
Shaping a Modern Programming Paradigms
Course for Advanced University Students

Leonardo Montecchi1[0000−0002−7603−9695]

Department of Computer Science
Norwegian University of Science and Technology (NTNU)

Sem Sælands vei 7–9, 7034 Trondheim, Norway
leonardo.montecchi@ntnu.no

Abstract. Programming is one of the core disciplines in Computer Sci-
ence (CS) and Computer Engineering (CE) courses, and it is increasingly
permeating the curricula of other study programs. After a classical intro-
duction to programming, and a course on object-oriented programming,
some students will attend an advanced course on programming languages,
where features of different programming paradigms are discussed. Due
to the emphasis on theory and semantics aspects, such courses often em-
ploy old or experimental languages that have little practical application,
resulting in low engagement of students. Unfortunately, most of the re-
search work is focused on introductory programming, which has a more
established syllabus and larger possibilities for interventions. In this pa-
per, we analyze the current status of the programming languages course
at our university, and we investigate possibilities for renewing the syl-
labus with modern languages and tools. We first review the current topics
addressed by the course, and then we discuss possible content changes,
with the aim to shape a more engaging course. The paper ends with
a plan for implementing and evaluating the new version of the course
starting from the next academic year.

Keywords: Programming languages · programming paradigms · course
planning · advanced students.

1 Introduction

Programming is one of the core disciplines in Computer Science (CS) and Com-
puter Engineering (CE) courses, and it is increasingly permeating the curricula
of other study programs. After undergoing a classical introduction to program-
ming, and a course on object-oriented programming, some students will attend
an advanced course on programming languages, where features of different pro-
gramming paradigms are discussed, with an emphasis on the semantics of exe-
cution.

Knowledge of different styles of programming, such as functional program-
ming or different concurrency models, is considered a core skill by the ACM
Computer Science Curricula 2023, meaning that such topics fall in the category



2 L. Montecchi

of “topics that every Computer Science graduate must know” [5], at least from
an overview level. However, these topics are not covered in a standardized way,
and not all the CS/CE programs actually offer such a course.

Due to the emphasis on theory aspects, those advanced programming lanu-
gages courses often employ old or experimental languages that have little prac-
tical application, resulting in low engagement of students. Unfortunately, while
many opportunities of improvement of teaching practices exist for such courses,
most of the research work is focused on introductory programming, which has a
more established syllabus and larger possibilities for interventions.

In this paper we analyze the current status of the programming languages
course at our university, and we investigate possibilities for renewing the syl-
labus with modern languages and tools. We first review the current topics ad-
dressed by the course, and then we discuss possible content changes with the
aim to shape a more engaging course. The work in this paper is driven by the
overarching reasearch question “What is an engaging course plan for a program-
ming languages course for advanced university students?”. Following a design
thinking [2] approach, we have combined a divergent step, in which candidate
topics and languages to be included in the course have been identified, and a
convergent step, in which we have defined a concrete plan for a revised version
of the course. The paper ends with a roadmap for implementing and evaluating
the new version of the course starting from the next academic year.

The rest of the paper is organized as follows. Section 2 introduces the neces-
sary background, including a brief description of the TDT4165 course and the
challenges with its current structure. Section 3 discusses the methodology we
adopted to shape a new version of the course, including a discussion of cur-
rently covered topics and of candidate programming languages for the revised
version. Section 4 introduces and discusses the details of the new course plan,
while Section 5 provides an overview of the roadmap towards its implementation
and evaluation. Related work are discussed in Section 6. Finally, conclusions are
drawn in Section 7.

2 Background

The TDT4165 “Programming Languages” course at NTNU [9] is a third-year
course offered to different programs, having typically around 120 enrolled stu-
dents. The course introduces students to programming language paradigms, se-
mantics and computational models. The current version of the course is based
on the Oz [7] programming language and its Mozart environment. Oz is a lan-
guage originally developed for teaching and research, which is associated to the
well-known “CTMCP” book that covers language theory [12].

