
Received 19 January 2023, accepted 22 February 2023, date of publication 13 March 2023, date of current version 17 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3256886

A Model-Driven Approach for the Management
and Enforcement of Coding Conventions
ELDER RODRIGUES JR.1 JOSÉ D’ABRUZZO PEREIRA 2, (Graduate Student Member, IEEE),
AND LEONARDO MONTECCHI 1,3
1Institute of Computing, University of Campinas, Campinas, São Paulo 13083-852, Brazil
2University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal
3Department of Computer Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway

Corresponding author: Leonardo Montecchi (leonardo.montecchi@ntnu.no)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program through the Marie
Sklodowska-Curie under Grant 823788 ‘‘ADVANCE,’’ in part by the São Paulo Research Foundation (FAPESP) under Grant 2018/11129-8
and Grant 2019/06799-7, in part by Portuguese ‘‘Fundação para a Ciência e a Tecnologia’’ (FCT) under Grant 2020.04503.BD, and in part
by the Foundation for Science and Technology (FCT), I.P./MCTES through National Funds (PIDDAC), within the scope of CISUC R&D
Unit - UIDB/00326/2020 or project code UIDP/00326/2020.

ABSTRACT Coding conventions are a means to improve the reliability of software systems, and they
are especially useful to avoid the introduction of known bugs or security flaws. However, coding rules
typically come in the form of text written in natural language, which makes them hard to manage and
to enforce. Following the model-driven engineering principles, in this paper we propose an approach for
the management and enforcement of coding conventions using structured models. We define the Coding
Conventions Specification Language (CCSL), a language to define coding rules as structured specifications,
from which checkers are derived automatically by code generation. To evaluate our approach, we run a
thorough experiment on 8 real open-source projects and 77 coding rules for the Java language, comparing
the violations identified by our checkers with those reported by the PMD static analysis tool. The obtained
results are promising and confirm the feasibility of the approach. The experiment also revealed that textual
coding rules rarely document all the necessary information to write a reliable checker.

INDEX TERMS Coding standards, coding conventions, model-driven engineering, domain-specific lan-
guages, static analysis.

I. INTRODUCTION
Coding conventions [1], also termed as coding standards,
are guidelines for software development that impose con-
straints on how to write source code in a certain programming
language. Depending on their purpose, coding conventions
may cover different aspects of software development, includ-
ing file organization, indentation, comments, naming con-
ventions, but also recommend programming practices and
principles, architectural best practices, etc.

Besides recommendations that do not affect the software
behavior (e.g., naming of variables), many rules are intro-
duced to enforce non-functional properties like security or
performance. For example, attackers often exploit known
vulnerabilities introduced by poor usage of programming

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

constructs or system calls. Similarly, performance bottle-
necks can be avoided by preferring certain programming
constructs instead of others (e.g., see [2]). In general, the
adherence to precise coding rules avoids introducing known
bugs, and it is a fundamental practice for ensuring the relia-
bility of complex software systems.

Coding conventions are not static artifacts; rather, they
evolve over time, following the introduction of new language
features or the discovery of new vulnerabilities. Some coding
conventions may be specific to a single company [3] or
application domain [4], while others may be published as
formal standards. It has been argued that coding conventions,
in their current shape, offer limited benefit because of the
difficulties in actually enforcing and managing them [5].
Like many other artifacts in the development process, coding
conventions mostly come in the form of textual documents
written in natural language, possibly complemented with

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 25735

https://orcid.org/0000-0003-0717-3396
https://orcid.org/0000-0002-7603-9695
https://orcid.org/0000-0002-7194-3159


E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

code examples. Therefore, they cannot be processed automat-
ically, and implementing a reliable checker for a new rule is
often a complex development effort in itself. In fact, tasks
like understanding whether a tool can check a certain rule,
or writing a checker for a new rule, must be done manually.

Model-Driven Engineering (MDE) [6] is centered around
the idea that information in the software development process
should be represented as structured and machine-readable
models. Thesemodels should be precise enough to be used for
the automated generation of lower-level artifacts (e.g., source
code), thus increasing automation and reducing the possibil-
ity of human mistakes. This paper proposes an approach to
manage and enforce coding conventions through structured,
machine-readable models. The main benefit of this approach
is that checkers for new or customized coding rules are auto-
matically generated based on a high-level specification of the
rule. To the best of our knowledge, little work has been done
in this direction.

In more details, the contributions of this paper are the
following: i) we introduce a MDE-based approach for
managing coding conventions as structured specifications;
ii) we define the Coding Conventions Specification Language
(CCSL), a Domain-Specific Language (DSL) to specify cod-
ing rules for the Java language; iii) we realize the automated
generation of checkers from CCSL specifications; and iv) we
evaluate our approach against rules supported by a popular
static analysis tool.

The initial idea of this work was proposed in [7]; that
work is expanded here with i) a refined version of the CCSL
metamodel, ii) the addition of transformations that actually
generate checkers, and iii) a detailed experimental evalua-
tion, in which we compare the violations identified by our
generated checkers with those identified by an existing static
analysis tool.

The rest of the paper is organized as follows. We intro-
duce the necessary background and motivation in Section II,
followed by the related work in Section III. In Section IV
we present the overall idea of our proposal. We define our
specification language, the CCSL, in Section V, while usage
examples are given in Section VI. In Section VII we discuss
the generation of checkers from CCSL specifications, and in
Section VIII we briefly introduce the prototype implementa-
tion. The experimental evaluation is reported in Section IX,
followed by a discussion on the obtained results in Section X.
Finally, Section XI concludes the paper.

II. BACKGROUND AND MOTIVATION
A. CODING CONVENTIONS
As highlighted by Smit et al. in [8], the term code conventions
or coding conventions is used as a broad umbrella term for dif-
ferent kind of rules applying to source code. Other terms like
‘‘coding standard’’, ‘‘coding rules’’, etc., are frequently used
as well. To avoid ambiguity, we give here a brief definition of
these terms for the context of this paper.

A (programming) language L is a subset of all the possible
strings over a certain alphabet A, that is, L ⊆ A∗. We use

the term code portion to refer to any string that is admissible
according to the language, i.e., any ω ∈ L. We use this term
to emphasize that the string may be part of a larger source
code base.

A coding rule is a restriction on the source code that is
not imposed by the grammar of the programming language.
It states the conditions under which a code portion ω must
be considered invalid for the purpose of a software project.
A coding rule represents therefore a restriction on the possible
ways to program software. More formally, a coding rule spec-
ifies a function f : L → {valid,invalid}. Some rules
only have a formatting purpose, e.g., naming of variables or
placement of brackets, and do not alter the behavior of the
software; we refer to them as coding style rules [9]. In this
work we focus instead on rules that affect non-functional
properties, like security or performance. Note that the border
is somehow blurred: in some languages (e.g., Python) format-
ting can alter the semantics of the code; similarly, naming of
methods and variables can affect the functioning of libraries
and frameworks.1

A coding convention is a set of coding rules, usually having
a specific purpose, e.g., improving security or performance.
Many coding conventions are created for a single project
or company, e.g., see [10], and they never reach the public
domain. Conversely, we consider a coding convention to be a
coding standard when it is widely recognized in its reference
community, or when it is actually published as a technical
standard (e.g., MISRA C++ [11] or the JPL Java Coding
Standard [12]).

