
measure: the closer to the decision boundary, the less
confident the prediction. Applications of this way of
computing confidence can be found for unsupervised (binary)

5

classifiers, DNNs, and also for improving classification of
noisy data [57], but are not available by default in standard
libraries used for supervised learning e.g., Python’s scikit-
learn, PyTorch, Keras.

B. Watchdog Timer WT
Watchdog timers (WTs) aim at measuring the length of the

execution of a target function to understand if the elapsed time
conforms with expectations [53]. In case the function
completes too early, the watchdog timer generates an alert that
we can use to trigger omissions. If the function completes too
late, it indirectly delivers an omission as well.

The reader may see this as a trivial check; however, it has
been and currently is being used in many embedded or cyber-
physical systems as a runtime check of the state of IT
machinery. Decades ago, watchdog timers were meant to
check electronic or mechanical-related functions [54], but
transitioned to check the execution of software [53] and thus
constitute an additional way to build FCCs. The clear
advantage is that they add negligible overhead and work with
any black-box classifier. On the negative side, they will be
able to spot only a limited subset of issues (e.g., several
anomalous activation pattern of neurons in DNNs, long paths
in decision trees that may be due to an overfitted model,
problems due to underlying hardware, operating system or
virtualized middleware, or slow-downs due to malicious or
malfunctioning software acting in the host system), resulting
in a low omission probability but high residual
misclassifications. Importantly, tuning timers is a system-
specific process: a WT may work well with a specific
hardware, but requiring re-tuning when the same hardware
gets updated i.e., the notion of normal prediction time varies.

C. Input Processing IP
This FCC performs a pre-processing to seek for anomalies,

suspicious values, low quality of such input, and the like. The
pre-processing is implemented by an input checker, which
could exercise adversarial attack detectors [26], out-of-
distribution detectors [28], image corruption detectors [39],
statistical distributions [9], or unknown data detectors in
general [24]. Detecting one of the cases above could trigger
an omission of the output of the FCC, without exercising the
classifier at all. Should these events be quite frequent, the IP
will show a fairly high amount of omissions. Importantly,
some classifiers are “robust enough” to successfully deal with
minor issues in the input data: in this situation, the FCC would
want to omit the output only when the issue or corruption will
not be tolerated by the robust classifier, reducing omissions.
Some strategies pre-process the input to seek for issues but
also provide a “cleared up” version of the same input at the
end of the process. This is especially common for image
classifiers, where autoencoders are often used to remove
background noise, small alterations or minor damage to the
image [50]. The reconstruction error is used as a symptom of
corruptions, but the process also generates the “clean” image
that can therefore be fed to the classifier instead of the initial,
potentially noisy, image. In this case, even a “non-robust”
classifier may still be able to correctly classify the “clean”
image.

D. Output Processing OP
This is the simplest FCC out of the ones that we present in

this paper, as this directly acts on the output probabilities of a
prediction [11], computing the entropy of the probabilities, or
use the absolute value of the highest probability as indicators

x) A simple (reference) classifier, that provides correct or incorrect
output against input.

a) Self-Checking Classifier (SCC), which already has built-in and

non-trivial methods for calculating trust in a prediction.

b) Watchdog Timer (WT), which measures inference time seeking

for abnormal (too long or too short) executions.

c) Input Processor (IP), which checks for integrity issues, anomalies

or legitimacy of inputs.

d) Output Processor (OP), which checks if the output of the

classifier clf should be trusted or discarded.

e) Safety Wrapper (SW), which processes inputs, outputs and (if
white box) the internals of clf to compute confidence and use it to

decide on trustworthiness.
Figure 1. Software Architectures for FCCs with accuracy αw, misclassification probability εw, and omission probability φ.

Classifier clfInput
Data dp

Feature
Values Class

Pred

Class
Prediction

ε

α Input
Data
dp

Feature
Values

Classifier
clf

Class Prediction

SCC(clf)

Yes

No

εw

αw

φ
Trustable?

Class pred

Trust score

Time Check

Input
Data
dp

Feature
Values

Classifier
clf

Class Prediction

WT(clf)

Yes

No

εw

αw

φ
Check ok?

Class
pred Classifier

clf

Input
Data
dp

Fe
at

ur
e

Va
lu

es Class
Pred

Input
Checker

Class Prediction

IP(clf)
Yes

No

εw

αw

φTrustable?

Output
Checker

Input
Data
dp

Feature
Values

Classifier
clf

Class Prediction

OP(clf)

Yes

No

εw

αw

φ
Trustable?

Class
pred

Classifier
clf

Input
Data
dp

Fe
at

ur
e

Va
lu

es

Class
Pred

Confidence
Calculator

SW(clf)

Yes

No

εw

αw

φTrustable?

6

of trust in the prediction. Entropy, in this case, quantifies the
uncertainty inherent in the prediction, with lower entropy
indicating a more confident prediction where one class
probability dominates, and higher entropy suggesting greater
uncertainty due to more evenly distributed probabilities across
multiple classes. In case the entropy is too high or the highest
probability is below a given threshold, the prediction would
be rejected, triggering an omission.

E. Safety Wrapper SW
IP and OP FCCs act before or after the classifier.

However, we may think of a monitor or wrapper [6] that acts
before, during and after inference. This is the case of the SW,
which builds an envelope around the classifier to extract the
most information to quantify the uncertainty of a prediction.

SW FCCs are partitioned into two big groups depending
on their knowledge of the classifier. If the internals of the
classifier are not disclosed (i.e., the classifier is a black-box),
the SW can only act on interfaces and can eventually use the
classifier for additional predictions. Implementations of
black-box SW may rely on Bayesian approaches [10],
ensembles of confidence measures [19], relative positioning
of input data with respect to the prediction [13] or run other
classifiers (e.g., kNN [14], probabilistic DNNs [12]) and
check for agreement with the main classifier.