One of the challenges we are facing is that the Oz/Mozart environment is
becoming outdated, because it is not being maintained since several years, and
the course suffers from the heavy dependence on that environment. The version
on which the book is based, Mozart 1.4, has not been updated since 2013. The
development of a new Mozart2 version started in 2012, but is currently still



Shaping a Modern Programming Paradigms Course 3

“alpha quality”, as mentioned in the official GitHub repository1, and the latest
update was published in 2018. Being an alpha version, some important parts that
were included in the original Mozart are not yet implemented in Mozart2 (e.g.,
the debugger), leaving students with a frustrating and incomplete experience.
While Oz/Mozart has been a fundamental step in the teaching of programming
languages, its current limitations are evident. Oz/Mozart authors themselves
discuss the history of the language, and its current limitations in [13].

The main challenge in moving to another language(s) is to find a solution
that i) has a good practical support for programming, ii) covers the content of
the course, and iii) has a good theory support.

3 Methodology

3.1 Overview

The approach adopted in this paper is inspired to the design thinking process,
which has been described in different ways [2]. The work in this paper mainly
corresponds to the “Inspiration” and “Ideation” phases in [1]; a discussion on the
“Implementation” phase is reported in Section 5.

One of the characteristics of design thinking is the cyclic alternation between
two ways of working towards the solution: divergent thinking (analyze), where
the objective is to gather as many insights as possible; and convergent thinking
(synthesize), where the objective is to synthesize the obtained information and
to produce consolidated coherent solutions.

Our investigation was based on the following requirements:

– R1: The new course plan should cover at least the same topics that are
covered today.

– R2: The new course plan should be based on programming languages with
development tools (e.g., compilers, editors) that are multi-platform and ac-
tively maintained.

– R3: The new course plan should expose students to multiple languages having
different features.

Divergent Thinking. For our divergent thinking activity we gathered infor-
mation from multiple sources. In particular, we first reviewed related work from
the literature (discussed in Section 6 later). We then defined a detailed concep-
tual map of the topics currently covered by the course (Section 3.2), and finally
we selected a list of candidate programming languages to be considered for the
revised version of the course (Section 3.3).

Convergent Thinking. As part of our convergent thinking activity, we mapped
the candidate programming languages identified in the previous step, and we
created small proof-of-concept examples that could serve as assignments in the
course. Mostly, we converted existing exercises that are based on Oz to the new
candidate languages, and we investigated their feasibility.
1 https://github.com/mozart/mozart2

https://github.com/mozart/mozart2


4 L. Montecchi

3.2 Current Curriculum

The current curriculum covered by the course is briefly discussed in the following.

1. Introduction to Language Theory. This module of the course provides an
introduction to language theory, and the main steps that involve the defini-
tion and usage of a programming language. This includes a brief overview
of grammars and the parsing process. In particular, the difference between
lexical analysis and parsing is discussed.

2. Declarative Programming. This module introduces students to declarative
and functional programming, through a restricted version of Oz called the
Declarative Sequential Kernel Language (DSKL). Formal semantics for this
part of the language is given through abstract machine semantics.

3. Higher-Order Programming. This module goes deeper into functional pro-
gramming, in particular discussing higher order programming, function val-
ues (closures), and common abstractions that are used in functional pro-
gramming, such as list folding.

4. Memory, Scope, Exceptions. This module collects some topics related to
memory management. This includes some details on scoping of variables,
bindings, as well as a formal semantics of exceptions. Among the other things,
it discusses the difference between recursion and iteration, and tail recursion
optimization.

5. Declarative Data Structures. This module discusses the definition of data
structures in the declarative functional programming model. The module
discusses how common data structures such as queues and stacks can be
represented in effective ways, without resorting to explicit state.

6. Threads. This module introduces concurrency and gives a formal semantics
of threads in Oz, still using abstract machine semantics. This module is
however oriented to the dataflow concurrency model only, which is typical
of Oz.

7. Lazy Evaluation. This module introduces the concept of lazy evaluation, that
is, the possibility of delaying computation of values. This concept is useful
for processing (potentially) infinite data structures in parallel, referred to as
streams.