B. LIMITATIONS IN CURRENT PRACTICE
In current practice, a wealth of coding rules exists. For exam-
ple, when Smit et al. interviewed 7 software engineers asking
about the most important practices for software maintainabil-
ity, their answers resulted in 71 different coding rules and
different opinions on their priority [8]. Furthermore, many
companies define their own coding conventions, which may
differ among different teams or even for individual devel-
opers. Reasons include different programming languages,
different project requirements, or simply a client imposing
specific restrictions.

Even established collections of coding rules like the SEI
CERT Coding Standards [13] are continuously evolving, fol-
lowing changes to the agreed best practices. These changes
can be due, for example, to the discovery of new vulnera-
bilities or the introduction of new programming constructs.
In fact, even the last minor update to the Common Weakness
Enumeration (CWE)2 involved the addition of 29 new vul-
nerabilities and 142 major changes to existing ones3; many

1https://pmd.github.io/latest/pmd_rules_java_errorprone.html#
junitspelling (Accessed March 10, 2023)

2The CWE is a database of weaknesses of software. However, in most
cases it also provides coding rules that should be followed to avoid introduc-
ing the weakness itself. Actually, many rules in existing coding standards
refer to CWE entries for justification.

25736 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

of those will lead to the definition of new or updated coding
rules as a prevention.

Typically, coding rules are specified using the natural lan-
guage. In some cases, they are complemented with code
examples to demonstrate the problem being addressed. While
the support of automated tools has improved in recent years
(as discussed later in Section III), many limitations still exist.
First, tool support is fragmented: each static analysis tool
(SAT) checks a different set of rules, often for a specific pro-
gramming language. Except for very well-established coding
standards, verifying all the rules of a certain set requires the
combined application of multiple tools, and rarely all the
rules can be verified automatically at all. Most often, a tool
implements some kind of adaptation of an ambiguous coding
rule described in natural language. Even if the documenta-
tion provides some clarification, inspecting the code of the
checker is sometimes the only reliable information source.
The need to inspect the code means that it is often difficult to
understand which rules a tool can check, or vice versa which
tools are able to check a particular rule.

Tool support is especially challenging when customized
rules need to be enforced. Johnson et al. interviewed 20 devel-
opers, and 17 of them complained that many tools are not
trivial to configure, even to the point of being ‘‘so hard to
configure, they prevent you from doing anything’’ [14]. The
need for a simplified way to define customized checks has
also been highlighted in by Sadowski et al. [15], as a way to
improve the ‘‘crowdsourcing’’ of source code analysis. The
authors mention that in an attempt to integrate the formerly
known FindBugs (currently SpotBugs) at Google, only a
small number of employees understood how to write new
checkers, because of the kind and depth of knowledge needed
for the task. Furthermore, the code implementing static anal-
ysis is often complex and may itself contain bugs, to the point
that specialized debugging platforms are needed [16].

In this paper we provide a first step towards the spec-
ification of coding rules in a structured way, enabling the
automated generation of checkers and other artifacts. Differ-
ently from tools that allow adding new rules by explicitly
writing the checker code, we adopt a model-driven approach,
by targeting a more abstract specification of rules and the
automated generation of checkers.

III. RELATED WORK
The basic way to verify adherence to coding rules is to
perform manual code review. This is, of course, a costly
process. Over the years, tools to automate the verification of
coding rules have emerged. Typically, they are based on static
code analysis, which consists in analyzing the source code for
common defects and known bug patterns, without executing
the software itself.

One of the first tools targeting the Java language was
FindBugs (now SpotBugs) [17], which was initially created

3https://cwe.mitre.org/data/reports/diff_reports/v4.6_v4.7.html
(Accessed March 10, 2023)

to detect null pointer defects. It has then evolved with the
support of additional rules, and it features a plugin module
that can be used to write customized detectors. Similarly,
QJ-Pro [18] checks conformance to a predefined set of for-
matting rules, misuses of the Java language, code structure,
etc. Unfortunately, from the available documentation, it has
not been possible to precisely determine which rules are
supported by this tool. The development of QJ-Pro seems to
have stopped several years ago.

Several other tools exist; a survey on static analysis tech-
niques and tools can be found in [19]. While most tools pro-
vide some kind of extensionmechanism, adding ormodifying
rules is typically a complex task, which requires low-level
manipulation of the abstract syntax tree (AST) of the code
under analysis. PMD [20] and CheckStyle [21] are two of the
most configurable tools for Java. In CheckStyle, customized
checks are defined using the APIs provided by the tool,
which basically consists in implementing the visitor pattern
on the AST using Java code.4 PMD offers a similar possibil-
ity, while also allowing the definition of customized checkers
through XPath queries [22] on a XML-based representation
of the AST.5 XPath is a query language for XML documents;
besides being very verbose, this solution still operates on
the syntax of the Java language, meaning that the developer
has to explicitly take into account every possible syntactical
variation that leads to a violation of the rule.

The SonarQube platform [23] has become increasingly
popular in recent years, mainly due to its superior report-
ing capabilities and integration with build tools. It can be
considered more as an aggregator, providing a standardized
interface to different kinds of plugins. However, extensions
need still to be provided as XPath queries or Java plugins,6

thus requiring considerable development effort.
Starting from similar motivations as ours, Goncharenko et

al. defined a DSL for specifying coding rules for CSS (Cas-
cading Style Sheets), a simple language for web design [24].
Allamanis et al. introduced Naturalize, a tool based on Natu-
ral Language Processing (NLP), which can analyze a code
base to first recognize naming and formatting conventions
adopted in the project and then to identify possible viola-
tions [25]. Naturalize only addresses coding style rules, and
there is no way to specify customized rules that address
security, for example. There is however a growing trend in
applying machine learning for static analysis. For example,
Ochodek et al. [3] use algorithms based on decision trees to
identify violations to coding style rules for Java.

Nunes et al. benchmarks different SATs with respect to
their ability to identify vulnerabilities [26]. The results high-
lighted that the best solution depends on the deployment
scenario and on the class of vulnerability being targeted, thus

4https://checkstyle.sourceforge.io/writingchecks.html (Accessed
March 10, 2023)

5https://pmd.github.io/pmd/pmd_userdocs_extending_writing_rules_
intro.html (Accessed March 10, 2023)

6https://docs.sonarqube.org/latest/extend/adding-coding-rules/ (Accessed
March 10, 2023)

VOLUME 11, 2023 25737



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

confirming the need for specialized coding rules depending
on the project or application domain. In [27], the same authors
show that combining multiple SATs does not necessarily
improve the results over using a single tool. Wu et al. focus
on structuring the relations between rules and vulnerabilities
across different repositories [28]. However, they do not pro-
vide a structured specification of the rules themselves.

Other works in the literature focused on modeling different
aspects of source code. Some of them focused on the formal-
ization of code smells [29], [30], which however are only one
of the reasons that drive the definition of coding conventions.
Most of these works are related to the specification of rules
for the reverse engineering of software; a survey of MDE
techniques for reverse engineering can be found in [31].