Conversely, when internals of the classifiers are fully
available, it is possible to craft very specific mechanisms that
are going to be run in parallel with the classifier (thus speeding
up the execution) and that seek for very specific information
throughout the inference process. The activation patters of
neurons in a DNN or the length of a path in a decision tree can
provide information on the whole prediction process and thus
on its uncertainty [4].

F. Discussion
SCC, WT, IP, OP, and SW FCCs all have their limitations

and advantages. Ideally, we want low omission probability φ,
low residual misclassifications εw with low overhead. Since
none of the solutions above (and none at all, according to the
knowledge of authors) guarantees these properties by design,
the software architect or engineer will need to choose the
approach that brings the most convenient trade-off depending
on the specific use case. A full white-box knowledge of the
classifier and access to its internals pave the way for classifier-
specific FCCs (i.e., safety wrappers) that can be very accurate
and have the potential to add minimal overhead at runtime as
they can be run in parallel while the classifier is performing
inference. On the downside, they may require complex
conceptualization, design, and implementation plus expensive
sensitive analyses to fine-tune the overall mechanism.
Another potential issue comes from the fact that a very fine-
tuned approach may be very effective in dealing with known
events and system states but may struggle when the behaviour
of the system changes, even slightly.

V. EXPERIMENTAL EVALUATION
This section describes the experimental campaign to

quantify how the behaviour of tabular and image classifiers
changes when FCCs are applied instead of typical classifiers

for images (neural networks) or tabular data (ensembles of
decision trees for the most part).

A. Experimental Methodology, Setup and Code
Our experiments are structured as follows. First, we

choose a subset of FCCs to be used in our experimental
evaluation: IP, OP, SW, see Section V.B. Then, we gather
datasets for exercising tabular and image classifiers, spanning
over a wide variety of classification tasks and simulating
unknown data (Section V.C). The classifiers to be used for
classification are described in Section V.D: once classifiers
are defined and trained, Section V.E and Section V.F report
results for tabular data and image classification, respectively,
Section V.G conclude the experimental evaluation and
highlight takeovers, and finally Section V.H highlights threats
to validity. The performance of classifiers and FCCs is
quantified via the metrics from Section III. Experiments have
been performed on a server with Intel(R) Core (TM) i5-8350U
CPU@1.7 GHz 1.9 GHz, using an NVIDIA Quadro RTX
5000 GPU. The code for repeating experiments is available in
the anonymous GitHub at [68].

B. Selection of FCCs and Parameters
Some of the FCCs that are presented in Section IV cannot

be instantiated in general settings. This is the case of the WT
which, as a timer, depends on the typical inference time a
classifier has on a specific software-hardware platform and
with a specific workload. Results we get using this FCC may
wildly change when repeating experiments in a different
setup, thus we avoid it. Also, widely used ML algorithms for
classification do not typically provide dedicated and custom
ways for computing confidence in predictions, and cannot be
used as SCCs.

Consequently, we instantiate IP, OP, SW FCCs as follows
for image and tabular classifiers:
• Input processor (IP) uses a binary classifier to understand

if the input belongs to the training data distribution or if
it is unknown i.e., out of distribution or anomalous. When
the input is predicted unknown, an omission is triggered.
We use two input checkers for images and two input
checkers for tabular data, as shown in Section V.D.

• Output processor (OP), where uncertainty is quantified by
the softmax probability associated to the predicted class.
If the probability does not exceed a threshold pthr, the
prediction is deemed uncertain. When pthr is arbitrarily
defined by the user instead of being classifier-specific, it
is possible to end up having very different omission rates
when using different classifiers. Thus, our experiments
use a static pthr = 0.8 threshold, but also find a dynamic
pthr (dpthr) value corresponding to the 15th percentile of the
distribution of output probabilities of a classifier obtained
on the validation set. This derives a classifier-dependent
threshold value that makes the OP omit roughly 15% of
the predictions across all classifiers. Since the threshold
is computed on the validation set and not on the test set,
the likelihood of omissions may still vary a bit.

• In our experiments, the confidence calculator of the Safety
wrapper (SW) uses input checkers (as in IP) and
probability checks (as in OP), omitting the prediction if

7

any of the two strategies trigger an omission. This leads
to 4 different safety wrappers for each experiment, using
pthr=0.8 or dpthr with any of the two input processors.

 Overall, we will experiment with a total of 8 FCCs that can
be created upon each classifier exercised in each dataset.

C. Datasets
1) Tabular Datasets

We select three tabular datasets belonging to different
domains in which classifiers are typically willing to be
applied: intrusion detection (CICIDS18 [65]), error detection
(ARANCINO [67]), and control systems (MetroPT [66]).
These datasets contain hundreds of thousands of data points
corresponding to the behaviour of the system under normal
operating conditions or due to: attack (six attack classes in
CICIDS18), the manifestation of errors (nine errors in
ARANCINO), control system failures (air and oil leak in
MetroPT). For these datasets, we target a binary classification
problem, aiming at distinguishing normal operating
conditions against anomalies due to attacks, errors, or
component failures. Similarly to image classifiers, we use a
50-20-30 train-validation-test split.

2) Image Datasets
Then, we select three image datasets: Flower (9 classes

[62]), Fruit (24 classes [63]) and STL-10 (10 classes [64]). Out
of the many alternatives for image classification, we favoured
those since they are publicly available, belong to different
domains, have a varying number of classes, and allow for fast
experimentation times since they are composed of many small
images (96x96 rgb at most) in the order of thousands or tens
of thousands of images per dataset. We split each dataset using
a 50-20-30 train-validation-test split.

3) Generation of Out-Of-Distribution Data
Public datasets are useful for experimentations, but may

not generalize well to real scenarios that are prone to
encounter unknown operating conditions, resulting in out-of-
distribution inputs, different from those used for training the
classifier. This typically makes the likelihood of
misclassifications skyrocket, thus it is of utmost interest to
simulate them for the purpose of our experiments.