8. Logic Programming. The last module of the course introduces logic program-
ming, using simple examples in Prolog. This module was originally in Oz as
the rest of the course, but it was adapted to Prolog given the lack of support
for logic programming in the current version of Oz/Mozart.

3.3 Candidate Programming Languages

In this section we discuss the programming languages that have been consid-
ered for the course, and the reasoning behind their inclusion or exclusion. The
discussion is organized in three category, as follows.



Shaping a Modern Programming Paradigms Course 5

Popular, but unsuitable languages. The first category includes languages that
are well-known and widely used by both students and professionals, such as
Java, Javascript, Python, and C/C++. While those languages would have the
advantage that students do not need to learn new tools, they are very broad
multi-paradigm languages, meaning that students would have too much flexibil-
ity, and it would be difficult for them to stick with the paradigms introduced
in the couse, and for us teachers to verify if they are doing so. In particular,
the course focuses in large part on functional programming and immutability of
variables, which is not easily enforced in those languages.

Popular, potentially suitable languages. A few programming languages have
gained popularity recently, and students frequently express their wish to learn
them. It is the case for example of Rust, Elixir, and Scala. All of them sup-
port immutable variables in some form, and they are quite oriented to functional
programming, which makes them potentially suitable for the course.

Rust2 is a multi-paradigm language targeted to embedded systems and sys-
tems programming. It is designed to compete with C/C++, providing a similar
flexibility on memory access and low-level programming, but with an increased
type safety. Variables in Rust are immutable by default, which aligns with the
content of the course. While the use of Rust for a similar course is discussed
in [3], one of the drawbacks is its broadness in terms of functionality, which
would make it difficult to define a subset for the initial part of the course, and
to make sure that students will adhere to that. In particular, some specific fea-
tures related to memory management, make the use of Rust for the entire course
particularly challenging.

Elixir3 is a functional, concurrent programming language that focuses on
metaprogramming and flexibility. It builds on top of Erlang, and runs on the
same virtual machine (BEAM). Elixir also uses immutable variables and has
a convenient syntax for records, simpler than the original one used in Erlang.
While being more oriented to functional programming and to the topics of the
course, Elixir has also a wide range of features that would need to be restricted
for a proper adoption in the course.

Scala4 is a strong statically typed language originated from Java and fully
compatible with it; it runs in fact on the Java Virtual Machine (JVM). Many of
design decisions are intended to address criticism of Java, and it has a strong
emphasis on combining object-oriented programming and functional program-
ming. Scala is actually already used for one of the assignments in the current
version of the course, although the focus of the assignments is on threads and
concurrency. One of the peculiarities of Scala is that it supports both mutable
(“var”) and immutable (“val”) variables. While this could be interesting for dis-
cussing how the two features can be combined, using it is not ideal for the initial

2 https://www.rust-lang.org/
3 https://www.elixir-lang.org/
4 https://www.scala-lang.org/

https://www.rust-lang.org/
https://www.elixir-lang.org/
https://www.scala-lang.org/


6 L. Montecchi

part of the course, where students should be constrained to using the functional
paradigm.

Less popular, but suitable languages. A language that is suitable for the course
should enforce the functional programming paradigm and be relatively small, so
that a core subset can be identified for formal reasoning about its semantics.

One option is to use some “dialect” of Lisp, which is often used in advanced
courses on programming languages. Languages from the same family as Lisp
include for example Scheme5 and Racket6. While these languages are suitable
to cover the content of the course, we identified two main limitations: i) their
syntax is quite unique and very unusual with respect to languages used in the
industry; and ii) teaching material (e.g., books) based on them is usually of a
more theoretical nature than the current version of the course. We recall that
the course is offered to different study programs, including some that are outside
the computer engineering or computer science area.

Few other languages exist that: i) have been used in the industry, ii) enforce
the functional programming style, and iii) are simple enough to be adapted to the
course. Erlang7 has a strong industrial background, being originally developed
as proprietary software within the Ericsson company, and later released as open-
source software in 1998. Despite being more than 25 years old, it is still actively
maintained, the latest release being from July 2024. It is a functional high-level
programming language, strongly oriented to concurrency. The Erlang runtime is
freely available for the most common operating systems, and specialized plugins
are available for modern editors such as IntelliJ and VSCode. Furthermore, it
has an extensive documentation and a relatively active community. Balancing
all these reasons, we considered Erlang to be the most suitable one among the
candidate languages to be used as basis for a revised version of the course.