In this respect, the Knowledge Discovery Metamodel
(KDM) [32] is of particular relevance. KDM is a metamodel,
defined by the Object Management Group (OMG), for repre-
senting existing software: it considers the physical and logical
elements of software at various levels of abstraction, and the
relations between them. The primary purpose of KDM is
to act as an interchange format for interoperability between
tools. MoDisco [33] provides a concrete implementation
of the metamodel, and it supports the extraction of KDM
models from software. However, KDM has been thought for
modeling an entire software project in its details, while our
objective is to model coding conventions at a higher level of
abstraction.

The QL language [34] is a query language that has been
mostly applied to the specification of queries on source code.
QL is considered a general-purpose query language [34],
while our objective is to define a DSL for the specification
of coding conventions. While QL is very powerful and sup-
ports arbitrary queries on source code, it is also necessarily
verbose; conversely, we aim at a concise specialized language
for coding conventions. Finally, we are proposing a complete
MDE workflow, in which our metamodel is the basis for
deriving other more detailed artifacts, of which QL queries
could be an example.

IV. THE PROPOSED METHODOLOGY
In this section, we describe our proposal for the management
and enforcement of coding convention, which is summarized
in Figure 1.

Instead of using the natural language, coding rules are
specified using a DSL especially tailored to define such
structured specifications; we call this language the Cod-
ing Conventions Specification Language (CCSL). Textual
descriptions of existing coding rules are translated into spec-
ifications in such language, while new rules can be created
directly as CCSL models.

Having coding rules defined as machine-readable specifi-
cations means that they can be processed automatically. For
example, before adopting a certain coding convention, the set
of rules can be analyzed to identify those that are conflicting
or redundant, thus reducing the number of alerts and avoiding
inconsistencies. While this kind of analysis is possible, we do

FIGURE 1. The proposed workflow for a the management of coding
conventions.

not focus on this aspect in the rest of the paper, and we leave
it as a further research direction.

The main benefit of having CCSL specifications of coding
rules is that they enable the automated generation of checkers,
without the need to manually implement them or configure a
SAT for the task.More in general, model transformations [35]
can be applied to automatically derive different kinds of arti-
facts from CCSL specifications, for example configuration
files for existing SATs.

As mentioned before, tools like CheckStyle or PMD can be
configured to check custom rules. However, their configura-
tion is complex and it requires deep knowledge of the tool. For
example, in PMD custom rules are defined by writing XPath
queries over the AST extracted from the source file, or by
directly implementing a Java class that realizes the check.
By defining a model transformation that generates such arti-
facts it is ensured that new coding rules that are specified with
CCSL can be automatically checked, by deriving the proper
configuration file for one of the existing tools.

However, this approach is limited by the capabilities and
technical requirements of the target SAT. More in general,
if coding rules are specified in a structured way, generators
can be defined to verify them according to different strategies,
as needed. This includes for example i) deriving source code
to perform the verification programmatically, or ii) deriving
queries in some specialized language, to be applied on an
abstract representation of the code. In this paper we will
derive checkers based on the Object Constraint Language
(OCL) [36], a query language for models, published as an
OMG standard. Deriving OCL queries is especially interest-
ing when considering a MDE context and the capabilities of
a platform like MoDisco [33], which can extract a structured
model from the source code of an existing application.

Other kinds of artifacts could be derived from CCSL
rules by automated generation, e.g., an explanation of the
rule in natural language, or examples of source code por-
tions that violate it. The element ‘‘Platform-Specific Informa-
tion’’ in Figure 1 represents any additional information that
may be required to generate a certain kind of artifact or to

25738 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

contextualize the rule to a given platform. For example, rule
TSM00-J in [13] mentions ‘‘thread-safe methods’’. Properly
verifying such rule requires knowledge of which methods
are thread-safe in the target platform, or which language
constructs make a method thread-safe (e.g., the synchro-
nized keyword for Java). The simplest form to provide such
information is a mapping between CCSL metaclasses and
keywords of the target platform.

We demonstrate the feasibility of the approach by gener-
ating OCL-based checkers for Java source code. Details on
the generation algorithm are given in Section VII. In the next
section we introduce the CCSL.

V. CODING CONVENTIONS SPECIFICATION LANGUAGE
In this section we describe the metamodel of the CCSL
language, which is used to provide structured specifications
of coding rules. As mentioned above, in this paper we mainly
focus on Java.

A. OVERVIEW
A CCSL specification of a coding rule describes the patterns
that would violate the rule in the source code. That is, given
a rule f : L → {valid,invalid}, our objective is to give
a specification of the subset of the programming language
Lf ⊆ L such that f (ω) = invalid ⇐⇒ ω ∈ Lf .
We identified the core concepts that need to be included

in the language by analyzing multiple sources, including:
i) existing coding conventions, in particular, those for the Java
language; ii) existing query languages; iii) concepts of objec-
t-oriented programming; and iv) existing models of source
code, in particular the aforementioned KDM, the MoDisco
Java metamodel, and the Eclipse JDT DOM (an API to
manipulate Java source code elements).

Differently from these languages, our metamodel is not
a model of the source code. Instead, it is a model of cod-
ing rules, operating thus at a different level of abstraction.
To understand the difference, note for example that the name
of a method is not mandatory in our language, while it is
clearly needed in a detailed model of source code. This is
because we may need to specify rules that apply to any
instance of the ‘‘Method’’ concept, independently of its name.

After identifying the constituting concepts, we defined the
actual metamodel of our CCSL using the Ecore metamodel-
ing language, which is part of the Eclipse Modeling Frame-
work (EMF) [37]. The CCSL metamodel is organized in
6 main packages: Core, NamedElements,DataTypes, Expres-
sions, Statements, and Filters, which are discussed in the fol-
lowing. The complete definition of themetamodel is available
in the GitHub repository of the project [38].

B. CORE PACKAGE
This package contains the core concepts of the metamodel,
which are illustrated in Figure 2 using the EMF notation. In
CCSL, a coding rule is represented by the Rule metaclass,
which can be either atomic or composite.

An AtomicRule is defined by three properties:

FIGURE 2. Core package.

Context. The Context describes the pattern to be searched
in the source code, e.g., a class with name ‘‘Foo’’ that
contains at least one method named ‘‘bar’’. The context
of a rule must contain at least one Element and may
contain a certain number of Filter instances.

Subject. The subject of a rule identifies the main element
to which the rule applies, and it is always one of the
elements defined in the context. In practice, the subject
defines the element on which an alert is raised in case a
violation is identified.

Filters. Filters are used to retain only elements of the context
that fulfill specific conditions, e.g., classes whose name
is matched by a regular expression. Filter is an abstract
metaclass, and it is extended by several concrete filters.
A filter can be negated, which means that only elements
not fulfilling the filter are selected.

The Element metaclass (Figure 2) is the top of a hierarchy
of metaclasses that represent different elements of the source
code, e.g., classes, interfaces, methods, invocations, assign-
ments, etc. The elements appearing in the rule’s context (and
their relations) specify the base pattern to be found in the
code.

Complex rules can be specified as aCompositeRule, which
is essentially a connector that combines multiple rules using
Boolean logic operators.

