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Abstract — Domain experts are desperately looking to solve 
decision-making problems by designing and training Machine 
Learning algorithms that can perform classification with the 
highest possible accuracy. No matter how hard they try, 
classifiers will always be prone to misclassifications due to a 
variety of reasons that make the decision boundary unclear. 
This complicates the integration of classifiers into critical 
systems, where misclassifications could directly impact people, 
infrastructures, or the environment. The paper proposes to 
consider a classifier as a structural part of the system instead of 
an individual component to be tested in isolation and included 
in the system afterward. This allows for omitting those 
predictions that are suspected to be misclassifications, 
triggering system-level mitigation strategies. The resulting fail-
controlled classifiers (FCCs) are software components that can 
correctly classify, misclassify, or omit outputs: ideally, they 
would omit all and only outputs that correspond to 
misclassifications. After presenting the theoretical foundations 
of FCCs, the paper proposes metrics to quantify their 
performance, 5 software architectures for FCCs, and an 
experimental analysis involving tabular data and image 
classifiers. Overall, this paper advocates the need for a system 
and software design in which ML classifiers are not separate 
components, but should rather be considered building blocks 
that interact with other components for improved performance. 

Keywords - fail safe, software architectures, classifiers, 
confidence, prediction rejection, critical systems 

I. INTRODUCTION 
“If you can't say something nice, don’t say nothing at all” 

tells Thumper the rabbit to Bambi in the famous, 80-years-old 
Disney cartoon. This small rabbit teaches us an important 
lesson. There are cases in which omitting an answer that you 
are not confident about may be more beneficial than trying the 
“most likely” answer. This is true also when answering 
questions in tests, where a correct answer provides you a 
positive score, but a wrong answer may provide a non-neutral, 
negative score. Obviously, the rate of omissions has to be 
reasonably low: a decision-making entity that always omits 
outputs will never be wrong but will also never be useful for 
any purpose. These two aspects have to be carefully balanced, 
aiming at an ideal trade-off that omits all and only wrong 
answers. This is substantially different from crafting decision-
making entities that are always correct, which is usually an 
unrealistic expectation. 

Within the Information and Communication Technology 
(ICT) domain, many software components act as decision-
makers, with the desideratum of being correct. In critical 
systems engineering, a typical approach to guarantee safety 

[5] is to equip a functional component with another 
component that aims at triggering a fail-controlled, fail-safe, 
or fail-stop behaviour whenever the correct functioning is not 
guaranteed [1], [6], [41], [60]. System-wise, a critical function 
would either i) deliver a correct result or ii) omit those results 
that would have been incorrect i.e., the function should have 
fail-omission failures only. Omissions should be handled by 
the encompassing system, e.g., exercising diagnostic routines, 
protecting key assets, and implementing automatized 
commands [36], [37]. This is a solid approach in systems 
engineering, which allows for the integration of Commercial 
Off-The-Shelf (COTS) components or non-trustable 
components in general into critical systems e.g., railway, 
avionics, autonomous driving, provided that individual 
components are orchestrated to achieve the desired non-
functional properties at system-level.  

Nowadays, the real challenge system architects are dealing 
with is integrating Machine Learning (ML)-based 
components that perform classification (referred to as 
“classifiers” in the paper) into critical systems such that their 
wrong predictions do not trigger catastrophic failures. 
Classifiers can effectively serve a wide variety of purposes: in 
critical systems, they are usually used for detecting deviations 
that may be due to the occurrence of faults or attacks, and 
perform error detection, intrusion detection, or failure 
prediction [6], [8], [20], [24], [50]. Moreover, classifiers can 
perform high-quality classification of images, which is of 
paramount importance for obstacle detection [32], [36] and 
traffic sign recognition [51] for autonomous driving, or to 
equip webcams (edge computing) and related components 
(cloud/fog computing, and other standalone or centralized 
architectures) with image quality checks, accurate access 
control, or even classifying diseases in the medical domain 
[39]. In the last decade, academia, industry, and also National 
governments hugely invested in methodologies, mechanisms, 
and tools to embed classifiers into ICT systems, especially 
critical ones. Regardless of how much effort we put into 
building classifiers that are more and more accurate, they 
could still end up predicting a wrong class for a given input 
data point, i.e., a misclassification. 

That’s where the paper advocates for a paradigm change, 
leaning towards system thinking rather than component 
engineering. We should consider the classifier as a component 
to be deployed into a system rather than chasing the holy grail 
of perfect accuracy. This provides more flexibility as it does 
not require the classifier to be infallible “in isolation”, but 
allows for multi-component or system-level mechanisms or 
protocols to handle uncertain predictions that are suspected to 
be misclassifications. For example, in autonomous vehicles, a 
classifier detecting road signs doesn't need to be 100% 
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accurate; if uncertainty arises, the system can trigger 
additional verification methods such as querying GPS data or 
alerting the driver to take control. This flexibility reduces 
reliance on perfect predictions and enables multi-component 
systems to manage misclassifications. When there is not 
enough confidence in the prediction, we shift the 
responsibility from the classifier - which would have output 
its “best guess” - to the encompassing system, which runs 
more appropriate diagnostic or mitigation routines. The aim is 
not to reduce the amount of misclassifications of the classifier: 
instead, we aim at suspecting and omitting most (if not all) of 
them and trigger alternative strategies instead. 
Straightforwardly, finding a solid way to suspect 
misclassifications is of paramount importance for designing 
what we call a Fail-Controlled Classifier (FCC).  

After detailing the related works, we dive into FCCs, 
motivating their importance, formalizing their basic 
mathematical notions and the concept of confidence or 
uncertainty in predictions of classifiers. Then, we present and 
discuss Self-Checking Classifiers (SCC), Watchdog Timers 
(WT), Input Processor (IP), Output processor (OP), Safety 
Wrapper (SW) software architectures to build Fail-Controlled 
Classifiers (FCCs), discussing possible variants due to 
implementation and design choices. Further, we conduct a 
preliminary experimental analysis in which we apply FCCs to 
tabular data and image classification, comparing their 
performance with those of traditional classifiers, discussing 
differences and highlighting the main takeovers. As a last 
contribution of the paper, we discuss how more complex 
safety and reliability engineering paradigms as recovery 
blocks, N-Version Programming, voting [41], [42], [44], 
could be used for building FCCs that potentially have both low 
misclassifications and low probability of omissions. 

The rest of the paper is structured as follows: Section II 
reports background on ML classifiers, while Section III 
introduces the theoretical foundations of FCCs, whose 
software architectures are presented in Section IV. Section V 
presents our preliminary experimental analysis, letting 
Section VI discuss other potential approaches for FCCs. 
Section VIII concludes the paper. 