4 Revised Course Plan

In our convergent thinking step we synthesized the information we had gathered,
and we planned a revised version of the course, with the aim to satisfy the
requirements described in Section 3.1.

We decided to base a large part of the revised version of the course on the
Erlang language, for its simplicity and availability of tools. Besides identifying
modern languages to cover the course topics, this process also led to the revision
of the course plan as a whole, which is discussed in the following. Topics marked
by a star (*) are either completely new or heavily modified.

Introduction to Language Theory. The theory content of this module is
kept essentially the same: students are introduced to grammars and to the main
5 https://www.scheme.org/
6 https://www.racket-lang.org/
7 https://www.erlang.org

https://www.scheme.org/
https://www.racket-lang.org/
https://www.erlang.org


Shaping a Modern Programming Paradigms Course 7

steps that are required to process and execute a language. Details of parsing
algorithms are not introduced there, but are instead typically addressed in a
Compiler Construction course later in the study program.

Currently, students are exposed to examples (in Oz) about lexical analysis
and parsing. Such examples show how these two steps can be performed for a
simple language, such as the one used as input in a simple calculator program.
One of the problems with this module is that students struggle with understand-
ing the practical aspects of grammars.

In the revised version of the course, students will be exposed to the leex8

and yecc9 tools, both of which are Erlang-based. These two tools are, respec-
tively, analogous to the well-known “lex” and “yacc” tools for the C language:
leex takes as input a regular expressions and generates a lexer; yecc takes as
input a grammar in BNF format and generates the code to parse that gram-
mar; both tools generate Erlang code. This module will introduce students to
language theory and, at the same time, have them familiarize with the Erlang
environment.

Declarative Programming. This module will also be based on Erlang, and it
is actually one of the main reasons of selecting this language as the basis for the
new version of the course. Erlang is a quite strict language, which is appropriate
for this module, where students still need to adapt to the new paradigm of
functional programming. This means, for example, using recursion instead of
imperative loops for iterative tasks.

Furthermore, we believe that, at least informally, most of the Oz DSKL can
be mapped to a subset of Erlang (a kind of “Erlang Kernel Language”). This
would allow the course to keep the theoretical content on DSKL semantics,
while providing examples in a more realistic language to students. In fact, all
the statements in the DSKL have a direct correspondence in Erlang, with a sim-
ilar semantics. The only (notable) exception is the freeze semantics of dataflow
variables, which is instead typical of Oz and does not exist in Erlang. In this
new version of the course, dataflow variables are addressed later in the newly
introduced Concurrency Models module.

Discussing a semantics that is similar, but not exactly the same, to the Oz
DSKL, also leaves room for discussions and exercises on how to formally define
a semantics for a language different than Oz.

Higher-Order Programming. At this point students should start being fa-
miliar with both Erlang and functional programming. In this module, they will
be introduced to higher-order programming, with examples and teaching mate-
rial also based on Erlang. Among the other things, Erlang has a good support
for the specification of types in functions10, as well as automated inference of

8 https://www.erlang.org/doc/apps/parsetools/leex.html
9 https://www.erlang.org/doc/apps/parsetools/yecc.html

10 https://www.erlang.org/doc/system/typespec.html

https://www.erlang.org/doc/apps/parsetools/leex.html
https://www.erlang.org/doc/apps/parsetools/yecc.html
https://www.erlang.org/doc/system/typespec.html


8 L. Montecchi

function parameters types. While types are not particularly addressed by this
course, providing a better overview on types and dicussing types specifications
for functions, enables a better understanding of higher-level programming.

This module is also well-suited to start comparing different languages, so
students will be asked in exercises to identify the same concepts in languages
they already know. Most of the programming languages that are popular today,
such as Java or Python, are in fact multi-paradigm, so students should be able to
identify functional programming concepts in most of the languages they know.