We generate out-of-distribution images by applying three
different alterations i.e. Rotation, Color Space and Gaussian
Noise [61] to 30% of images from the test set i.e., unseen by
the classifier in the training set. We create the Gaussian noise
image by generating a noise map using mean 0 and st.d 25,
and then overlapping it to images. Colour space anomalies
result from chaining operations as Brightness 0.5, contrast 1.5,
saturation 1.5, and Hue adjustment at scale of 20. For rotation,
we rotate the image of 90o left. These alterations were injected
using the OpenCV library, and the parameters above are
amongst the ones suggested in the handbook of such library.

The generation of out-of-distribution tabular data is not as
straightforward as it happens with images. Fuzzing or adding
random noise generate a new data point that may belong to the
same distribution of the original data point, but may also fall
into a different class. To overcome this problem, we remove
specific classes of anomalous behaviors from the training set,
letting them appear only in the test set, being unknown to the

tabular classifier. For CICIDS18, SSH-Bruteforce, FTP-
BruteForce and Infiltration attacks only appear in the test set
(see Figure 3). For ARANCINO, errors in the NodeRed, Redis
and Arancino-manager services only appear in the test set,
whereas in MetroPT data of the OilLeak failure is removed
from the train set as well.

This allows for building test sets that are composed of in-
distribution (those from the original dataset) and out-of-
distribution data, simulating the occurrence of unexpected
operational conditions in real scenarios. The rate of out-of-
distribution data ranges from 30% of the test set in the Fruit,
Flower, STL-10 image datasets, to 20%, 12%, 8% for
CICIDS18, MetroPT and ARANCINO tabular datasets,
respectively.

D. Classifiers and Input Checkers
Tabular data classifiers are preferably built over

ensembles of decision trees or statistical ML algorithms [46],
[48], [75]. Thus, the binary tabular classifiers used in this
study are Random Forests (RF), XGBoost (XGB) and Logistic
Regression (LR). As input checkers, we rely on two very fast
tabular classifiers in a Decision Tree (DT) and Linear
Discriminant Analysis (LDA). All tabular classifiers are
exercised using their default parameters from scikit-learn, and
xgboost Python libraries [70]. Setting up input checkers
allows to define 8 FCCs to be used for tabular data
classification: IP_lda and IP_dt are input processors using
LDA and DT as input checkers, OP_08 and OP_% are output
processors using a static threshold pthr=0.8 and using
dpthr=15%, while SW_lda_08, SW_lda_%, SW_dt_08,
SW_dt_% are safety wrappers that combine IPs and OPs
above.

For image classification, the literature acknowledges how
neural networks are the preferred choice when dealing with
unstructured data [32], [36] [51]. We chose AlexNet,
ResNet50, and InceptionV3 as image classifiers given their
wide usage in the last decade. The final models are obtained
by transfer learning with learning rate = 0.001 and batch size
= 16 from pre-trained DNNs using ImageNet weights stored
in PyTorch. Input checkers for images (to be used in the IP

Figure 3. Unknown tabular data: the example of CICIDS18,
where some attack classes are removed from the training set

occurring only in the test set, being unknown to the classifier.

Train Set

Test Set

Normal Data

BruteForce

(D)DoS

Web Attack

Infiltration

Figure 2. Unknown image generation, from left to right a)

original, b) gaussian noise, c) color space, d) rotation.

8

FCC) could use DNNs as well, but Support Vector Machines
(SVMs) were successfully applied as well [68]: thus, input
checkers for image datasets are either SVMs or a ResNet50
different from the one used for image classification. Similarly
to tabular classifiers, we end up with the following 8 FCCs for
image classification: IP_svm, IP_rn, OP_08, OP_%,
SW_svm_08, SW_svm_%, SW_rn_08, SW_rn_%.

E. Results: Tabular Data Classification
We start commenting results of classifiers and FCCs using

tabular datasets with the aid of Table 2, which reports the
percentage of misclassifications ε (for clf) or εw (for FCC),
omissions φ, ε drop and φm ratio for different datasets and
different classifiers. The table has 27 lines, 9 (base clf plus 8
FCCs) for each of the three classifiers LR, RF, XGB. The
columns for φm ratio and ε drop are painted with a gradient of
green that gets darker the more these two metrics have optimal
result (the higher, the better).

Reading the table for dataset blocks (i.e., groups of 4
columns), we can observe the following. In the CICIDS18
dataset, the misclassifications of LR, RF, and XGB are
respectively at 24.47 (1st row), 12.33 (10th row), and 12.32
(19th row). Applying FCCs always lowers misclassifications,
at a cost of a specific amount of omissions φ. For example,
misclassifications of the RF may drop to 2.25 using the safety
wrapper SW_dt_% (16th row of Table 2), at a cost of 24.45%
of omissions. Roughly, we are reducing misclassification by a
factor of 5, but 25% of the predictions of the FCC will be
rejected, omitting the output. This is because only 41.26% (φm
ratio) of omissions correspond to misclassifications, or the
remaining 58.74% of omissions would have been correct

predictions by the classifier. This is far from optimal, as it
means that the price for lowering misclassifications may be
too high in terms of accuracy degradation.

Results related to the MetroPT datasets, reported in the
columns in the middle of the table, offer a different example.
In this case, and for all clf LR, RF, XGB, employing an IP that
uses DT as input checker (i.e., IP_dt) allows for omitting
almost all (high ε drop) and only (high φm ratio) prediction
that would have been misclassifications. This is the optimal
scenario in which the application of the FCC brings
misclassifications of XGB from 12.57% to 0.13%, with an ε
drop of almost 99% (see 21st row of the table, 8th to 11th
column). In other words, the residual misclassifications are
lowered by a factor of 100, and there are just a few omissions
of correct predictions i.e., φm ratio is 99.37%, very close to the
optimum 100. On the extreme right of the table, we see results
for the ARANCINO dataset. Here, we see that FCCs can
significantly lower the number of misclassifications, but
typically show non-optimal performance as they either omit
an exceedingly high amount of predictions (high φ and low φm
ratio) in the process.