II. BACKGROUND ON ML CLASSIFIERS 

A. Classification of Structured and Unstructured Data 
Decades of research and practice on ML provided us with 

plenty of classifiers that are meant to always output a 
prediction. Supervised classifiers [18] and particularly those 
based on Deep Neural Networks (DNNs) were proven to 
achieve excellent classification performance in many 
domains. Additionally, the last couple of years provided 
evidence that some classifiers are more suitable to process 
structured rather than unstructured input data. This is 
especially the case of tabular data, for which it is beneficial to 
use tree-boosting ensembles [46], [48], [75], despite 
alternatives based on DNNs exists [8]. Conversely, image 
classification employs DNNs, which can learn strong features 
from pixel maps [7], [11]. 

Regardless of their complexity and structure, a classifier 
clf first devises a mathematical model from a training dataset 

[7], which contains a given amount of data points. Each data 
point dp contains a set of f feature values and describes a 
specific input of the classification problem. Once the model is 
learned, it can be used to predict the label of a new data point, 
different from those in the training dataset. The classification 
performance is usually computed by applying clf to data 
points in a test dataset and computing metrics such as 
accuracy [17], i.e., the percentage of correct predictions of a 
classifier clf over all predictions. Noticeably, 1 – accuracy 
quantifies the misclassification probability by difference. 

B. Confidence of Classifiers 
Trusting each prediction of a classifier, to the extent that 

the prediction can be propagated toward the encompassing 
system and safely used in a critical task, is very challenging 
[13]. Researchers and practitioners are actively investigating 
ways to quantify uncertainty and learning to reject [71] 
misclassifications. Some approaches use confidence intervals 
[9] or the Bayes theorem [10]. Works as [12] estimate 
uncertainty by using ensembles of neural networks: scores 
from the ensembles are combined in a unified measure that 
describes the agreement of predictions and quantifies 
uncertainty. In [11], authors processed softmax (i.e., a 
probability distribution over all possible classes obtained from 
raw outputs of the ML algorithm) probabilities of neural 
networks to identify misclassified data points. A new proposal 
came from [13] and [14], where authors paired a k-Nearest 
Neighbor classifier with a neural network to compute 
uncertainty. The work [34] computed the cross-entropy on the 
softmax probabilities of a neural network and used it to detect 
out-of-distribution input data that is likely to be misclassified. 

Ideally, we want classifiers to be highly confident about 
predictions that turn out to be correct, and show low 
confidence for all and only the predictions that will instead be 
misclassifications. However, classifiers may have high 
confidence even when misclassifying data points e.g., “neural 
networks which yield a piecewise linear classifier function 
[…] produce almost always high confidence predictions far 
away from the training data” [15]. 

C. Towards Trustworthy Classifiers 
Tackling very complex problems naturally exposes 

classifiers to a high probability of misclassifications, which 
can be reduced but not avoided at all. The sup-optimal choice 
of a suitable ML algorithm(s), the poor availability or quality 
of training data, and biased pre-processing and analyses may 
all constitute additional causes of misclassifications that 
instead should be avoided. On top of that, there may be other 
problems due to the operational environment in which the 
classifier is expected to operate [74], once deployed in a real-
world or simulated scenario. 

1) Out-of-Distribution Data and Outliers  
Systems and software components may encounter 

anomalous inputs or operating conditions [24], [11], [26], [74] 
even with semi-static systems and in the absence of security 
threats that may be intentionally willing to damage our 
system. For tabular data, these are known as point or 
contextual anomalies (global or local outliers), whereas for 
recent image-based applications, those events are usually 
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referred to as out-of-distribution (OOD) data. Overall, those 
inputs do not belong to the distribution of training data: thus, 
the behaviour of the classifier may become unpredictable [11] 
and prone to misclassifications. Conversely, what makes 
OOD data and outliers tricky to classify also makes them 
detectable, provided that we can precisely characterize the 
“in-distribution” data [11], [26], [28].  

2) Adversarial Attacks 
Second, classifiers may operate in situations in which 

malicious entities may be willing to actively disturb the 
behaviour of classifiers, triggering misclassifications with 
targeted attacks. For image classification, this is the case of 
adversarial attacks, whose popularity saw an outstanding 
growth in the last decade after the first findings on data 
poisoning [29], adversarial patches [30], and gradient-based 
attacks [31]. As it happens with security-related issues, the 
likelihood of occurrence of adversarial attacks is a compound 
quantity that depends on the attacker’s intent, the attack 
surface of the system, the knowledge of the attacker (i.e., 
white-box or black-box attacks) and many other attributes. 
Conversely to OOD and anomaly detection, ways to deal with 
adversarial attacks are still being actively researched as the 
topic is rather new. Many solutions already exist [23], [26], 
but nothing that can be considered proven-in-use yet.   

3) Distribution Shifts, Emerging and Unexpected Events 
Third, Machine Learning often works under the 

Independent and Identically Distributed (IID) or “closed 
world” assumption [27]. In a closed world, train, validation 
and test data are independently and randomly sampled from 
the same underlying distribution. However, most (if not all) 
the operational environments are dynamic, evolving, or 
complex enough to make this assumption very restrictive and 
valid only in a very small subset of static standalone systems. 
As a result, research moved to deploying classifiers that go 
beyond this assumption and are meant to operate in an open-
world [27] where test data may be distributed (slightly) 
differently from training and validation data. These classifiers 
have to be robust to environmental changes, distribution 
shifts, emerging and unexpected behaviours, and even 
changes in the threat landscape [25], [32]. 

III. FAIL-CONTROLLED CLASSIFIERS: AN OPPORTUNITY? 
The desideratum is a classifier that has excellent 

classification performance when dealing with in-distribution 
data, but that is also pretty robust to the above events [33].  

A. The Rationale and Applicable Domains 
These characteristics are quite difficult to achieve, and 

typically make classifiers “bet” on a prediction they are unsure 
of. This best-effort behaviour does not pair well with critical 
systems, which require guarantees of correct component and 
system-level behaviour. Practically speaking, the probability 
of failure on demand of a critical component or system should 
be proven to be lower than specific thresholds. 

It would be beneficial to change the failure semantics of 
classifiers from uncontrolled content failures (i.e., 
misclassifications) to omission failures. Ideally, we want to 
omit all and only erroneous predictions: on the downside, the 
availability of said component may be negatively affected 

when correct predictions are omitted in the process. Ways to 
build fail-controlled components [5] are well-known in the 
literature and often rely on safety wrappers or monitors [1], 
[6]. Safety wrappers are intended to complement an existing 
critical component or task by continuously checking 
invariants, or processing additional data to detect dangerous 
behaviors and block the erroneous output of the component 
before it is propagated through the system. Finding trade-offs 
between safety and availability is of utmost importance when 
dealing with critical systems [60]: this approach is not 
different.  