C. NamedElements PACKAGE
The NamedElements package is shown in Figure 3.
A NamedElement is an Element that has a name assigned
by the programmer (e.g., variables, classes, methods, inter-
faces, etc.). The metaclasses in this package can be logically
grouped in three categories: Custom Types, Variables, and
Methods.

1) CUSTOM TYPES
This category includes the metaclasses representing custom
types specified by the programmer (i.e., classes, interfaces,
annotations, and enumerations). The TypeDeclaration meta-
class is the top of the custom type hierarchy. The attribute
‘‘inheritance’’ defines whether a TypeDeclaration should be
‘‘final’’, ‘‘abstract’’, or ‘‘ANY’’, the latter meaning that it

VOLUME 11, 2023 25739



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

FIGURE 3. NamedElements package.

does not matter for the rule being specified. A TypeDeclara-
tion can be aComplexTypeDeclaration or an AnnotationType.

A ComplexTypeDeclaration represents custom types that
can hold fields, variables, and methods, and that can
implement/extend interfaces. An AnnotationType basically
represents Java annotations. A ComplexTypeDeclaration can
be a JInterface or a ConstructComplexTypeDeclaration. The
latter represents complex types that can hold constructors,
and it is extended by the JClass and JEnum metaclasses.

2) VARIABLES
The Variable metaclass is the superclass for all meta-
classes representing variables. InitializableVariable repre-
sents a variable that can be initialized upon declaration,
while the ParameterVariable metaclass represents a local
variable corresponding to the parameter of a method. Ini-
tializableVariable is extendend by the FieldVariable and
LocalVariable, corresponding to class attributes (fields) and
local variables, respectively.

3) METHODS
The SimpleMethod metaclass abstracts concepts that are
common to the Method and Constructor metaclasses. The
attribute ‘‘params’’ defines the parameters that must exist in
the method being specified. Detailing the name and kinds of
the parameters is not mandatory: if no information is given
on parameters, all the methods in the source code will be
selected.

When the attribute ‘‘params’’ is specified, it means that we
are looking for methods having those parameters in their sig-
nature. The semantics is that at least those parameters must
exist in the method signature. To specify that a method must

have exactly the given list of parameters, the ‘‘paramsKind’’
attribute should be set to ‘‘EXACT’’.

D. DataTypes PACKAGE
The DataTypes package is shown in Figure 4; its elements
are used to define rules related to type specifications that can
be found in a Java program. We consider two main kinds of
DataType: PrimitiveType and ObjectType.

The PrimitiveType metaclass is extended by metaclasses
representing Java primitive types (int, double, etc.); for sim-
plicity, these metaclasses are not displayed in the figure.
On the other hand, the ObjectType metaclass is extended by
different metaclasses, each one representing a more specific
kind of non-primitive type in Java.

The ArrayTypemetaclass represents the specification of an
array type. The actual type of the elements of the array is given
by a reference to another instance ofDataType. The TypeDec-
laration has been already introduced in the previous section,
and it represents a custom type defined by the programmer
(e.g., classes, interfaces, etc.).

The ParameterizedType metaclass represents the decla-
ration of a type that is parameterized according to some
other type, also known as generic types or generics in
Java terminology. The actual type used as a parameter
is specified by the typeArguments property. For example,
ArrayList<String> is a ParameterizedType having a
JClass with name ‘‘String’’ as its typeArguments.
The last two metaclasses, TypeParameter and WildCard-

Type, are also related to generic types. TypeParameter repre-
sents the declaration of a generic type in methods or classes.
For example, in the declaration of a method ‘‘public <T>
void foo(T var)’’, the type T can be represented in

25740 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

FIGURE 4. DataTypes package.

CCSL as a an instance of TypeParameter. Finally, the Wild-
CardType metaclass represents a wildcard of a type parame-
ter, e.g., the question mark in ArrayList<?>.

E. EXPRESSIONS PACKAGE
This package contains language elements that return a value
when evaluated, for example, method invocations, assign-
ments, cast expressions, strings concatenation, etc. The root
of the package is the Expression metaclass; like all the meta-
classes that define a CCSL package, theExpressionmetaclass
is a specialization of Element.
Most of the elements of the Expressions package can be

directlymapped to expressions available in the Java language,
and are thus self-explanatory (e.g.,CastExpression represents
a cast expression). The full list of classes in this package is
available in the project repository [38]. However, a few of
them deserve a more detailed description.

The Invocation metaclass is the common superclass of
MethodInvocation and ConstructorInvocation. The generic
concept of Invocation is useful when it is not necessary
to specify whether a ‘‘normal’’ method or a constructor
is invoked. Note that, contrary to intuition, the Invocation
metaclass is not abstract. In fact, the concept of Invocation
is supposed to be concretely used in CCSL specifications,
and thus the metaclass is meant to be instantiated. The same
applies to the other CCSL metaclasses that represent generic
concepts, like the Element metaclass itself.
VariableAccess represents the access to the reference of a

variable. For example, the variable declaration ‘‘int b =
c’’ accesses the c variable to obtain its value. DataTy-
peAccess represents the access to a class (or enumeration).
For example, the invocation ‘‘ClassA.foo()’’ accesses
the ClassA, and then invokes its (static) method ‘‘foo()’’.
In this context, CCSL considers ClassA an expression that
returns the class itself.
ArrayInitializer represents the specification of an array

of values, which is typically used in Java as alternative
way to initialize an array. For example, the right-hand side
of the assignment ‘‘String[] array = {“a”, “b”,

FIGURE 5. Excerpt of the Filters package.

“c”}’’ is represented in CCSL as an instance of theArrayIni-
tializer metaclass.

F. STATEMENTS PACKAGE
The Statements package includes metaclasses to represent
commands that are executed in the source code. This also
includes control flow instructions, i.e., ‘‘if’’, ‘‘while’’, ‘‘for’’,
‘‘try-catch’’, etc. As the other metaclasses at the top of a
package, the Statement metaclass is an extension of Element.

Similarly to what has been discussed for the Expressions
package, the CCSL metamodel includes a metaclass almost
for all the statements that can appear in Java code. The
complete list can be found in the documentation in the
repository [38].

G. FILTERS PACKAGE
Filters can be used to identify specific elements within those
selected by the context of the rule. Instances of filters are
added to the filters attribute of the Context metaclass (refer
to Figure 2).

The Filter metaclass is abstract, and it is the superclass
of all the filters available in CCSL. To improve flexibility,
filters adopt the idea of the Composite design pattern [39]:
a CompositeFilter represents a list of filters combined by a
Boolean operator, and AtomicFilter is an abstract metaclass
that represents an entry-point to define new filters. A filter
can also be negated or not.

Every AtomicFilter contains a list of elements to which
the filter will be applied (targets attribute). Concrete filters
are created by extending the AtomicFilter abstract metaclass.
Figure 5 shows an excerpt of the Filters package, detailing the
main structure of a filter and three of the filters available in
the current version of CCSL. The full list of available filters,
together with a brief description of their behavior, is reported
in Table 1.