Functional Programming Patterns*. This module is considered to be a new
module. While part of the content is extracted from the previous version of the
“Higher-Order Programming” module, we decided to create a separate module
with a more coherent focus. While the previous module focuses on the concept
of higher-order programming and closures, in this module we focus on patterns
for functional programming. In a certain sense, this module could be seen as
the equivalent of a module on design patterns for a course on object-oriented
programming.

Most of this module can be delivered using Erlang. However, we plan to
discuss some specific topics using Haskell, which is often considered the ref-
erence for reasoning on advanced functional programming. Topics like currying
or concepts from category theory [6] are better discussed using Haskell. Also,
this would be the occasion for preparing students to use Haskell in subsequent
modules of the course such as the one on “Lazy Evaluation”.

Memory, Scope, Exceptions. This module houses a heterogeneous set of
concepts that are not easily fitting other modules. While we did not modify the
theoretical content of this module, we believe that it can be exploited for a more
in-depth comparison of different programming languages.

In this case, popular multi-paradigm programming languages are well-suited
for this task, as they exhibit considerable differences in terms of memory manage-
ment, scoping of variables, and error-handling behavior. Exercises and examples
should provide students with a broad understanding on how such concepts are
realized in different languages, such as Java, Python, and C. Furthermore, it is
worth discussing memory management in Rust, which has some unique features
such as its “ownership” and “borrowing” concepts, which are deeply related to
memory management and scoping.

Declarative Data Structures. The content of this module is substantially
unaltered from the previous version of the course. Its objective is to discuss how
advanced data structures can be defined in a declarative (i.e., immutable) way.
It basically discusses two of the four ways to package data abstractions [10],
namely immutable ADT (Abstract Data Types) and immutable objects. This
module can be delivered in any languages that strictly follows the functional
paradigm, such as Erlang.



Shaping a Modern Programming Paradigms Course 9

Explicit State*. This module was added in the new version of the course, and
it focuses on discussing explicit state and its effects. The theoretical part of this
module is available in the pensum book [12], so no major alterations are needed
to the recommended reading material. Before taking this course, students have
already taken courses where they have programmed with explicit state, such as
in object-oriented programming. Therefore, no specific exercises are planned for
this modules. However, students should be encouraged to identify explicit state
constructs in multi-paradigm languages such as Python.

Concurrency Models*. This new module stems from the observation that
students know very little about concurrency when they take this course. In the
previous version of the course, students were only introduced to dataflow concur-
rency, which is typical of Oz and few other languages. Since one of the learning
outcomes of the course is to give students “the ability to understand and compare
existing and future languages.”, a broader view of concurrency models should be
provided. This module addresses three common models of concurrency: shared-
state, message-passing, and dataflow. All the the three of them are covered by
the book that is already adopted for the course [12].

Shared-State Concurrency is the concurrency model used in imperative and
object-oriented programming languages, such as Java. In case students have
some experience with concurrency, they probably experienced this flavor of con-
currency. A full coverage of concurrency problems and solutions is out of the
scope of this course, however, a brief introduction to this model and its dan-
gers will be provided. For shared-state concurrency, examples will be given in a
traditional language such as Java.

Message-Passing Concurrency is a programming style in which a program con-
sists of independent entities that interact by sending each other messages asyn-
chronously, i.e., without waiting for a reply [12]. Support for message-passing
concurrency is one of the distinguishing features of Erlang. Therefore, at this
point of the course introducing this concurrency model should follow quite nat-
urally from students’ experience with the language in the rest of the course.

Dataflow Concurrency is a concurrency model that is distinctive of Oz and its
“dataflow variables”. While this model is used in some domain-specific contexts
such as distributed data processing and workflows, none of the most common
general purpose programming languages support it directly. One of the few ways
for students to experience dataflow concurrency other than Oz is to use the GPars
library11, which is available for both Groovy and Java.

Another possibility for this module is to run it using Scala, which has libraries to
support all the three concurrency models: shared-state, using basic thread con-

11 https://www.gpars.org/

https://www.gpars.org/


10 L. Montecchi

structs; message-passing using the Actors library12; and dataflow using GPars,
since Scala is fully compatible with Java libraries.