Fail-Controlled Classifiers (FCCs) should perform 
runtime monitoring for suspecting misclassifications of the 
classifier itself, building on top of studies as [2], [3], [4]. 
Authors of [2] use probabilistic neural networks to model 
predictive distributions and, as a result, quantify predictive 
uncertainty using methods such as adversarial training. In [3], 
authors use distance measurements of the Empirical 
Cumulative Distribution Function as a trigger for the failure 
detector to actively track the behavior and operational context 
of the data-driven system. The study [4] suggests a simple 
monitoring architecture to improve the model’s robustness to 
different harmful inputs, particularly those resulting from 
adversarial attacks on neural networks. Finally, authors of [20] 
combine a voting strategy with a safety monitor to build a safe 
and secure classifier for application in embedded systems. 

Regardless of how it is implemented, a fail-controlled 
classifier FCC(clf) transforms a classifier clf which has 0  ≤ α  
≤ 1 accuracy and a misclassification probability ε, 0 ≤ ε = (1 – 
α) ≤ 1, into a component that has: 
• accuracy αw ≤ α; 
• omission probability 0  ≤ φ ≤ 1. The FCC(clf) may omit 

misclassifications (φm, desirable and to be maximized), 
or correct predictions (φc, unnecessary omissions to be 
minimized). Overall, φ = φm + φc, and αw + φc = α;  

• residual misclassification probability εw, 0 < εw ≤ ε ≤ 1; 
overall, φm + εw  = ε. 

All those probabilities are sketched in Table 1. Ideally, 
FCC(clf) has almost the same accuracy as clf (i.e., αw ≈ α, or 
φc ≈ 0), a substantially lower residual misclassification 
probability, 0 ≈ εw << ε, and an omission probability close to 
ε, thus φ ≈ ε. The following compound metrics may be 
calculated for a complete understanding of performance: 
• φm ratio = φm / φ, the ratio of omitted misclassifications 

over all omissions of the FCC(clf), to be maximised; 
• ε drop = (ε - εw) / ε = φm / ε, which is the drop in 

misclassifications due to FCC, to be maximized. 
A FCC(clf) will never have better accuracy than clf (i.e., 

αw ≤ α), as it does not aim at improving correct classifications. 

Table 1: αw, εw, φc, φm and compound probabilities. 
clf behavior → Correct 

Prediction 
Mis-

classification Sum 
FCC(clf) behavior ↓ 

Not omitted αw εw 1 – φ 
Omitted φc φm φ 

Sum α ε 1 
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It aims at transforming most of the erratic misclassifications, 
which are difficult to manage, into omissions i.e., have a high 
ε drop. Whereas at component-level this may seem a 
negligible improvement, at the system level it provides a way 
to prevent a misclassified prediction from propagating 
through the system, potentially causing (catastrophic) failures.  

B. Suspecting Misclassifications 
Ways to suspect misclassifications of classifiers, and thus 

trigger omissions, can be partitioned in two groups: black-box 
and white-box approaches. 

Black-box approaches do not assume any knowledge 
about the classifier, thus observe its inputs and outputs without 
any access to internals. They allow for building statistical 
machinery that conveys input pre-processing [9], output 
analysis [11] and even ensembles of them [19] for complex 
and quite effective techniques for suspecting 
misclassifications. They mostly check if inputs and outputs 
belong to specific statistical distributions, and deem the 
prediction as non-trustable otherwise. Other approaches aim 
at identifying unstable regions of the input space in which the 
classifier may be likely to output misclassifications [57], [59], 
or use external classifiers (e.g., nearest neighbours [13]) to 
validate the output of the target classifier. 

When insights of the classifiers are at least partially 
disclosed, it is possible to apply white-box approaches. Those 
take advantage of specific features of the algorithm or the 
resulting model and use them to suspect misclassifications. 
For neural networks, a common approach is to check the 
activation patterns of neurons [4], [11] – which vary from a 
DNN model to another. Classifiers that orchestrate ensembles 
may use the degree of agreement or the diversity of 
predictions of the classifiers in the ensemble [2], [34] as a way 
to estimate the confidence in a given prediction: the looser the 
agreement, the more likely the misclassification. Tree-based 
classifiers have their own unique features that may be 
exploited for building custom trust measures [21]. Last but not 
least, knowing the structure of the classifier allows for a more 
careful interpretation of the computed confidence score, with 
the potential of limiting the problem of high-confidence, 
erroneous, predictions [15]. 

C. Motivation 
The encompassing system should know how to promptly 

act to guarantee that the system will not be negatively affected 
in case of omission of the output of the FCC (or notification 
of suspicious prediction). Intuitively, automatic or semi-
automatic reaction and mitigation strategies are both domain-
specific and system-specific. There are multiple examples in 
which omitting potentially wrong predictions has clear 
benefits in the behaviour of software or a system, even at the 
cost of rejecting a non-negligible amount of correct 
predictions.  

FCCs could find wide application in the control system of 
semi-autonomous vehicles. Tasks as semaphore or traffic sign 
recognition should avoid misclassifications of red/green 
semaphores or confusing a traffic sign with another, but can 
typically afford to occasionally reject uncertain predictions, 
provided that the correct recognition happens early enough for 

mitigations as emergency braking or evasive steering [36] to 
take place. Other tasks as obstacle or pedestrian detectors may 
still prefer an omission over a misclassification, with 
omissions that are likely triggering emergency braking to 
avoid hitting a potentially unseen pedestrian [37].  

Traditional railway systems have cyclic interactions with 
sensors, actuators, and communication channels, where 
information is supposed to be continuously shared (i.e., 
request of data, or “I am alive” pings). When no information 
is exchanged across many subsequent cycles, the component 
is deemed as malfunctioning [34]. This does not pair well with 
classifiers, which do not account for “omissions”, limiting 
their usage despite the many possible applications e.g., 
automatic visual inspection, rail maintenance management 
[73]. Differently, FCCs pair extremely well with this 
paradigm as they can minimize misclassifications, knowing 
that subsequent omissions will likely trigger safe states where 
the component will be stopped.  

Stopping is not an option in aerospace systems: therefore, 
the omission of a prediction cannot trigger routines that 
completely stop or shutdown equipment, but that instead aim 
at handling or tolerating this potentially adverse situation [35]. 

IV. SOFTWARE ARCHITECTURES FOR FCCS   
This section reviews and adapts existing architectures for 

critical systems engineering that focus on pre-processing 
/input validation (IP), post-processing /output validation (OP), 
component monitoring (WT, SW), or use built-in 
functionalities (SCC), for crafting FCCs in Figure 1. The 
numbering of sections matches the alphabetic numbering of 
subfigures of Figure 1, e.g., Section IV.A details what it is 
shown in Figure 1a. 