Other important information could be obtained by reading
the table horizontally. First, the OP using a static threshold for
probabilities (OP_08) delivers the worst result overall: the
threshold is either too low (thus omissions are almost non-
existent φ ≈ 0) or too high, delivering an obnoxious omission
probability as for LR in CICIDS18, see 5th row 5th column of
Table 2. Using an OP that has a dynamic threshold delivers a
more balanced result as omissions are usually of a reasonable
amount. The benefits of using IP are situational: there are
cases in which it is game-changing as in the MetroPT dataset,

Table 2: Results of tabular clf and FCCs across tabular datasets used in the paper. For each dataset, clf and FCC we report the
misclassifications ε (for clf) or εw (for FCC), omissions φ, φm ratio and ε drop. All data is in percentage.

Row

 Datasets CICIDS18 MetroPT ARANCINO
FCC FCC tag Clf ε εw φ ε drop φm ratio ε εw φ ε drop φm ratio ε εw φ ε drop φm ratio

1 - - LR 24.47 15.02 13.90
2 IP IP_lda LR 19.05 23.22 22.13 23.32 2.50 18.34 83.38 68.29 10.25 6.06 26.27 60.23
3 IP IP_dt LR 19.09 23.19 21.97 23.18 2.56 12.53 82.93 99.39 9.10 7.99 34.51 60.01
4 OP OP_% LR 18.80 11.32 23.16 50.08 4.41 21.01 70.66 50.52 9.64 15.82 30.63 26.91
5 OP OP_08 LR 1.70 62.12 93.06 36.65 13.24 5.61 11.87 31.76 9.65 10.02 30.60 42.46
6 SW SW_lda_% LR 13.40 34.48 45.21 32.08 0.13 27.77 99.16 53.62 7.61 18.27 45.26 34.44
7 SW SW_dt_% LR 13.48 34.38 44.90 31.95 0.16 25.28 98.97 58.80 5.94 21.36 57.30 37.28
8 SW SW_lda_08 LR 1.08 76.10 95.59 30.73 1.24 23.09 91.74 59.67 7.65 13.93 44.93 44.84
9 SW SW_dt_08 LR 1.42 72.64 94.20 31.73 1.34 17.58 91.06 77.81 5.77 16.63 58.46 48.86

10 - - RF 12.33 12.57 6.34
11 IP IP_lda RF 3.47 23.22 71.88 38.19 0.20 18.34 98.38 67.44 4.55 6.06 28.23 29.53
12 IP IP_dt RF 2.38 23.14 80.73 43.03 0.12 12.53 99.01 99.37 2.54 7.92 59.97 48.04
13 OP OP_% RF 3.90 9.71 68.36 86.88 11.44 3.83 9.03 29.64 4.58 10.09 27.75 17.44
14 OP OP_08 RF 12.31 0.12 0.23 24.29 12.57 0.05 0.03 7.69 5.62 2.62 11.33 27.42
15 SW SW_lda_% RF 3.18 24.70 74.19 37.04 0.11 20.77 99.16 60.03 3.37 15.10 46.86 19.68
16 SW SW_dt_% RF 2.25 24.45 81.80 41.26 0.10 15.25 99.22 81.81 1.64 16.44 74.20 28.62
17 SW SW_lda_08 RF 3.45 23.33 72.07 38.11 0.20 18.39 98.41 67.29 3.91 8.47 38.40 28.74
18 SW SW_dt_08 RF 2.36 23.22 80.84 42.94 0.12 12.58 99.02 98.99 1.97 10.31 68.87 42.35
19 - - XGB 12.32 12.57 6.99
20 IP IP_lda XGB 3.46 23.22 71.95 38.19 0.20 18.34 98.38 67.44 5.20 6.06 25.66 29.60
21 IP IP_dt XGB 2.36 23.15 80.83 43.02 0.13 12.51 98.95 99.42 3.19 7.98 54.41 47.71
22 OP OP_% XGB 7.60 15.19 38.36 31.11 11.43 12.79 9.06 8.91 4.90 14.18 29.90 14.74
23 OP OP_08 XGB 12.31 0.02 0.11 57.14 12.57 0.01 0.02 16.67 5.97 3.06 14.61 33.36
24 SW SW_lda_% XGB 3.05 33.81 75.27 27.44 0.05 28.57 99.59 43.82 3.16 20.03 54.87 19.16
25 SW SW_dt_% XGB 2.13 32.50 82.73 31.36 0.12 24.17 99.04 51.52 1.61 21.02 76.94 25.59
26 SW SW_lda_08 XGB 3.44 23.24 72.05 38.21 0.20 18.35 98.40 67.41 4.19 9.10 40.08 30.82
27 SW SW_dt_08 XGB 2.36 23.15 80.85 43.02 0.13 12.52 98.96 99.34 2.30 10.83 67.07 43.32

9

but there are also cases in which it does not reduce
misclassifications by much (i.e., ARANCINO dataset), or
where it omits many correct predictions in the process, as
quantified by the low φm ratio in the CICIDS18 dataset. Safety
wrappers SW are meant to omit predictions if either the input
or the output check highlight issues, thus they always have
high omission rates, at the benefit of having very low residual
misclassifications.

F. Results: Image Classification
Results similar to those presented above can be obtained

also for image classifiers. To avoid being tedious, this section
follows a different structure, focusing on three cases: the
ResNet50 clf and FCCs on the Flower dataset (Figure 4),
AlexNet on STL-10 (Figure 5) and InceptionV3 on Fruits
(Figure 6). These scenarios offer interesting discussion items
that we explore as follows.