CCSL also includes a generic filter called Template-
Filter, designed to improve the flexibility of the metamodel.
When none of the existing filters can specify the desired

VOLUME 11, 2023 25741



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

TABLE 1. Filters that are currently available in the CCSL metamodel, with a brief explanation of their semantics. For each filter, the corresponding
metaclass is [Name]Filter.

condition explicitly, the TemplateFilter can be configured
with a ‘‘sample’’ of the kind of elements that should be
selected. The filter then selects only the target elements that
can be matched to the provided template.

VI. WRITING A CCSL SPECIFICATION
We provide now concrete usage examples of the CCSL
metamodel. We use real rules from the SEI CERT Coding
Standard [13] and from the PMD documentation [20], both
for Java. Note that those rules are continuously evolving
(which is one of the motivations behind this work); in this
paper, we refer to version 6.21.0 of the PMD documentation.7

Unfortunately, no version information is available for the SEI
CERT Coding Standard.

As it is commonly done, we use a notation inspired to the
UML Object Diagram [40] to display metamodel instances
(i.e., CCSL specifications). We use colors to facilitate the
interpretation of specifications: we indicate with red the root
of the rule, with green its subject, with yellow the rest of the
context, and with cyan the filters.
In the concrete implementation, CCSL specifications are

Ecore models, which are by default stored in XMI (XML
Metadata Interchange [41]) format, an XML-based format
oriented towards automated processing. Our prototype imple-
mentation is further dicussed in Section VIII.

A. BASICS OF A CCSL SPECIFICATION
The main part of a rule is its subject, which identifies the
Element to which it applies. While an Element may have
various attributes (see Section V), in a typical specification,
only a few of them will actually hold a value.

Consider the rule AvoidInstanceOfChecksInCatchClause
from the PMD ‘‘Error Prone’’ ruleset:

7https://pmd.github.io/pmd-6.21.0/pmd_rules_java.html (Accessed
March 10, 2023)

FIGURE 6. AvoidInstanceOfChecksInCatchClause rule, from the PMD
Error Prone ruleset. Example of violation (a), and the corresponding CCSL
specification (b).

AvoidInstanceOfChecksInCatchClause.
‘‘Each caught exception type should be handled in
its own catch clause.’’

Figure 6a illustrates a Java code that violates such rule: it
catches a generic expression and then it checks the type of
the exception with the instanceof operator. This means that
the same catch block is being used to handle different kind
of exceptions.

Following the checker implementation and examples pro-
vided by PMD itself, we consider a code portion invalid when
an instanceof operator is applied to a variable declared as a
parameter of a catch clause. Note that this is not exactly what
is described in the textual description of the rule, as there are
other ways to verify the type of an object at runtime (e.g.,
reflection).

25742 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

The CCSL specification is given as an AtomicRule, whose
context is composed of an InstanceofExpression and aCatch-
Clause (see Figure 6b). The latter contains a Parame-
terVariable v, which represents the variable holding the
exception being caught. The subject of the rule is the
InstanceofExpression, where its left-hand side (objectExpres-
sion) is the access (VariableAccess) to the ParameterVariable
declared in the CatchClause.

B. USING FILTERS
Similarly to rules, filters can have their own context. The con-
text of a filter specifies elements that are used in the definition
of the filter condition, but that are not part of the context of
the rule itself.

Consider the rule MET09-J from SEI CERT [13]:

MET09-J: ‘‘Classes that define an equals() method
must also define a hashCode() method. [. . . ] The
equals() method is used to determine logical equiv-
alence between object instances. Consequently, the
hashCode() method must return the same value for
all equivalent objects. Failure to follow this con-
tract is a common source of defects.’’

Note that the actual coding rule is only the first sentence of the
text, while the rest is an explication of the rationale. In fact, for
the general case, determining whether the hashCode method
actually returns the same value for all the equivalent objects
is not feasible with static analysis, and it is actually an unde-
cidable problem [42].

Figure 7 illustrates the specification of the above rule
using CCSL. The element to be searched, which defines the
subject of the rule, is a JClass that contains a method named
‘‘equals’’. However, only classes that define an ‘‘equals’’
method and do not define a ‘‘hashCode’’ method must be
matched as violations. This can be achieved by applying a
TemplateFilter on the JClass subject. The template in this
case is a JClass that contains the ‘‘hashCode’’ method, and
the filter is negated, meaning that it will exclude all the classes
that do not match the template.

RuleMET09-J is also a good example of how rules defined
in natural languagemay be ambiguous and thus be interpreted
in different ways. There are at least two aspects that make this
rule ambiguous.

The first one concerns with the signatures of the equals
and hashCode methods. The traditional signature of the
equals method in Java is ‘‘boolean equals(Object
obj)’’, but it is possible to overload it, for example as
‘‘boolean equals(CustomClass obj)’’. Whether
the rule MET09-J should apply only to the original equals
method or not is up to the interpretation of the reader. On the
one hand, the problem addressed by the rule occurs on data
structures from Java collections, which would call the first
signature only. On the other hand, the rule does not specify the
signature of the method. Actually, the original (verbatim) text
of the rule mentions the ‘‘equals()’’ method, i.e., one without
any parameters.

FIGURE 7. MET09-J CCSL specification.

FIGURE 8. MET09-J refined CCSL specification.

Secondly, the hashCode method could have been defined
in a superclass rather than in the same class that defines the
equals method. This would also prevent introducing the bug
mentioned by the rule, but it is not clear if in this case a
warning should be raised or not.

Figure 8 illustrates a revised specification of the MET09-J
rule, considering these two aspects. This specification con-
siders a violation if a class defines a method with signa-
ture ‘‘boolean equals(Object obj)’’, and neither
the class itself nor its superclasses define a method with
signature ‘‘int hashCode()’’. The filter being applied
is the HasSuperClassFilter, which recursively checks if its
target does not have (it is negated) a super class that defines
the method ‘‘int hashCode()’’.

Which specification is the correct one is debatable,
although most developers would agree that the second one
is more accurate. Such ambiguity, however, highlights the
importance of providing a structured specification of coding
rules as opposed to textual ones.

The same rule exists in PMD with a more precise word-
ing,8 corresponding to the CCSL specification in Figure 8:

OverrideBothEqualsAndHashcode.
‘‘Override both public booleanObject.equals(Object
other), and public int Object.hashCode(), or over-
ride neither. Even if you are inheriting a hashCode()
from a parent class, consider implementing hash-
Code and explicitly delegating to your superclass.’’

8https://pmd.github.io/pmd-6.21.0/pmd_rules_java_errorprone.html#
overridebothequalsandhashcode (Accessed March 10, 2023)

VOLUME 11, 2023 25743



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

FIGURE 9. Two possible CCSL specifications of the
AvoidInstantiatingObjectsInLoops PMD rule.

Note, however, that PMD itself does not provide any struc-
tured specification of this rule (not even an XPath query), but
only an implementation of the checker as plain Java code.9

C. CONTAINMENT RELATIONS
An important feature of the CCSL is the possibility to specify
complex relations between elements in the context of the
rule. A particular case is the containment relation: when an
element is contained by another element of the context, the
derived checkers will look for an immediate containment
relation between these objects. However, in some cases a
weaker relation is needed.