A. Self-Checking Classifier SCC 
Self-checking or self-testing hardware or software 

components embed built-in and custom strategies to check for 
the quality of their execution. This approach is required by 
many standards for deploying transportation systems and 
usually involves crafting hardware with redundancy and 
seeking for an agreement of the outputs of the replicas [55], or 
employing testing libraries that are periodically exercised on 
both hardware and software equipment [56]. Whenever one of 
these checks fail, the target component was deemed as failed 
and in need to be replaced or fixed. Whereas replicas refer to 
multiple redundant systems or components that perform the 
same task independently. The system compares the outputs of 
these replicas, and if they agree, the result is considered 
reliable. If there is a disagreement, further checks or fail-safe 
mechanisms are triggered to ensure safety. 

For classifiers, this approach translates into looking for 
measures, indexes or other variables that may be generated 
during the inference process and that provide a quantitative 
confidence or trust score to assign to each prediction. In case 
the classifier computes a score and then applies a threshold to 
decide on the class probabilities, the distance of such score 
from the decision boundary can be used as a confidence 
measure: the closer to the decision boundary, the less 
confident the prediction. Applications of this way of 
computing confidence can be found for unsupervised (binary) 
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classifiers, DNNs, and also for improving classification of 
noisy data [57], but are not available by default in standard 
libraries used for supervised learning e.g., Python’s scikit-
learn, PyTorch, Keras. 

B. Watchdog Timer WT  
Watchdog timers (WTs) aim at measuring the length of the 

execution of a target function to understand if the elapsed time 
conforms with expectations [53]. In case the function 
completes too early, the watchdog timer generates an alert that 
we can use to trigger omissions. If the function completes too 
late, it indirectly delivers an omission as well. 

The reader may see this as a trivial check; however, it has 
been and currently is being used in many embedded or cyber-
physical systems as a runtime check of the state of IT 
machinery. Decades ago, watchdog timers were meant to 
check electronic or mechanical-related functions [54], but 
transitioned to check the execution of software [53] and thus 
constitute an additional way to build FCCs. The clear 
advantage is that they add negligible overhead and work with 
any black-box classifier. On the negative side, they will be 
able to spot only a limited subset of issues  (e.g., several 
anomalous activation pattern of neurons in DNNs, long paths 
in decision trees that may be due to an overfitted model, 
problems due to underlying hardware, operating system or 
virtualized middleware, or slow-downs due to malicious or 
malfunctioning software acting in the host system), resulting 
in a low omission probability but high residual 
misclassifications. Importantly, tuning timers is a system-
specific process: a WT may work well with a specific 
hardware, but requiring re-tuning when the same hardware 
gets updated i.e., the notion of normal prediction time varies. 

C. Input Processing IP 
This FCC performs a pre-processing to seek for anomalies, 

suspicious values, low quality of such input, and the like. The 
pre-processing is implemented by an input checker, which 
could exercise adversarial attack detectors [26], out-of-
distribution detectors [28], image corruption detectors [39], 
statistical distributions [9], or unknown data detectors in 
general [24]. Detecting one of the cases above could trigger 
an omission of the output of the FCC, without exercising the 
classifier at all. Should these events be quite frequent, the IP 
will show a fairly high amount of omissions. Importantly, 
some classifiers are “robust enough” to successfully deal with 
minor issues in the input data: in this situation, the FCC would 
want to omit the output only when the issue or corruption will 
not be tolerated by the robust classifier, reducing omissions. 
Some strategies pre-process the input to seek for issues but 
also provide a “cleared up” version of the same input at the 
end of the process. This is especially common for image 
classifiers, where autoencoders are often used to remove 
background noise, small alterations or minor damage to the 
image [50]. The reconstruction error is used as a symptom of 
corruptions, but the process also generates the “clean” image 
that can therefore be fed to the classifier instead of the initial, 
potentially noisy, image. In this case, even a “non-robust” 
classifier may still be able to correctly classify the “clean” 
image. 

D. Output Processing OP 
This is the simplest FCC out of the ones that we present in 

this paper, as this directly acts on the output probabilities of a 
prediction [11], computing the entropy of the probabilities, or 
use the absolute value of the highest probability as indicators 

 
 

x) A simple (reference) classifier, that provides correct or incorrect 
output against input. 

 
a) Self-Checking Classifier (SCC), which already has built-in and 

non-trivial methods for calculating trust in a prediction. 

 
b) Watchdog Timer (WT), which measures inference time seeking 

for abnormal (too long or too short) executions. 

 
c) Input Processor (IP), which checks for integrity issues, anomalies 

or legitimacy of inputs. 

 
d) Output Processor (OP), which checks if the output of the 

classifier clf should be trusted or discarded. 

 
e) Safety Wrapper (SW), which processes inputs, outputs and (if 
white box) the internals of clf to compute confidence and use it to 

decide on trustworthiness. 
Figure 1. Software Architectures for FCCs with accuracy αw, misclassification probability εw, and omission probability φ. 
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of trust in the prediction. Entropy, in this case, quantifies the 
uncertainty inherent in the prediction, with lower entropy 
indicating a more confident prediction where one class 
probability dominates, and higher entropy suggesting greater 
uncertainty due to more evenly distributed probabilities across 
multiple classes. In case the entropy is too high or the highest 
probability is below a given threshold, the prediction would 
be rejected, triggering an omission.    

E. Safety Wrapper SW  
IP and OP FCCs act before or after the classifier. 

However, we may think of a monitor or wrapper [6] that acts 
before, during and after inference. This is the case of the SW, 
which builds an envelope around the classifier to extract the 
most information to quantify the uncertainty of a prediction.  

SW FCCs are partitioned into two big groups depending 
on their knowledge of the classifier. If the internals of the 
classifier are not disclosed (i.e., the classifier is a black-box), 
the SW can only act on interfaces and can eventually use the 
classifier for additional predictions. Implementations of 
black-box SW may rely on Bayesian approaches [10], 
ensembles of confidence measures [19], relative positioning 
of input data with respect to the prediction [13] or run other 
classifiers (e.g., kNN [14], probabilistic DNNs [12]) and 
check for agreement with the main classifier. 

Conversely, when internals of the classifiers are fully 
available, it is possible to craft very specific mechanisms that 
are going to be run in parallel with the classifier (thus speeding 
up the execution) and that seek for very specific information 
throughout the inference process. The activation patters of 
neurons in a DNN or the length of a path in a decision tree can 
provide information on the whole prediction process and thus 
on its uncertainty [4].     

F. Discussion 
SCC, WT, IP, OP, and SW FCCs all have their limitations 

and advantages. Ideally, we want low omission probability φ, 
low residual misclassifications εw with low overhead. Since 
none of the solutions above (and none at all, according to the 
knowledge of authors) guarantees these properties by design, 
the software architect or engineer will need to choose the 
approach that brings the most convenient trade-off depending 
on the specific use case. A full white-box knowledge of the 
classifier and access to its internals pave the way for classifier-
specific FCCs (i.e., safety wrappers) that can be very accurate 
and have the potential to add minimal overhead at runtime as 
they can be run in parallel while the classifier is performing 
inference. On the downside, they may require complex 
conceptualization, design, and implementation plus expensive 
sensitive analyses to fine-tune the overall mechanism. 
Another potential issue comes from the fact that a very fine-
tuned approach may be very effective in dealing with known 
events and system states but may struggle when the behaviour 
of the system changes, even slightly.  