Figure 4 shows a 10-bar chart: a bar for the ResNet50 clf,
a bar for each FCC, and a bar showing the theoretical optimum
FCC that omits all and only misclassifications, paired with ε
drop and φm ratio quantities on the right. From a visual
standpoint, the aim is to reduce the red bar (ε if clf or εw if
FCC) as much as possible, keeping the blue bar (α or αw)
untouched, replacing the red area with the yellow-striped
omissions φ. Whereas some FCCs succeed in reducing the red
bar i.e., OP_%, SW_svm_% and SW_rn_%, they also have a
shorter blue bar: this is due to a sub-optimal φm ratio, that is
57.84, 36.06 and 21.76, respectively. In this case, there is no
FCC that has both an high φm ratio and ε drop: all reduce
misclassifications, but with a major price to pay in terms of
unnecessary omissions.

Figure 5 has the same structure of Figure 4, but refers to
the application of AlexNet as image classifier in the STL-10
dataset. This is a case in which the AlexNet clf already has
low (59.23%) accuracy, generating a whopping 40.77% of
misclassifications. FCCs are able to reduce this amount of
misclassifications by a fair amount but typically omit many
correct classifications in the process. The SW_rn_% FCC has
εw = 13.9%, roughly a third of those of AlexNet alone, but also
has an accuracy of 33.68%, which is almost half than those of
clf. A more balanced performance is offered by OP_%, which
roughly halves misclassifications and reduces accuracy from
59.23 to 50.84%, limiting the amount of omissions: it has
better φm ratio than SW_rn_%.

Lastly, Figure 6 shows the application of InceptionV3 on
the Fruit dataset. Similarly to Figure 4, the OP_% FCC is the

solution that offers the best tradeoff between reducing
misclassifications (see and ε drop) and having a reasonably
low amount of unnecessary omissions (φm ratio). IPs have
very bad performance in this case, making also SWs lean
towards poor performance as they can reduce up to ε drop =
85.55% of misclassifications, but scoring an exceedingly low
φm ratio of 25.04, with only 1 in 4 omissions corresponding to
misclassifications.

G. Takeovers
Our experimental analysis is only preliminary: however, it

provides some key information that we summarize as follows:
• The OP adds virtually no overhead to the process as it just

computes basic thresholding on probabilities of
predictions and is typically helpful in suspecting most of
the misclassifications.

• The IP proved to be more or less useful depending on the
scenario, as it may also end up having quite low φm ratio
(i.e., many unnecessary omissions) when unknown data
is not easily distinguishable from in-distribution data or
when the classifier would have been robust enough to
correctly classify even unknown data. Differently from
OP, it requires training the input checker and exercising
it before or alongside the main classifier.

• In our experiments, the SW is the solution that suspects
the most misclassifications (i.e., has the best ε drop) due
to the implementation of the confidence calculator, which
combines input and output checks.

• The performance of FCCs depends on several factors,
including the nature of the system, the characteristics of
the input data, and their specific implementation. Only a
careful choice of uncertainty calculators (e.g., input
checkers for IP, probability thresholds for OP) could pave
the way for a successful application.

• Researchers interested in lowering misclassifications
should primarily focus on maximising the ε drop, but
should also make sure that the φm ratio is high enough.

H. Threats to Validity and Reprobucibility
Classifiers have hyperparameters whose tuning critically

affects results, or may encounter wide variety of problems
when learning a model for each dataset during training (e.g.,
under/overfitting, poor quality of features, feature selection to
leave out noisy features). However, this experimental
evaluation aims to compare the performance of classifiers

Figure 4. ResNet50 clf, FCCs and the

optimum FCC for Flower dataset.

Figure 5. AlexNet clf, FCCs and the
optimum FCC for STL-10 dataset.

Figure 6. InceptionV3 clf, FCCs and the

optimum FCC for Fruit dataset.

10

against FCCs, thus even a sub-optimal choice of
hyperparameters is more than acceptable provided that the
same setup is used throughout all experiments.

The usage of public data and public tools to run classifiers
was a prerequisite of our analysis to allow reproducibility and
to rely on proven-in-use data. We publicly shared scripts,
methodologies, and all metric scores, allowing any researcher
or practitioner to repeat the experiments. We do not use any
private dataset: all datasets are referenced in the papers, and
all code is available at [68].

VI. WHAT ABOUT AVAILABILITY?
These FCCs allow for reducing misclassifications thanks

to the omission mechanisms, which has an obvious downside:
whenever FCC omits many correct predictions alongside with
misclassifications, it becomes almost unusable as it hardly
provides a beneficial behaviour for the encompassing system.
To address this problem, we report here other approaches that
may be used to reduce misclassifications and at the same time
keep unnecessary omissions as low as possible.

A. Recovery Blocks
Recovery blocks are known since many decades as one of

the strategies for reliable software design [41]. Practically
speaking, we foresee the usage of a set of m alternative
implementations of a function that are called sequentially
whenever the output of the main function is deemed as non-
trustable. For classifiers, this translates into calling a sequence
of at most m+1 classifiers before obtaining the prediction, or
omitting the result if none of the recovery blocks is confident
enough in their output. This concept is not entirely new in the
machine learning domain: delegating classifiers [43] define a
group of classifiers, each specialized to be confident in the
analysis of a subset of the input space, choosing the classifier
to use for inference depending on the input alone.

A FCC based on recovery blocks does not use a single
classifier for inference: in fact, it delegates the decision to the
first replica whose output is trustable (see Figure 7a). The
amount and the diversity of replicas has a direct impact on the

likelihood of omissions: it will be easier to find a “trustable”
replica if the set of replicas is wide and diverse instead of
relying on a few replicas. Note that such FCC may add a major
overhead to the inference process as – in the worst case – it
may require exercising m+1 classifiers in sequence.