Lazy Evaluation. Lazy evaluation is an important module of this course, in-
troducing students to computation using streams. Besides the theoretical impor-
tance, streams are used in practice in several practical applications, from data
processing to embedded systems.

This module will be run by comparing two languages that have been already
introduced earlier in the course: Haskell, which implements lazy evaluation by
default, and Erlang, which instead uses eager evaluation (i.e., the opposite,
where values are always computed immediately). Besides discussing the differ-
ence between these two features of a language, it will also be shown how to
emulate lazy evaluation in a language that does not support it.

Logic Programming. Logic programming is currently introduced using Prolog,
which is of course the reference language for this programming paradigm. While
using Prolog works well for introducing the paradigm, we find that it does not
provide students with a real feeling of the applicability of logic programming
as part of larger applications. In the revised version of the course, we will com-
plement a theoretical introduction to logic programming with exercises using
practical libraries in Python, such as pytholog13 or swipy14.

Table 1. Summary of the modules of the revised version of the course, and program-
ming languages that are used in each of them.

Module Language Notes

1 Introduction to Language Theory Erlang Using leex and yecc for grammars and
overview of parsing.

2 Declarative Programming Erlang —
3 Higher-Order Programming Erlang Types specifications (-spec) help reason-

ing about functions.
4 Functional Programming Patterns Erlang Specific advanced topics using Haskell.
5 Memory, Scope, Exceptions — Compare popular multi-paradigm lan-

guages. Further, Rust’s ownership and
borrowing concepts provide an advanced
view on scoping and memory manage-
ment.

6 Declarative Data Structures Erlang —
7 Explicit State — Reason on popular multi-paradigm lan-

guages such as Python.
8 Concurrency Models Java, Erlang, GPars Scala (with GPars) can also be used as a

single-language alternative.
9 Lazy Evaluation Haskell Also discuss emulation of lazy evaluation

in eager languages such as Erlang.
10 Logic Programming Python Introduce the theory in Prolog. Use

Python libraries for exercises.

12 https://docs.scala-lang.org/overviews/core/actors.html
13 https://github.com/MNoorFawi/pytholog
14 https://github.com/SWI-Prolog/packages-swipy

https://docs.scala-lang.org/overviews/core/actors.html
https://github.com/MNoorFawi/pytholog
https://github.com/SWI-Prolog/packages-swipy


Shaping a Modern Programming Paradigms Course 11

The revised version of the course has 10 modules (Table 1), which fit well a
typical semester consisting of 14 weeks of lectures. The course combines having
a reference language for most parts of the course, so that students can feel com-
fortable with something known, with occasionally introducing other languages
to enable a broader view of common features of programming languages.

5 Implementation and Evaluation

The course plan introduced in Section 4 will be gradually implemented from the
next instance of the course, which will be held in Autumn 2025. To manage the
risk in completely changing the course curriculum, the new course plan will be
implemented gradually in three phases:

Phase 1. The teaching material for the theoretical part is keep in the current
version. Exercises in the new languages are introduced for specific parts of
the course. Modules 8, 9, and 10 are the potential candidates for this first
phase, since their modification does not affect other modules.

Phase 2. The teaching material is modified so that the examples and the prac-
tical activities of the course are mostly based on the new core language. This
involves modifying modules 1, 2, 3, and 4.

Phase 3. The rest of the course is adapted to the new version. The remaining
modules are adapted to the new content (5 and 6), and the material for
module 7 is finalized. The course is now completely adapted to the new
version.

At each phase, the feedback from students will be collected through question-
naires and discussions with the reference group, to evaluate the impact of the
introduced changes, and adopt corrective actions if needed. Besides evaluating
the satisfaction of students, the evaluation aims at assessing potential risks in
the modification of the course, and in particular: i) the risk of introducing mul-
tiple programming languages in the same course; and ii) the risk of detaching
the theoretical framework of the adopted book [12] from the practical examples
and exercises.