V. EXPERIMENTAL EVALUATION 
This section describes the experimental campaign to 

quantify how the behaviour of tabular and image classifiers 
changes when FCCs are applied instead of typical classifiers 

for images (neural networks) or tabular data (ensembles of 
decision trees for the most part). 

A. Experimental Methodology, Setup and Code 
Our experiments are structured as follows. First, we 

choose a subset of FCCs to be used in our experimental 
evaluation: IP, OP, SW, see Section V.B. Then, we gather 
datasets for exercising tabular and image classifiers, spanning 
over a wide variety of classification tasks and simulating 
unknown data (Section V.C). The classifiers to be used for 
classification are described in Section V.D: once classifiers 
are defined and trained, Section V.E and Section V.F report 
results for tabular data and image classification, respectively, 
Section V.G conclude the experimental evaluation and 
highlight takeovers, and finally Section V.H highlights threats 
to validity. The performance of classifiers and FCCs is 
quantified via the metrics from Section III. Experiments have 
been performed on a server with Intel(R) Core (TM) i5-8350U 
CPU@1.7 GHz 1.9 GHz, using an NVIDIA Quadro RTX 
5000 GPU. The code for repeating experiments is available in 
the anonymous GitHub at [68]. 

B. Selection of FCCs and Parameters 
Some of the FCCs that are presented in Section IV cannot 

be instantiated in general settings. This is the case of the WT 
which, as a timer, depends on the typical inference time a 
classifier has on a specific software-hardware platform and 
with a specific workload. Results we get using this FCC may 
wildly change when repeating experiments in a different 
setup, thus we avoid it. Also, widely used ML algorithms for 
classification do not typically provide dedicated and custom 
ways for computing confidence in predictions, and cannot be 
used as SCCs.  

Consequently, we instantiate IP, OP, SW FCCs as follows 
for image and tabular classifiers: 
• Input processor (IP) uses a binary classifier to understand 

if the input belongs to the training data distribution or if 
it is unknown i.e., out of distribution or anomalous. When 
the input is predicted unknown, an omission is triggered. 
We use two input checkers for images and two input 
checkers for tabular data, as shown in Section V.D. 

• Output processor (OP), where uncertainty is quantified by 
the softmax probability associated to the predicted class. 
If the probability does not exceed a threshold pthr, the 
prediction is deemed uncertain. When pthr is arbitrarily 
defined by the user instead of being classifier-specific, it 
is possible to end up having very different omission rates 
when using different classifiers. Thus, our experiments 
use a static pthr = 0.8 threshold, but also find a dynamic 
pthr (dpthr) value corresponding to the 15th percentile of the 
distribution of output probabilities of a classifier obtained 
on the validation set. This derives a classifier-dependent 
threshold value that makes the OP omit roughly 15% of 
the predictions across all classifiers. Since the threshold 
is computed on the validation set and not on the test set, 
the likelihood of omissions may still vary a bit. 

• In our experiments, the confidence calculator of the Safety 
wrapper (SW) uses input checkers (as in IP) and 
probability checks (as in OP), omitting the prediction if 
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any of the two strategies trigger an omission. This leads 
to 4 different safety wrappers for each experiment, using 
pthr=0.8 or dpthr with any of the two input processors. 

   Overall, we will experiment with a total of 8 FCCs that can 
be created upon each classifier exercised in each dataset. 

C. Datasets  
1) Tabular Datasets 

We select three tabular datasets belonging to different 
domains in which classifiers are typically willing to be 
applied: intrusion detection (CICIDS18 [65]), error detection 
(ARANCINO [67]), and control systems (MetroPT [66]). 
These datasets contain hundreds of thousands of data points 
corresponding to the behaviour of the system under normal 
operating conditions or due to: attack (six attack classes in 
CICIDS18), the manifestation of errors (nine errors in 
ARANCINO), control system failures (air and oil leak in 
MetroPT). For these datasets, we target a binary classification 
problem, aiming at distinguishing normal operating 
conditions against anomalies due to attacks, errors, or 
component failures. Similarly to image classifiers, we use a 
50-20-30 train-validation-test split. 

2) Image Datasets 
Then, we select three image datasets: Flower (9 classes 

[62]), Fruit (24 classes [63]) and STL-10 (10 classes [64]). Out 
of the many alternatives for image classification, we favoured 
those since they are publicly available, belong to different 
domains, have a varying number of classes, and allow for fast 
experimentation times since they are composed of many small 
images (96x96 rgb at most) in the order of thousands or tens 
of thousands of images per dataset. We split each dataset using 
a 50-20-30 train-validation-test split. 

3) Generation of Out-Of-Distribution Data 
Public datasets are useful for experimentations, but may 

not generalize well to real scenarios that are prone to 
encounter unknown operating conditions, resulting in out-of-
distribution inputs, different from those used for training the 
classifier. This typically makes the likelihood of 
misclassifications skyrocket, thus it is of utmost interest to 
simulate them for the purpose of our experiments. 

We generate out-of-distribution images by applying three 
different alterations i.e. Rotation, Color Space and Gaussian 
Noise [61] to 30% of images from the test set i.e., unseen by 
the classifier in the training set. We create the Gaussian noise 
image by generating a noise map using mean 0 and st.d 25, 
and then overlapping it to images. Colour space anomalies 
result from chaining operations as Brightness 0.5, contrast 1.5, 
saturation 1.5, and Hue adjustment at scale of 20. For rotation, 
we rotate the image of 90o left. These alterations were injected 
using the OpenCV library, and the parameters above are 
amongst the ones suggested in the handbook of such library.  

The generation of out-of-distribution tabular data is not as 
straightforward as it happens with images. Fuzzing or adding 
random noise generate a new data point that may belong to the 
same distribution of the original data point, but may also fall 
into a different class. To overcome this problem, we remove 
specific classes of anomalous behaviors from the training set, 
letting them appear only in the test set, being unknown to the 

tabular classifier. For CICIDS18, SSH-Bruteforce, FTP-
BruteForce and Infiltration attacks only appear in the test set 
(see Figure 3). For ARANCINO, errors in the NodeRed, Redis 
and Arancino-manager services only appear in the test set, 
whereas in MetroPT data of the OilLeak failure is removed 
from the train set as well.   

This allows for building test sets that are composed of in-
distribution (those from the original dataset) and out-of-
distribution data, simulating the occurrence of unexpected 
operational conditions in real scenarios. The rate of out-of-
distribution data ranges from 30% of the test set in the Fruit, 
Flower, STL-10 image datasets, to 20%, 12%, 8% for 
CICIDS18, MetroPT and ARANCINO tabular datasets, 
respectively.  