B. N-version Programmung
Another approach relies on N-Version Programming

(NVP), or exercising different classifiers in parallel [41], [44]
each acting independently but processing the same inputs.
Their predictions, alongside with trust scores, are sent to the
adjudicator, which is a function that takes as input the
predictions and the trust scores of the m classifiers, generates
a prediction and a trust score to decide if the prediction has to
be omitted or if it is trustworthy. For a problem of k-class
classification and m replicas, the adjudicator is a function that
has (k+1)m floating point inputs and outputs k probabilities
plus a floating point trust score. This adjudicator [41] can be
implemented with thresholds, invariants, custom rules [44], or
can be a classifier itself, providing many degrees of freedom
in finding the ideal function to combine outputs and trust
scores of the m replicas. A FCC using NVP builds a two-layer
architecture which is often referred to as stacking, with m
classifiers at the base level, and the adjudicator at the meta-
level [45], see Figure 7b. Those two steps are necessarily
sequential, cannot be parallelized and may, again, add a
relevant overhead to the inference process.

C. Other Notable Approaches
Decades of critical systems engineering and system-level

thinking originated more architectures [41], [44] than those
shown above. Voting was explored in different formulations
(i.e., hard, soft, weighted), and can be even used to build a
hierarchical agreement structure that is known as n-self-
checking-programming [41]. Boosting techniques were
proven to be very effective for classifying known [18], [48]
and unknown tabular data points, but boosting ensembles of
DNNs for image classification are not yet a thing and are still
in their early stages [49]. Interestingly, different architectures

a) Recovery Blocks (RB) or delegating FCC, which pairs the

main FCC with other FCCs that are executed in sequence,
seeking for the first that outputs a confident prediction.

b) NVP or FCC ensembles, which exercise many FCCs in

parallel and then use a final adjudication function to decide
on the confidence in the prediction.

Figure 7. Software Architectures for Complex FCCs with accuracy αw, misclassification probability εw, and omissions φ.

FCCr2

FCCrm

FCCr1

FCCmain

Input
Data
dp

Fe
at

ur
e

Va
lu

es

Class
Pred

Non-Trustable

εw

αw

φ

Class
Pred

Class
Pred

… …

RB(FCCmain, {FCCr1, FCCr2, …, FCCrm})

Class
Pred

Non-Trustable

Non-Trustable

Non-Trustable

Trustable

Trustable

Trustable

Trustable FCCm

FCC2

FCC1

Input
Data
dp

Fe
at

ur
e

Va
lu

es

Class Pred

εwαw

φ

… …

Trust Score

Class Pred

Trust Score

Class Pred

Trust Score

A
dj

ud
ic

at
or

Trustable?

Class
Pred

NVP({FCC1, FCC2, …, FCCm})

11

may be combined into unified architectures. For example,
there are works that pair classifiers based on ensembles with
a monitor to check for trustworthiness [20], but this is still
quite an uncharted territory in which there are no widespread
and solid proposals (yet).

VII. CONCLUSIONS, VIEWPOINTS AND FUTURE WORKS
This paper motivated the need for a paradigm shift when

applying classifiers based on Machine Learning (ML) in
critical systems, where misclassifications may result in
catastrophic consequences. Instead of chasing the holy grail
of perfect accuracy, we argue that misclassification may be
acceptable if i) they could be suspected and are of a reasonably
low amount, and ii) the system can promptly react when
predictions are rejected due to suspected misclassifications.
This is the baseline of Fail-Controlled Classifiers (FCCs), or
rather classifiers that may omit predictions they are not
confident with. Ideally, a FCC either answers correctly, or
does not answer at all, thus having no misclassifications even
without perfect accuracy. FCCs build on the following pillars:
• Better Safe than Sorry. There are domains in which it is

beneficial to answer questions or provide service only
when the output could justifiably be trusted. In any other
case, it is better to omit answers: betting on the “most
likely” answer is not an option.

• Confidence, not over-confidence. Self-awareness is
always a desirable property: without it, people,
equipment, or controllers are hardly trustable. For ML
classifiers, this translates into computing confidence in a
prediction, and using this quantity to decide if the
prediction could be propagated to the encompassing
critical system.

• Old but gold? Critical system and software architectures
that are known and applied since decades for safety
engineering may be successfully reworked to design
software components that (at least partially) rely on ML
classifiers for a wide variety of tasks.

We believe that this paper will bring awareness to the
problem of deploying ML classifiers in critical systems. Also,
the ideas, the architectures, and the discussions presented
herein will pave the way for further experiments aimed at a
quantitative assessment of FCCs in real or simulated systems,
to precisely understand their applicability and focus on the gap
that still must be bridged to safely put ML classifiers into
operation.

ACKNOWLEDGMENTS
This work was supported in part by the 202297YF75

PRIN 2022 project S2, by the project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan
funded by the European Union – NextGenerationEU, and by
the RDS - PTR22-24 P2.1 Cybersecurity project funded
within the Ricerca Sistema Elettrico, Piano Triennale 22-24.

REFERENCES
[1] Tiwari, A., et. al. (2014, April). Safety wrapper for security. In

Proceedings of the 3rd international conference on High confidence
networked systems (pp. 85-94).

[2] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and
scalable predictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems, 30.

[3] Aslansefat, K., et. al. (2020, September). SafeML: safety monitoring
of machine learning classifiers through statistical difference measures.
In International Symposium on Model-Based Safety and Assessment
(pp. 197-211). Springer, Cham.

[4] Rossolini, G., Biondi, A., & Buttazzo, G. (2022). Increasing the
confidence of deep neural networks by coverage analysis. IEEE
Transactions on Software Engineering, 49(2), 802-815.

[5] Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic
concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1), 11-33.

[6] Guérin, J., Ferreira, R. S., Delmas, K., & Guiochet, J. (2022, October).
Unifying evaluation of machine learning safety monitors. In 2022
IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE) (pp. 414-422). IEEE.

[7] Bishop, C. M. (2006). Pattern recognition. Machine learning, 128(9).
[8] Arik, S. Ö., & Pfister, T. (2021, May). Tabnet: Attentive interpretable

tabular learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35 (8), pp. 6679-6687.