Consider the PMD rule AvoidInstantiatingObjectsInLoops
from the ‘‘Performance’’ coding convention:

AvoidInstantiatingObjectsInLoops.
‘‘New objects created within loops should be
checked to see if they can [be] created outside them
and reused.’’

A possible CCSL specification of this rule is illustrated in
Figure 9a, where a composition relation between a LoopState-
ment and a ConstructorInvocation is established. However,
this specification is not accurate because it will recognize a
violation only if a constructor call is directly contained by
the loop and not, for example, by an if block that is in turn
contained by the loop statement.

To specify that an element must be contained in another
one at any level of depth, the ImplicitContainerFilter can be
used. This filter specifies that, recursively, all the containers
of its target should be compared with the sample element
passed to the filter. Figure 9b illustrates the correct CCSL
specification of the AvoidInstantiatingObjectsInLoops rule,
using the ImplicitContainerFilter.

9https://github.com/pmd/pmd/blob/master/pmd-
java/src/main/java/net/sourceforge/pmd/lang/java/rule/errorprone/
OverrideBothEqualsAndHashcodeRule.java (Accessed March 10, 2023)

FIGURE 10. The workflow for the automated verification of rules
specified with CCSL. OCL queries are automatically generated, and then
applied to a structured model of the Java application.

VII. GENERATION OF CHECKERS FOR JAVA
SOURCE CODE
This section is organized into three parts: we first discuss
the approach adopted for the generation of checkers, we then
detail the actual transformation algorithm, and finally we
discuss an example based on a concrete CCSL specification.

A. OVERVIEW
The objective is to demonstrate the feasibility of our proposal,
through a proof-of-concept tool able to automatically check
CCSL specifications against Java code. Among all the pos-
sibilities highlighted in Figure 1, we decided to follow the
OCL path: generating OCL queries that are then applied to a
structured model of the Java source.

This choice was driven by both practical and strategi-
cal reasons. The first is that OCL has powerful querying
contructs, as opposed to general-purpose programming lan-
guages. Generating an OCL query gives us greater flexibility
for identifying specific elements in the source code. The sec-
ond is the possibility to reuse existing MDE tools, in particu-
lar MoDisco [33] and the Eclipse OCL implementation [43].
Finally, we believe that this approach can simplify adapting
the toolchain to other programming languages, because the
generated checkers do not depend on the concrete syntax of
the Java language.

The concrete workflow is illustrated in Figure 10. Verifica-
tion of a CCSL rule involves three steps. First, an OCL query
that identifies violations of the rule is automatically generated
by model-to-text transformation. The generated query does
not depend on the project to be checked: it can be generated
once and applied multiple times on different projects. In the
second step, a structured model of the project’s source code is
extracted using MoDisco. The model of the project extracted
by MoDisco is also independent of the rule to be checked,
and therefore it needs to be extracted only once. Finally, the
OCL query is executed on the model of the target project.

B. TRANSFORMATION ALGORITHM
The generator of OCL queries from CCSL specifications has
been developed using the Acceleo framework [44]. Acceleo
is a tool to develop model-to-text transformations, which pro-
vides an implementation of the MOFM2T [45] specification
defined by the OMG.

25744 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

FIGURE 11. Architecture of the Acceleo transformation to generate OCL
queries from CCSL specifications.

The Acceleo language is not a traditional object-oriented
language. Instead, it is based on modules that expose tem-
plates. Templates, as the name implies, are blueprints of
the text to be generated. Basically, they constitute of static
text interleaved with control-flow instructions and access to
the information contained in the source model (in this case,
CCSL specifications).

Our transformation is organized in five main components
(Figure 11): OCLBuilder, CCSL2ModiscoMapper, Element-
ConditionsBuilder, FilterConditionsBuilder, and Utils.
The main module and entry point of the transformation is

the OCLBuilder module, which receives as input the CCSL
specification for which the OCL query should be generated.
The generation flow can be summarized in three steps, as
follows.

1) MAPPING OF CCSL METACLASSES
Based on the kind of element used as subject of the CCSL
specification, we identify the constructs that can represent
it in the Java metamodel. Such information is obtained by
accessing the CCSL2ModiscoMapper module, which stores
the possible correspondencies. For example, the CCSL Loop-
Statement is mapped to multiple classes in the Java meta-
model, corresponding to the for, while, or do-while
statements.

With this information, we generate a skeleton of the OCL
query to select all the source code elements that are instances
of the mapped metaclasses, and we then proceed to the next
step.

2) GENERATION OF SUBJECT CONDITIONS
In this stage, we generate all the OCL constraints for the
conditions that must be satisfied by the subject of the rule.
These constraints filter the instances that are selected by the
base OCL skeleton, based on the properties and relations
given in the context of the CCSL specification.
In this step, the module ElementConditionsBuilder works

as a Façade [39], iterating on the elements related to the rule
subject, and delegating the generation of OCL constraints for
each CCSL Element to a specific (sub-)module. The iteration
algorithm is based on a depth-first search on the graph of the
CCSL specification, starting at the element pointed by the

rule subject. OCL conditions are then recursively appended
to the query while navigating the attributes and relations
declared in the CCSL specification received as input.

When an element of the CCSL specification is visited, the
following actions are performed. 1) We mark the element
as visited to avoid infinite loops: if an element has already
been visited, we do not generate its OCL condition again.
2) Using the let construct [36], we declare a new variable
in the OCL query to hold a reference to the element being
visited, in case we need to refer to it later in the rest of the
query being generated. 3) We generate the conditions for the
attributes of the visited element, and we add them to the OCL
query. In this step, we also define which new nodes should be
visited. In general, this includes all the elements referenced
by any relation of the element, including its container if it
exists.

The operations to get all the elements visited are provided
by the Utils module. The same module also takes care of
generating a unique name for each visited element, which is
used for creating the variable in the let block in the second
step.

3) GENERATION OF FILTERS CONDITIONS
In this stage, the transformation generates all the OCL con-
straints for all the filters that are specified in the CCSL rule,
if any. The constraints are appended to the OCL query being
generated, thus further reducing the number of instances that
are selected by the final query. Each filter has its own strategy
for generating the corresponding OCL code, since each one
has its specific behavior.

The source code of the transformation is publicly available
in the GitHub repository of the project [38].

C. RUNNING EXAMPLE
Figure 12 illustrates the OCL query generated from the spec-
ification of the AvoidInstanceOfCheckInCatchClause rule of
Figure 6b. According to the algorithm described in the
previous section, the query is generated as follows.

1) Mapping of CCSLMetaclasses. The subject of the rule
is a CCSL InstanceofExpression element. In this case,
it is directly mapped to the MoDisco InstanceofExpres-
sion metaclass (incidentally they have the same name).
The base query skeleton then selects all the instances
of the InstanceofExpressionmetaclass in the Java model
(line 1).

2) Generation of Subject Conditions for ‘‘ie: Instance-
ofExpression’’. We now create the OCL conditions to
satisfy the attributes and relations declared within the
subject. We first generate a variable to hold the Instance-
ofExpression instance (instanceOfExp_1, line 2),
and then we navigate the relation objectExpression,
declared in the context, thus visiting the node ‘‘ref:
VariableAccess’’.