D. Classifiers and Input Checkers 
Tabular data classifiers are preferably built over 

ensembles of decision trees or statistical ML algorithms [46], 
[48], [75]. Thus, the binary tabular classifiers used in this 
study are Random Forests (RF), XGBoost (XGB) and Logistic 
Regression (LR). As input checkers, we rely on two very fast 
tabular classifiers in a Decision Tree (DT) and Linear 
Discriminant Analysis (LDA). All tabular classifiers are 
exercised using their default parameters from scikit-learn, and 
xgboost Python libraries [70]. Setting up input checkers 
allows to define 8 FCCs to be used for tabular data 
classification: IP_lda and IP_dt are input processors using 
LDA and DT as input checkers, OP_08 and OP_% are output 
processors using a static threshold pthr=0.8 and using 
dpthr=15%, while SW_lda_08, SW_lda_%, SW_dt_08, 
SW_dt_% are safety wrappers that combine IPs and OPs 
above.  

For image classification, the literature acknowledges how 
neural networks are the preferred choice when dealing with 
unstructured data [32], [36] [51]. We chose AlexNet, 
ResNet50, and InceptionV3 as image classifiers given their 
wide usage in the last decade. The final models are obtained 
by transfer learning with learning rate = 0.001 and batch size 
= 16 from pre-trained DNNs using ImageNet weights stored 
in PyTorch. Input checkers for images (to be used in the IP 

 
Figure 3. Unknown tabular data: the example of CICIDS18, 
where some attack classes are removed from the training set 

occurring only in the test set, being unknown to the classifier. 

Train Set

Test Set

Normal Data

BruteForce

(D)DoS

Web Attack

Infiltration

                                
Figure 2. Unknown image generation, from left to right a) 

original, b) gaussian noise, c) color space, d) rotation. 
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FCC) could use DNNs as well, but Support Vector Machines 
(SVMs) were successfully applied as well [68]: thus, input 
checkers for image datasets are either SVMs or a ResNet50 
different from the one used for image classification. Similarly 
to tabular classifiers, we end up with the following 8 FCCs for 
image classification: IP_svm, IP_rn, OP_08, OP_%, 
SW_svm_08, SW_svm_%, SW_rn_08, SW_rn_%. 

E. Results: Tabular Data Classification  
We start commenting results of classifiers and FCCs using 

tabular datasets with the aid of Table 2, which reports the 
percentage of misclassifications ε (for clf) or εw (for FCC), 
omissions φ, ε drop  and φm ratio for different datasets and 
different classifiers. The table has 27 lines, 9 (base clf plus 8 
FCCs) for each of the three classifiers LR, RF, XGB. The 
columns for φm ratio and ε drop are painted with a gradient of 
green that gets darker the more these two metrics have optimal 
result (the higher, the better).  

Reading the table for dataset blocks (i.e., groups of 4 
columns), we can observe the following. In the CICIDS18 
dataset, the misclassifications of LR, RF, and XGB are 
respectively at 24.47 (1st row), 12.33 (10th row), and 12.32 
(19th row). Applying FCCs always lowers misclassifications, 
at a cost of a specific amount of omissions φ. For example, 
misclassifications of the RF may drop to 2.25 using the safety 
wrapper SW_dt_% (16th row of Table 2), at a cost of 24.45% 
of omissions. Roughly, we are reducing misclassification by a 
factor of 5, but 25% of the predictions of the FCC will be 
rejected, omitting the output. This is because only 41.26% (φm 
ratio) of omissions correspond to misclassifications, or the 
remaining 58.74% of omissions would have been correct 

predictions by the classifier. This is far from optimal, as it 
means that the price for lowering misclassifications may be 
too high in terms of accuracy degradation.  

Results related to the MetroPT datasets, reported in the 
columns in the middle of the table, offer a different example. 
In this case, and for all clf LR, RF, XGB, employing an IP that 
uses DT as input checker (i.e., IP_dt) allows for omitting 
almost all (high ε drop) and only (high φm ratio) prediction 
that would have been misclassifications. This is the optimal 
scenario in which the application of the FCC brings 
misclassifications of XGB from 12.57% to 0.13%, with an ε 
drop of almost 99% (see 21st row of the table, 8th to 11th 
column). In other words, the residual misclassifications are 
lowered by a factor of 100, and there are just a few omissions 
of correct predictions i.e., φm ratio is 99.37%, very close to the 
optimum 100. On the extreme right of the table, we see results 
for the ARANCINO dataset. Here, we see that FCCs can 
significantly lower the number of misclassifications, but 
typically show non-optimal performance as they either omit 
an exceedingly high amount of predictions (high φ and low φm 
ratio) in the process.  

Other important information could be obtained by reading 
the table horizontally. First, the OP using a static threshold for 
probabilities (OP_08) delivers the worst result overall: the 
threshold is either too low (thus omissions are almost non-
existent φ ≈ 0) or too high, delivering an obnoxious omission 
probability as for LR in CICIDS18, see 5th row 5th column of 
Table 2. Using an OP that has a dynamic threshold delivers a 
more balanced result as omissions are usually of a reasonable 
amount. The benefits of using IP are situational: there are 
cases in which it is game-changing as in the MetroPT dataset, 

Table 2: Results of tabular clf and FCCs across tabular datasets used in the paper. For each dataset, clf and FCC we report the 
misclassifications ε (for clf) or εw (for FCC), omissions φ, φm ratio and ε drop. All data is in percentage. 

Row 
# 

 Datasets  CICIDS18 MetroPT ARANCINO 
FCC FCC tag Clf ε εw φ ε drop φm ratio ε εw φ ε drop φm ratio ε εw φ ε drop φm ratio 

1 - - LR 24.47     15.02     13.90     
2 IP IP_lda LR  19.05 23.22 22.13 23.32  2.50 18.34 83.38 68.29  10.25 6.06 26.27 60.23 
3 IP IP_dt LR  19.09 23.19 21.97 23.18  2.56 12.53 82.93 99.39  9.10 7.99 34.51 60.01 
4 OP OP_% LR  18.80 11.32 23.16 50.08  4.41 21.01 70.66 50.52  9.64 15.82 30.63 26.91 
5 OP OP_08 LR  1.70 62.12 93.06 36.65  13.24 5.61 11.87 31.76  9.65 10.02 30.60 42.46 
6 SW SW_lda_% LR  13.40 34.48 45.21 32.08  0.13 27.77 99.16 53.62  7.61 18.27 45.26 34.44 
7 SW SW_dt_% LR  13.48 34.38 44.90 31.95  0.16 25.28 98.97 58.80  5.94 21.36 57.30 37.28 
8 SW SW_lda_08 LR  1.08 76.10 95.59 30.73  1.24 23.09 91.74 59.67  7.65 13.93 44.93 44.84 
9 SW SW_dt_08 LR  1.42 72.64 94.20 31.73  1.34 17.58 91.06 77.81  5.77 16.63 58.46 48.86 