[9] Meeker, W. Q., et. al. (2017). Statistical intervals: a guide for
practitioners and researchers (Vol. 541). John Wiley & Sons.

[10] Krzanowski, W. J., et. Al. (2006). Confidence in classification a
bayesian approach. Journal of Classification, 23(2), 199-220.

[11] Hendrycks, D., & Gimpel, K. (2016, November). A Baseline for
Detecting Misclassified and Out-of-Distribution Examples in Neural
Networks. In International Conference on Learning Representations.

[12] Lakshminarayanan, et. Al. Safety and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pp 6405–6416, 2017.

[13] Jiang, H., Kim, B., Guan, M., & Gupta, M. (2018). To trust or not to
trust a classifier. Adv. in neural information processing systems, 31.

[14] Bilgin, Z., & Gunestas, M. (2021). Explaining Inaccurate Predictions
of Models through k-Nearest Neighbors. In ICAART (pp. 228-236).

[15] Hein, M., Andriushchenko, M., & Bitterwolf, J. (2019). Why relu
networks yield high-confidence predictions far away from the training
data and how to mitigate the problem. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 41-50).

[16] Lever, J. (2016). Classification evaluation: It is important to understand
both what a classification metric expresses and what it hides. Nature
methods, 13(8), 603-605.

[17] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining (pp. 785-794).

[18] Zoppi, T., Ceccarelli, A., & Bondavalli, A. (2023). Ensembling
Uncertainty Measures to Improve Safety of Black-Box Classifiers. In
proceedings at the 26th European Conference on Artificial Intelligence
(October, 2023).

[19] Biondi, A., et. al. (2019). A safe, secure, and predictable software
architecture for deep learning in safety-critical systems. IEEE
Embedded Systems Letters, 12(3), 78-82.

[20] Calzavara, S., Cazzaro, L., Lucchese, C., Marcuzzi, F., & Orlando, S.
(2022). Beyond robustness: Resilience verification of tree-based
classifiers. Computers & Security, 121, 102843.

[21] Su, J., Zhang, Z., Wu, P., Li, X., & Zhang, J. (2022, October).
Adversarial input detection based on critical transformation robustness.
In 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE) (pp. 390-401). IEEE.

[22] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3), 1-58.

[23] Ma, M., Zhang, S., Pei, D., Huang, X., & Dai, H. (2018, October).
Robust and rapid adaption for concept drift in software system anomaly
detection. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE) (pp. 13-24). IEEE.

12

[24] Lee, K., Lee, K., Lee, H., & Shin, J. (2018). A simple unified
framework for detecting out-of-distribution samples and adversarial
attacks. Advances in neural information processing systems, 31.

[25] Sommer, R., & Paxson, V. (2010, May). Outside the closed world: On
using machine learning for network intrusion detection. In 2010 IEEE
symposium on security and privacy (pp. 305-316). IEEE.

[26] Zhou, Y. (2022). Rethinking reconstruction autoencoder-based out-of-
distribution detection. In Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 7379-7387).

[27] Biggio, B., Nelson, B., & Laskov, P. (2012). Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389.

[28] Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2017).
Adversarial patch. arXiv preprint arXiv:1712.09665.

[29] Carlini, N., & Wagner, D. (2017, May). Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on security and
privacy (sp) (pp. 39-57). Ieee.

[30] Mirza, M. J., Buerkle, C., Jarquin, J., Opitz, M., Oboril, F., Scholl, K.
U., & Bischof, H. (2021, September). Robustness of object detectors
in degrading weather conditions. In 2021 International Intelligent
Transportation Systems Conference (ITSC) (pp. 2719-2724). IEEE.

[31] Koh, P. W., et. al. (2021, July). Wilds: A benchmark of in-the-wild
distribution shifts. In International Conference on Machine Learning
(pp. 5637-5664). PMLR.

[32] Lopez, I., et. al. (2016, August). Exploiting redundancy and path
diversity for railway signalling resiliency. In IEEE Int. conference on
intelligent rail transportation (ICIRT) (pp. 432-439). IEEE.

[33] Carmichael, C. (2001). Triple module redundancy design techniques
for Virtex FPGAs. Xilinx Application Note XAPP197, 1.

[34] Keller, C. G., et. al. (2011). Active pedestrian safety by automatic
braking and evasive steering. IEEE Transactions on Intelligent
Transportation Systems, 12(4), 1292-1304

[35] Ami, A. S., et. al. (2023, October). "False negative-that one is going to
kill you."-Understanding Industry Perspectives of Static Analysis
based Security Testing. In 2024 IEEE Symposium on Security and
Privacy (SP) (pp. 19-19). IEEE Computer Society.

[36] Ceccarelli, A., & Secci, F. (2022). RGB cameras failures and their
effects in autonomous driving applications. IEEE Transactions on
Dependable and Secure Computing.

[37] McAllister, D. F., & Vouk, M. A. (1996). Fault-tolerant software
reliability engineering. Handbook of Software Reliability Engineering,
567-614.

[38] Randell, B., & Xu, J. (1995). The evolution of the recovery block
concept. Software fault tolerance, 3, 1-22.

[39] Ferri, C., Flach, P., & Hernández-Orallo, J. (2004, July). Delegating
classifiers. In Proceedings of the twenty-first international conference
on Machine learning (p. 37).

[40] Di Giandomenico, F., & Strigini, L. (1990, October). Adjudicators for
diverse-redundant components. Proc. 9th Symposium on Reliable
Distributed Systems (pp. 114-123). IEEE

[41] Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2),
241-259.

[42] Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is
not all you need. Information Fusion, 81, 84-90.

[43] Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-
based models still outperform deep learning on tabular data? arXiv
preprint arXiv:2207.08815.

[44] Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N.
(2022). Ensemble deep learning: A review. Engineering Applications
of Artificial Intelligence, 115, 105151.

[45] Sarıkaya, A., Kılıç, B. G., & Demirci, M. (2023). RAIDS: Robust
Autoencoder-Based Intrusion Detection System Model Against
Adversarial Attacks. Computers & Security, 103483.