3) Generation of Subject Conditions for ‘‘ref: Vari-
ableAccess’’. The visited element is referenced as

VOLUME 11, 2023 25745



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

FIGURE 12. The OCL query generated from the CCSL specification of the
AvoidInstanceofInCatchClause rule (see Figure 6).

varAccess_1 in the OCL query (line 3). Note that the
query by default skips parentheses (lines 5–9). Hence,
it does not matter if the instanceof expression is
formatted as ‘‘ee instanceof Type’’ or instead,
for example, as ‘‘(ee) instanceof Type’’.
In general, a CCSL VariableAccess element can be
mapped to the SingleVariableAccess, FieldAccess, and
SuperFieldAccess metaclasses in the Java model. How-
ever, because the VariableAccess is referencing a
ParameterVariable in the CCSL specification (refer to
Figure 6b), we know that only SingleVariableAccess
is a valid match (line 11). We now visit the element
‘‘v: ParameterVariable’’, by navigating the variable
relation.

4) Generation of Subject Conditions for ‘‘v: Parame-
terVariable’’. The ParameterVariable CCSL metaclass
is mapped to the SingleVariableDeclaration metaclass
in the Java model. This instance is referenced as
paramVar_1 (lines 12–13). We then create a type
check condition to ensure the element is the expected
one (lines 14–15), and we finally proceed to the next
step by visiting the container of the ParameterVariable
element (lines 16–17).

5) Generation of Subject Conditions for ‘‘catch: Catch-
Clause’’. This is the last step for the processing of the
AvoidInstanceofInCatchClause specification, as all the
other CCSL elements have been visited already, and
the rule does not contain filters.
The CCSL CatchClausemetaclass is directly mapped to
the CatchClause metaclass in the Java model. We gen-
erate a unique variable name to reference the Catch-
Clause object (catchClause_1, line 18), and we also
generate a type check condition, since the oclContainer
returns an OclAny type (line 19). The last condition to
be generated is to ensure that the catchClause_1
and the paramVar_1 elements are connected through
the exceptionVariable relation as specified in Figure 6b
(line 20–21).

FIGURE 13. Main window of the CCSL checker.

VIII. PROTOTYPE IMPLEMENTATION
The transformation algorithm described in the previous sec-
tion is integrated into our prototype implementation of CCSL.
This section describes its current status and our future plans;
the source code is available on GitHub [38].

A. CCSL CHECKER PROTOTYPE
The current version of the CCSL Checker can verify one or
more CCSL specifications against a Java project opened in
the Eclipse workspace. The tool has been implemented as
an Eclipse plugin because of its Eclipse-based dependencies,
in particular EMF, MoDisco, Eclipse OCL, and Acceleo.

The tool accepts as input the coding rules defined as CCSL
specifications or, alternatively, the generated OCL queries to
be reused. CCSL specificationsmust be provided in XMI [41]
format, which is the serialization format adopted by EMF.
Figure 13 illustrates the main window of the prototype, where
the user should select: i) the Java project(s) on which to run
the rules; ii) the rules to be executed; and iii) the folder in
which the resulting report will be saved.

When the user presses the ‘‘Run CCSL Checker’’ button,
the prototype executes the following steps: i) it extracts the
Java model of all selected projects; ii) it generates the OCL
queries of selected rules; iii) it executes the OCL queries in
each selected project; and iv) it generates one file for each
rule, containing the identified violations with the file name
and line number where they occurred.

B. TOWARDS A TEXTUAL NOTATION
One of the limitations of the current implementation is that
CCSL rules are stored in XMI format. Although an expert
EMF developer can easily read an XMI specification, the
format is not intended to be directly manipulated by humans.
For any metamodel defined with EMF, the framework pro-
vides a basic treeview editor that can be used to create model
instances, ensuring that metamodel constraints are respected.
While we used such editor to create the CCSL specifications
used in this paper, it is not adequate for the casual user.

25746 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

The EMF ecosystem features several tools to define a
customized syntax for DSLs, either a graphical one (e.g.,
Sirius [46]) or a textual one (e.g., Xtext [47]).We are planning
to use such facilities to provide a more user-friendly syntax to
specify CCSL rules. We believe that a textual concrete syn-
tax would have several advantages [48], for example, easier
interaction with version control systems. Such developments
are however improvements to the usability of the prototype,
and not to its basic funcionality.

IX. EVALUATION
In this section we evaluate our proposal. The objective is to
demonstrate the feasibility of the approach, that is, that it is
possible to automatically derive reasonably efficient checkers
from coding rules specified using CCSL.

A. METHODOLOGY
To evaluate the checkers generated from CCSL specifica-
tions, we compare their results with those of a popular SAT
for Java, namely PMD [20]. The main reason for choosing
PMD is its extensive documentation of the rules that are
implemented. The evaluation approach can be summarized
as follows: i) we selected a subset of the PMD rules for Java,
ii) we specified them using CCSL, iii) we ran both the tools
on multiple Java projects, and iv) we compared the results.

The results are compared by first classifying the individual
violation reports (see Section IX-A1), then classifying rules
based on how they are handled by the two tools in each
individual project (see Section IX-A2), and then classifying
rules according to the aggregated results on all the analyzed
projects (see Section IX-A3).

Note that we do not aim to show that our tool is better
than PMD at detecting violations, but instead that checkers
generated with our method are comparable in performance
to those of a widely-used, established, tool. PMD is being
developed since at least 20 years ago (the first commit in its
repository is from 2002), and it has been tested by a wide
community on thousand of projects. Furthermore, it is known
that different SATs often produce different results [26], [49],
and judging the quality of alerts would require a deep analysis
of each violation in the context of the analyzed project.

1) CLASSIFICATION OF VIOLATION REPORTS
We discuss the evaluation methodology with the aid of a Venn
diagram (Figure 14). Given a certain coding rule applied
on a certain source code, the set of True Violations (Ṽ ) is the
set of actually existing violations that should be reported by
the tools. CCSL Violations (VCCSL) is the set of violations
reported by our CCSL Checker. Ideally, VCCSL ≡ Ṽ , but in
reality it may contain false positives and omit false negatives.
Similarly, PMD Violations (VPMD) is the set of violations
reported by the PMD tool. With ‘‘false positive’’ we mean
the event for which the tool reports a nonexistent violation of
the rule. Note that this definition may be different from other
interpretations; for example, a tool reporting an intentional,

FIGURE 14. The classification of violation reports that will be used in our
experiment.

harmless violation of the rule is sometimes considered a false
positive.

As seen in the diagram (Figure 14a), the report of a vio-
lation can fall in one of seven distinct sets, depending on
whether the violation actually exists, and on which tool raises
it. A full description of these sets is given in Figure 14b.

2) CLASSIFICATION OF RULES
Based on the violations reported by the two tools on a given
Java project, a certain rule can be classified in one of the
following categories.

• Exact. The violations reported by CCSL and PMD are
exactly the same, and at least one violation is reported
by both tools. That is:(

VCCSL = VPMD
)
∧ (VCCSL ∪ VPMD) ̸= ∅.