10 - - RF 12.33     12.57     6.34     
11 IP IP_lda RF  3.47 23.22 71.88 38.19  0.20 18.34 98.38 67.44  4.55 6.06 28.23 29.53 
12 IP IP_dt RF  2.38 23.14 80.73 43.03  0.12 12.53 99.01 99.37  2.54 7.92 59.97 48.04 
13 OP OP_% RF  3.90 9.71 68.36 86.88  11.44 3.83 9.03 29.64  4.58 10.09 27.75 17.44 
14 OP OP_08 RF  12.31 0.12 0.23 24.29  12.57 0.05 0.03 7.69  5.62 2.62 11.33 27.42 
15 SW SW_lda_% RF  3.18 24.70 74.19 37.04  0.11 20.77 99.16 60.03  3.37 15.10 46.86 19.68 
16 SW SW_dt_% RF  2.25 24.45 81.80 41.26  0.10 15.25 99.22 81.81  1.64 16.44 74.20 28.62 
17 SW SW_lda_08 RF  3.45 23.33 72.07 38.11  0.20 18.39 98.41 67.29  3.91 8.47 38.40 28.74 
18 SW SW_dt_08 RF  2.36 23.22 80.84 42.94  0.12 12.58 99.02 98.99  1.97 10.31 68.87 42.35 
19 - - XGB 12.32     12.57     6.99     
20 IP IP_lda XGB  3.46 23.22 71.95 38.19  0.20 18.34 98.38 67.44  5.20 6.06 25.66 29.60 
21 IP IP_dt XGB  2.36 23.15 80.83 43.02  0.13 12.51 98.95 99.42  3.19 7.98 54.41 47.71 
22 OP OP_% XGB  7.60 15.19 38.36 31.11  11.43 12.79 9.06 8.91  4.90 14.18 29.90 14.74 
23 OP OP_08 XGB  12.31 0.02 0.11 57.14  12.57 0.01 0.02 16.67  5.97 3.06 14.61 33.36 
24 SW SW_lda_% XGB  3.05 33.81 75.27 27.44  0.05 28.57 99.59 43.82  3.16 20.03 54.87 19.16 
25 SW SW_dt_% XGB  2.13 32.50 82.73 31.36  0.12 24.17 99.04 51.52  1.61 21.02 76.94 25.59 
26 SW SW_lda_08 XGB  3.44 23.24 72.05 38.21  0.20 18.35 98.40 67.41  4.19 9.10 40.08 30.82 
27 SW SW_dt_08 XGB  2.36 23.15 80.85 43.02  0.13 12.52 98.96 99.34  2.30 10.83 67.07 43.32 
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but there are also cases in which it does not reduce 
misclassifications by much (i.e., ARANCINO dataset), or 
where it omits many correct predictions in the process, as 
quantified by the low φm ratio in the CICIDS18 dataset. Safety 
wrappers SW are meant to omit predictions if either the input 
or the output check highlight issues, thus they always have 
high omission rates, at the benefit of having very low residual 
misclassifications.   

F. Results: Image Classification 
Results similar to those presented above can be obtained 

also for image classifiers. To avoid being tedious, this section 
follows a different structure, focusing on three cases: the 
ResNet50 clf and FCCs on the Flower dataset (Figure 4), 
AlexNet on STL-10 (Figure 5) and InceptionV3 on Fruits 
(Figure 6). These scenarios offer interesting discussion items 
that we explore as follows.  

Figure 4 shows a 10-bar chart: a bar for the ResNet50 clf, 
a bar for each FCC, and a bar showing the theoretical optimum 
FCC that omits all and only misclassifications, paired with ε 
drop and φm ratio quantities on the right. From a visual 
standpoint, the aim is to reduce the red bar (ε if clf or εw if 
FCC) as much as possible, keeping the blue bar (α or αw) 
untouched, replacing the red area with the yellow-striped 
omissions φ. Whereas some FCCs succeed in reducing the red 
bar i.e., OP_%, SW_svm_% and SW_rn_%, they also have a 
shorter blue bar: this is due to a sub-optimal φm ratio, that is 
57.84, 36.06 and 21.76, respectively. In this case, there is no 
FCC that has both an high φm ratio and ε drop: all reduce 
misclassifications, but with a major price to pay in terms of 
unnecessary omissions.  

Figure 5 has the same structure of Figure 4, but refers to 
the application of AlexNet as image classifier in the STL-10 
dataset. This is a case in which the AlexNet clf already has 
low (59.23%) accuracy, generating a whopping 40.77% of 
misclassifications. FCCs are able to reduce this amount of 
misclassifications by a fair amount but typically omit many 
correct classifications in the process. The SW_rn_% FCC has 
εw = 13.9%, roughly a third of those of AlexNet alone, but also 
has an accuracy of 33.68%, which is almost half than those of 
clf. A more balanced performance is offered by OP_%, which 
roughly halves misclassifications and reduces accuracy from 
59.23 to 50.84%, limiting the amount of omissions: it has 
better φm ratio than SW_rn_%.  

Lastly, Figure 6 shows the application of InceptionV3 on 
the Fruit dataset. Similarly to Figure 4, the OP_% FCC is the 

solution that offers the best tradeoff between reducing 
misclassifications (see and ε drop) and having a reasonably 
low amount of unnecessary omissions (φm ratio). IPs have 
very bad performance in this case, making also SWs lean 
towards poor performance as they can reduce up to ε drop = 
85.55% of misclassifications, but scoring an exceedingly low 
φm ratio of 25.04, with only 1 in 4 omissions corresponding to 
misclassifications.  

G. Takeovers 
Our experimental analysis is only preliminary: however, it 

provides some key information that we summarize as follows:  
• The OP adds virtually no overhead to the process as it just 

computes basic thresholding on probabilities of 
predictions and is typically helpful in suspecting most of 
the misclassifications. 

• The IP proved to be more or less useful depending on the 
scenario, as it may also end up having quite low φm ratio 
(i.e., many unnecessary omissions) when unknown data 
is not easily distinguishable from in-distribution data or 
when the classifier would have been robust enough to 
correctly classify even unknown data. Differently from 
OP, it requires training the input checker and exercising 
it before or alongside the main classifier. 

• In our experiments, the SW is the solution that suspects 
the most misclassifications (i.e., has the best ε drop) due 
to the implementation of the confidence calculator, which 
combines input and output checks.  

• The performance of FCCs depends on several factors, 
including the nature of the system, the characteristics of 
the input data, and their specific implementation. Only a 
careful choice of uncertainty calculators (e.g., input 
checkers for IP, probability thresholds for OP) could pave 
the way for a successful application. 

• Researchers interested in lowering misclassifications 
should primarily focus on maximising the ε drop, but 
should also make sure that the φm ratio is high enough. 