[46] Mathias, M., et. al. (2013, August). Traffic sign recognition—How far
are we from the solution?. In The 2013 international joint conference
on Neural networks (IJCNN) (pp. 1-8). IEEE.

[47] Miremadi, S. G., et. al. (1992, July). Two Software Techniques for On-
line Error Detection. In FTCS (pp. 328-335).

[48] David, I., Ginosar, R., & Yoeli, M. (1995). Self-timed is self-checking.
Journal of Electronic Testing, 6, 219-228.

[49] Ocheretny, V. (2010, July). Self-checking arithmetic logic unit with
duplicated outputs. In 2010 IEEE 16th International On-Line Testing
Symposium (pp. 202-203). IEEE.

[50] Psarakis, M., Gizopoulos, D., Sanchez, E., & Reorda, M. S. (2010).
Microprocessor software-based self-testing. IEEE Design & Test of
Computers, 27(3), 4-19.

[51] Brau, F., Rossolini, G., Biondi, A., & Buttazzo, G. (2023, June).
Robust-by-design classification via unitary-gradient neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence (Vol.
37, No. 12, pp. 14729-14737).

[52] Gharib, M., et. al. (2022). On the properness of incorporating binary
classification machine learning algorithms into safety-critical systems.
IEEE Transactions on Emerging Topics in Computing, 10(4), 1671-
1686.

[53] Powell, D., Chérèque, M., & Drackley, D. (1991). Fault-tolerance in
Delta-4. ACM SIGOPS Operating Systems Review, 25(2), 122-125.

[54] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data
augmentation for deep learning. Journal of big data, 6(1), 1-48.

[55] “National Flowers.” Accessed: Mar. 26, 2024. [Online]. Available:
https://www.kaggle.com/datasets/shahidulugvcse/national-flowers

[56] “Fruits-360.” Accessed: Mar. 26, 2024. [Online]. Available:
https://www.kaggle.com/datasets/moltean/fruits

[57] “STL-10 dataset.” Accessed: Mar. 26, 2024. [Online]. Available:
https://cs.stanford.edu/~acoates/stl10/

[58] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie, “Generating
realistic intrusion detection system dataset based on fuzzy qualitative
modeling,” Journal of Network and Computer Applications, vol. 87,
pp. 185–192, Jun. 2017.

[59] N. Davari, B. Veloso, R. P. Ribeiro, P. M. Pereira, and J. Gama,
“Predictive maintenance based on anomaly detection using deep
learning for air production unit in the railway industry,” in 2021 IEEE
8th International Conference on Data Science and Advanced Analytics
(DSAA), IEEE, Oct. 2021, pp. 1–10.

[60] Zoppi, T., Merlino, G., Ceccarelli, A., Puliafito, A., & Bondavalli, A.
(2023, October). Anomaly Detectors for Self-Aware Edge and IoT
Devices. In 2023 IEEE 23rd International Conference on Software
Quality, Reliability, and Security (QRS) (pp. 24-35). IEEE.

[61] ‘ciperlab-813E’, Accessed: May, 03, 2024. [Online]. Available:
https://anonymous.4open.science/r/BetterSafeThanSorry-
190C/README.md

[62] Scikit-Learn Python Library – Classifiers Accessed: Apr. 30, 2024.
[Online] https://scikit-learn.org/stable/supervised_learning.html

[63] Zhang, X. Y., Xie, G. S., Li, X., Mei, T., & Liu, C. L. (2023). A survey
on learning to reject. Proceedings of the IEEE, 111(2), 185-215.

[64] Alawad, H., Kaewunruen, S., & An, M. (2019). Learning from
accidents: Machine learning for safety at railway stations. IEEE
Access, 8, 633-648

[65] Baye, G., Silva, P., Broggi, A., Fiondella, L., Bastian, N. D., & Kul, G.
(2023, May). Performance analysis of deep-learning based open set
recognition algorithms for network intrusion detection systems. In
NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium (pp. 1-6). IEEE.

[66] Zoppi, T., Gazzini, S., & Ceccarelli, A. (2024). Anomaly-Based Error
and Intrusion Detection in Tabular Data: No DNN Outperforms Tree-
based Classifiers. Future Generation Computer Systems.

https://cs.stanford.edu/%7Eacoates/stl10/
https://anonymous.4open.science/r/BetterSafeThanSorry-190C/README.md
https://anonymous.4open.science/r/BetterSafeThanSorry-190C/README.md
https://scikit-learn.org/stable/supervised_learning.html

	I. Introduction
	II. Background on ML Classifiers
	A. Classification of Structured and Unstructured Data
	B. Confidence of Classifiers
	C. Towards Trustworthy Classifiers
	1) Out-of-Distribution Data and Outliers
	2) Adversarial Attacks
	3) Distribution Shifts, Emerging and Unexpected Events

	III. Fail-Controlled Classifiers: an Opportunity?
	A. The Rationale and Applicable Domains
	B. Suspecting Misclassifications
	C. Motivation

	IV. Software Architectures for FCCs
	A. Self-Checking Classifier SCC
	B. Watchdog Timer WT
	C. Input Processing IP
	D. Output Processing OP
	E. Safety Wrapper SW
	F. Discussion

	V. Experimental Evaluation
	A. Experimental Methodology, Setup and Code
	B. Selection of FCCs and Parameters
	C. Datasets
	1) Tabular Datasets
	2) Image Datasets
	3) Generation of Out-Of-Distribution Data

	D. Classifiers and Input Checkers
	E. Results: Tabular Data Classification
	F. Results: Image Classification
	G. Takeovers
	H. Threats to Validity and Reprobucibility

	VI. What about Availability?
	A. Recovery Blocks
	B. N-version Programmung
	C. Other Notable Approaches

	VII. Conclusions, Viewpoints and Future Works
	Acknowledgments
	References