6 Related Work

Most of the literature on teaching programming languages focuses on introduc-
tory courses, which are typically given in the first or second year of bachelor
programs (e.g., “Introduction to Programming” and “Object-Oriented Program-
ming”). Those courses are typically larger (in terms of students), their syllabuses
are more standardized, and they are often run by a large team of teachers and
teaching assistants. All these characteristics make them more convenient for
running interventions, collecting data, and analyzing the results. Conversely, the
TDT4165 course is a specialized course, such that many computer science pro-
grams in other universities do not even offer it.



12 L. Montecchi

Some of the most relevant works on the topic of this project are from the
authors of CTMCP and Oz/Mozart themselves [11,10], and they are from the
same period as the CTMCP book [12].

The work in [4] provides an overview of common problems and open chal-
lenges in the teaching of programming languages, from a Computing Education
Research (CEdR) perspective. Among the other things, the authors confirm
that “An enormous amount of attention in computing education has focused on
traditional CS1 courses.”15 and that “Despite some noticeable treatment in the
literature, notional machines do not feature prominently in curricula or texts for
computing courses.”. With “notional machines”, the authors refer to something
analogous to the “abstract machine semantics” introduced in the CTMCP book
[12], and used in the course to define the semantics of languages.

There exist a few other works in the literature that discuss topics related to
the objectives of our work. The authors of [14] discuss the choice of the program-
ming language to be used in a programming course, going though the languages
that are most appropriate for each of the different paradigms. The focus of that
work is however on choosing the first language that students will learn, i.e., the
one to be used in an introductory course. Also, the work is from 15 years ago,
and thus it cannot reflect the current panorama of programming languages. The
authors of [8] discuss the design and evaluation of a course similar to TDT4165
using the C# language16. They mention that time limitations prevented them
to use multiple programming languages, but unfortunately they do not provide
further details on the challenges they encountered.

Interestingly, the most relevant source on this topic is gray literature in the
form of a blog post [3]. The author mentions that “Unlike in some fields of
computer science, in programming languages there isn’t widespread agreement
on the undergraduate curriculum”. The author then reports his experience in
renewing a similar course, and discusses the choices they made. The course
ended up combining Haskell17 and Rust18, coupled with some theory material
that was created ad-hoc for the course. It should be noted, however, that the
author [3] used a different theory foundation than the one currently used in
the TDT4165 course. Nevertheless, even if the work in [3] is gray literature,
it should be considered a respectable source, because it appeared in the “PL
Perspective” blog. PL Perspective is the blog of ACM SIGPLAN, the Special
Interest Group on Programming Languages of the Association for Computing
Machinery (ACM), one of the main computer science associations worldwide,
organizing leading research conferences in programming languages and software
engineering.

15 CS1 and CS2 designate the first two courses in the introductory sequence of a com-
puter science major.

16 C# Documentation, https://learn.microsoft.com/en-us/dotnet/csharp/
17 Haskell Language, https://www.haskell.org/
18 Rust Programming Language, https://www.rust-lang.org/

https://learn.microsoft.com/en-us/dotnet/csharp/
https://www.haskell.org/
https://www.rust-lang.org/


Shaping a Modern Programming Paradigms Course 13

7 Conclusion

In this paper we have discussed the planning of a new version of the course
TDT4165 “Programming Languages” at NTNU. We first discussed the challenges
we are facing with the current version of the course, and then we described
the methodology we used to shape a new, modern, version of the course. We
first analyzed the topics currently covered by the course, and then investigated
possible programming languages that could be used to cover and emphasize the
topics discussed in the different modules.

The investigation resulted in a new version of the course with a total of
10 modules, some of which have been revised in the content or introduced as
new. The new version of the course combines a base language that is used for
the core topics of the course, as well as specifically selected languages to cover
advanced topics. We believe this new structure enhances the learning objective
of being able “to understand and compare existing and future languages”. We
proposed a realistic roadmap and discussed some insights for the implementation
and the evaluation of the new course plan. As future work, we plan to perform
a thorough evaluation of the new course, and to create teaching material to
support the proposed vision of a modern programming language course.