H. Threats to Validity and Reprobucibility 
Classifiers have hyperparameters whose tuning critically 

affects results, or may encounter wide variety of problems 
when learning a model for each dataset during training (e.g., 
under/overfitting, poor quality of features, feature selection to 
leave out noisy features). However, this experimental 
evaluation aims to compare the performance of classifiers 

 
Figure 4. ResNet50 clf, FCCs and the 

optimum FCC for Flower dataset. 

 
Figure 5. AlexNet clf, FCCs and the 
optimum FCC for STL-10 dataset. 

 
Figure 6. InceptionV3 clf, FCCs and the 

optimum FCC for Fruit dataset. 
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against FCCs, thus even a sub-optimal choice of 
hyperparameters is more than acceptable provided that the 
same setup is used throughout all experiments.  

The usage of public data and public tools to run classifiers 
was a prerequisite of our analysis to allow reproducibility and 
to rely on proven-in-use data. We publicly shared scripts, 
methodologies, and all metric scores, allowing any researcher 
or practitioner to repeat the experiments. We do not use any 
private dataset: all datasets are referenced in the papers, and 
all code is available at [68]. 

VI. WHAT ABOUT AVAILABILITY? 
These FCCs allow for reducing misclassifications thanks 

to the omission mechanisms, which has an obvious downside: 
whenever FCC omits many correct predictions alongside with 
misclassifications, it becomes almost unusable as it hardly 
provides a beneficial behaviour for the encompassing system. 
To address this problem, we report here other approaches that 
may be used to reduce misclassifications and at the same time 
keep unnecessary omissions as low as possible. 

A. Recovery Blocks  
Recovery blocks are known since many decades as one of 

the strategies for reliable software design [41]. Practically 
speaking, we foresee the usage of a set of m alternative 
implementations of a function that are called sequentially 
whenever the output of the main function is deemed as non-
trustable. For classifiers, this translates into calling a sequence 
of at most m+1 classifiers before obtaining the prediction, or 
omitting the result if none of the recovery blocks is confident 
enough in their output. This concept is not entirely new in the 
machine learning domain: delegating classifiers [43] define a 
group of classifiers, each specialized to be confident in the 
analysis of a subset of the input space, choosing the classifier 
to use for inference depending on the input alone.  

A FCC based on recovery blocks does not use a single 
classifier for inference: in fact, it delegates the decision to the 
first replica whose output is trustable (see Figure 7a). The 
amount and the diversity of replicas has a direct impact on the 

likelihood of omissions: it will be easier to find a “trustable” 
replica if the set of replicas is wide and diverse instead of 
relying on a few replicas. Note that such FCC may add a major 
overhead to the inference process as – in the worst case – it 
may require exercising m+1 classifiers in sequence.     

B. N-version Programmung 
Another approach relies on N-Version Programming 

(NVP), or exercising different classifiers in parallel [41], [44] 
each acting independently but processing the same inputs. 
Their predictions, alongside with trust scores, are sent to the 
adjudicator, which is a function that takes as input the 
predictions and the trust scores of the m classifiers, generates 
a prediction and a trust score to decide if the prediction has to 
be omitted or if it is trustworthy. For a problem of k-class 
classification and m replicas, the adjudicator is a function that 
has (k+1)m floating point inputs and outputs k probabilities 
plus a floating point trust score. This adjudicator [41] can be 
implemented with thresholds, invariants, custom rules [44], or 
can be a classifier itself, providing many degrees of freedom 
in finding the ideal function to combine outputs and trust 
scores of the m replicas. A FCC using NVP builds a two-layer 
architecture which is often referred to as stacking, with m 
classifiers at the base level, and the adjudicator at the meta-
level [45], see Figure 7b. Those two steps are necessarily 
sequential, cannot be parallelized and may, again, add a 
relevant overhead to the inference process.  

C. Other Notable Approaches   
Decades of critical systems engineering and system-level  

thinking originated more architectures [41], [44] than those 
shown above. Voting was explored in different formulations 
(i.e., hard, soft, weighted), and can be even used to build a 
hierarchical agreement structure that is known as n-self-
checking-programming [41]. Boosting techniques were 
proven to be very effective for classifying known [18], [48] 
and unknown tabular data points, but boosting ensembles of 
DNNs for image classification are not yet a thing and are still 
in their early stages [49]. Interestingly, different architectures 

 
a) Recovery Blocks (RB) or delegating FCC, which pairs the 

main FCC with other FCCs that are executed in sequence, 
seeking for the first that outputs a confident prediction. 

 
b) NVP or FCC ensembles, which exercise many FCCs in 

parallel and then use a final adjudication function to decide 
on the confidence in the prediction. 

Figure 7. Software Architectures for Complex FCCs with accuracy αw, misclassification probability εw, and omissions φ. 
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may be combined into unified architectures. For example, 
there are works that pair classifiers based on ensembles with 
a monitor to check for trustworthiness [20], but this is still 
quite an uncharted territory in which there are no widespread 
and solid proposals (yet). 

VII. CONCLUSIONS, VIEWPOINTS AND FUTURE WORKS 
This paper motivated the need for a paradigm shift when 

applying classifiers based on Machine Learning (ML) in 
critical systems, where misclassifications may result in 
catastrophic consequences. Instead of chasing the holy grail 
of perfect accuracy, we argue that misclassification may be 
acceptable if i) they could be suspected and are of a reasonably 
low amount, and ii) the system can promptly react when 
predictions are rejected due to suspected misclassifications. 
This is the baseline of Fail-Controlled Classifiers (FCCs), or 
rather classifiers that may omit predictions they are not 
confident with. Ideally, a FCC either answers correctly, or 
does not answer at all, thus having no misclassifications even 
without perfect accuracy. FCCs build on the following pillars: 
• Better Safe than Sorry. There are domains in which it is 

beneficial to answer questions or provide service only 
when the output could justifiably be trusted. In any other 
case, it is better to omit answers: betting on the “most 
likely” answer is not an option. 

• Confidence, not over-confidence. Self-awareness is 
always a desirable property: without it, people, 
equipment, or controllers are hardly trustable. For ML 
classifiers, this translates into computing confidence in a 
prediction, and using this quantity to decide if the 
prediction could be propagated to the encompassing 
critical system. 

• Old but gold? Critical system and software architectures 
that are known and applied since decades for safety 
engineering may be successfully reworked to design 
software components that (at least partially) rely on ML 
classifiers for a wide variety of tasks. 

We believe that this paper will bring awareness to the 
problem of deploying ML classifiers in critical systems. Also, 
the ideas, the architectures, and the discussions presented 
herein will pave the way for further experiments aimed at a 
quantitative assessment of FCCs in real or simulated systems, 
to precisely understand their applicability and focus on the gap 
that still must be bridged to safely put ML classifiers into 
operation. 
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