In the long term, there will need to be a reflection on the role of AI (Artificial
Intelligence) on programming. While such reflection goes beyond the scope of
a single programming course, the popularity of AI is leading to new ways of
defining programs, which will need to be acknowledged and discussed by a course
that aims to provide students with the skills to “understand and compare existing
and future languages”.

Acknowledgments. This work has been partially supported by the SFU-2016/10002
Excited Centre of Excellent IT Education and the Norwegian Directorate for Higher Ed-
ucation and Skills. The author would like to thank Marie Hayashi Strand and Christof-
fer Stensrud for their initial work on investigating candidate programming languages.

References

1. Brown, T.: Design thinking. Harward Business Review (2008)
2. Grönman, S., Lindfors, E.: The process models of design thinking: A litera-

ture review and consideration from the perspective of craft, design and tech-
nology education. Techne serien - Forskning i slöjdpedagogik och slöjdveten-
skap 28(2), 110–118 (April 2021), https://journals.oslomet.no/index.php/
techneA/article/view/4352

3. Hsu, J.: Re-imagining the “programming paradigms” course. SIGPLAN PL Per-
spectives (January 28th 2021), available on line at: https://blog.sigplan.org/
2021/01/28/re-imagining-the-programming-paradigms-course/ (last accessed
October 25, 2024)

4. Krishnamurthi, S., Fisler, K.: Programming Paradigms and Beyond. In: Fincher,
S.A., Robins, A.V. (eds.) The Cambridge Handbook of Computing Education Re-
search. Cambridge University Press (2019)

https://journals.oslomet.no/index.php/techneA/article/view/4352
https://journals.oslomet.no/index.php/techneA/article/view/4352
https://blog.sigplan.org/2021/01/28/re-imagining-the-programming-paradigms-course/
https://blog.sigplan.org/2021/01/28/re-imagining-the-programming-paradigms-course/


14 L. Montecchi

5. Kumar, A.N., et al.: Computer Science Curricula 2023. Association for Computing
Machinery, New York, NY, USA (2024)

6. Milewski, B.: Category Theory for Programmers. Blurb, Incorporated
(2019), also available online: https://bartoszmilewski.com/2014/10/28/
category-theory-for-programmers-the-preface/ (last accessed October 25,
2024)

7. Mozart Consortium: The Mozart Programming System. http://mozart2.org/
(2013)

8. Ortin, F., Redondo, J.M., Quiroga, J.: Design and evaluation of an alternative
programming paradigms course. Telematics and Informatics 34(6), 813–823 (2017),
sI: IT Education & Training

9. TDT4165: Programming Languages. NTNU, https://www.ntnu.edu/studies/
courses/TDT4165/2024 (Autumn 2024), last accessed October 25, 2024.

10. Van Roy, P.: Programming paradigms for dummies: what every programmer should
know. In: New computational paradigms for computer music, pp. 9–47. Editions
Delatour France (2009)

11. Van Roy, P., Haridi, S.: Teaching programming broadly and deeply: The kernel
language approach. In: Cassel, L., Reis, R.A. (eds.) IFIP TC3 / WG3.2 Conference
on Informatics Curricula, Teaching Methods and Best Practice (ICTEM 2002) July
10–12, 2002, Florianópolis, SC, Brazil, pp. 53–62. Springer US (2003)

12. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press (2004)

13. Van Roy, P., Haridi, S., Schulte, C., Smolka, G.: A history of the oz multiparadigm
language. Proceedings of the ACM on Programming Languages 4(HOPL), 1–56
(Jun 2020). https://doi.org/10.1145/3386333

14. Vujošević-Janičić, M., Tošić, D.: The role of programming paradigms in the first
programming courses. Teaching of Mathematics XI(2), 63–83 (2008)

https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
http://mozart2.org/
https://www.ntnu.edu/studies/courses/TDT4165/2024
https://www.ntnu.edu/studies/courses/TDT4165/2024
https://doi.org/10.1145/3386333
https://doi.org/10.1145/3386333

	Shaping a Modern Programming Paradigms Course for Advanced University Students