• CCSL+. The CCSL Checker performed better than
PMD. A rule is classified in this category when the
following condition is met:(
(G ∪ E) = ∅ ∧ (A ∪ D) ̸= ∅

)
∨

(
VPMD = ∅ ∧ A ̸= ∅

)
.

That is: i) there is no false positive reported by CCSL
only and no true positive reported by PMD only (G ∪

E) = ∅; and ii) there is at least one true positive reported
by CCSL only or one false positive reported by PMD
only, (A ∪ D) ̸= ∅; or alternatively iii) PMD did not

VOLUME 11, 2023 25747



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

report any violation, and CCSL reported at least one true
positive (final part of the equation).

• PMD+. PMD performed better than the CCSL checker.
A rule is classified in this category when the following
condition is met:(
(A ∪ D) = ∅ ∧ (G ∪ E) ̸= ∅

)
∨

(
VCCSL = ∅ ∧ E ̸= ∅

)
.

That is: i) there is no false positive reported by PMD
only and there is no true positive reported by CCSL
only, (A ∪ D) = ∅; and ii) there is at least one true
positive reported by PMD only or there is at least one
false positive reported by CCSL only, (G ∪ E) ̸= ∅; or
alternatively iii) CCSL did not report any violation and
PMD reported at least one true positive (final part of the
equation).

• Partial. A rule is classified as partial when there is only
a partial overlap between the violations reported by the
two tools and, therefore, no clear winner.More precisely,
when CCSL reported at least one true positive that PMD
did not report and vice versa, and both reported at least
one violation. That is:(

VCCSL ̸= ∅ ∧ A ̸= ∅
)
∧

(
VPMD ̸= ∅ ∧ E ̸= ∅

)
.

• NoViolations. Neither CCSL nor PMD did report any
violation for the rule, that is:

VCCSL = ∅ ∧ VPMD = ∅.

• NoSpecification. Independently of the violations
reported by PMD, we classify a rule in this category
when we could not provide a CCSL specification for it.

3) AGGREGATE CLASSIFICATION OF RULES
The above classification is established per project, i.e., a rule
can be classified in different categories depending on the
project under analysis. Actually, some rules have been clas-
sified as either CCSL+ or PMD+ depending on the project
(see the Appendix). To obtain an aggregate view of the perfor-
mance of our CCSL Checker with respect to PMD, we assign
a final classification to each rule, based on the results obtained
on the different projects.

Excluding the NoSpecification class, which is independent
from the project, we establish the following aggregate classi-
fication for coding rules:

• Same: For all the analyzed projects the rule has been
classified as either Exact or NoViolations.

• Better : For at least one of the analyzed projects the
rule has been classified as CCSL+, and as Exact or
NoViolations for all the other projects.

• Worse: For at least one of the analyzed projects the rule
has been classified as PMD+, and as Exact or NoViola-
tions for all the other projects.

• Inconclusive: All the remaining cases. When a rule is
classified as inconclusive it means in some projects
CCSL found violations that were not identified by PMD,
and vice versa.

B. EXPERIMENT SETUP
As mentioned earlier, we based our analysis on version
6.21.0 of PMD,which was the latest one at the timewe started
our experiments. We selected a subset of the Java rules in the
PMD documentation; in particular all those in the categories
Error Prone, Performance, and Multithreading, yielding a
total of 139 rules.We selected these three sets of rules because
they address different characteristics of software, namely
reliability, performance, and parallelism.
Then, we selected 8 real Java projects publicly available

on GitHub, on which the rules shall be verified. The selected
projects are listed in Table 2, including their names (linked
to their GitHub repository), the version that we analyzed,
and a short description. Three of those projects (WebGoat,
TeaStore, and WSVDBench) were selected for a preliminary
evaluation of this work, and then retained in the final exper-
iments. They are mock implementations used for testing and
benchmarking of web applications. The remaining 5 projects
have been selected among the most ‘‘starred’’ projects on
GitHub with a size less than 30MB, among the categories
Cryptography, Security, and Artificial Intelligence. The size
limit of 30MB has been applied to obtain an experiment of
manageable size.
We first executed PMD on the 8 projects, configured to

verify the previously selected rules, and recorded the results.
Based on this, we excluded from the rest of the experiment
all the rules for which no violation was reported in any of
the 8 projects. This reduces the number of analyzed rules in a
way fair to the experiment. Note that we only removed rules
for which PMD did not find any violation, thus essentially
removing rules that were going to be classified as NoViola-
tions or CCSL+. After this filtering, we retained 77 rules.
For each of these rules, we created a specification using

CCSL, generated the OCL-based checker, and then executed
it on the 8 projects. When we could not provide a CCSL
specification of the rule, we classified it as NoSpecifica-
tion. Then, we compared the results obtained with PMD
and with CCSL, according to the methodology discussed in
Section IX-A.

We note that, in this experiment, we did not know the
ground truth; that is, we did not know a priori if a certain
Java file contained violations of a given rule, nor where those
violations were located. Still, when the two tools produced
different results, we needed to understand if the additional
violations being reported were true positives or not, to dif-
ferentiate between the CCSL+, PMD+, and Partial classes.
In those cases, we proceeded to a manual investigation of the
reported violations, to understand if they had to be classified
as true positive or false positive. This was not necessary for
rules classified as Exact, NoSpecification, or NoViolations.

C. RESULTS
During the experiment, we were able to specify and generate
checkers for 71 of the 77 selected rules (92.2%). The gener-
ated checkers have been executed on the 8 selected projects
and the results compared with the output produced by PMD,

25748 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

as previously discussed. A summary of the obtained results is
shown in Figure 15; for each rule, the figure shows the num-
ber of projects that resulted in a certain rule classification.
For example, the rule AvoidLiteralsInIfCondition has been
classified as Exact on 3 projects, as CCSL+ on 2 projects,
and as PMD+ on the 2 remaining projects. Note that for
many rules alerts were raised only on a subset of the selected
projects.

The data used to draw the figure is available in the
Appendix. The source of such data (raw tools output) is avail-
able on a separate GitHub repository that collects the data
of the experiment [50], together with OCL queries generated
from CCSL specifications.

Table 3 shows the same data, in this case organized per
project. As before, note that a project typically contains vio-
lations only for a small subset of the analyzed rules. For each
project, rules that did not generate violations are reported
separately (NoViolations column), to focus the comparison
of the two tools on relevant rules.

In all the projects, for the majority of relevant rules we
obtained equal or better results than PMD. In fact, most rules
were classified as Exact (47% on average) or CCSL+ (14.4%
on average). On the other hand, there are also cases for which
we could not specify a rule using CCSL (6 rules out of 77),
and cases where the PMD implementation has achieved better
results than our approach (17.6% on average). For a small set
of rules (1.5% on average) the two tools reported different
violations.

While the results per project give an indication of the
performance of the CCSL Checker in a real setting, they do
not provide a clear view of the general behavior of the gen-
erated checkers. For example, a rule could behave as CCSL+

only in one project, or the rules that are classified as Exact
across different projects could, in fact, be always the same
ones.

As explained in Section IX-A, the final classification step
of our methodology classifies rules according to the behavior
of the checkers across all the different project. Figure 16
shows the final aggregate results, in which each rule is classi-
fied as Better, Same, Inconclusive,Worse, or NoSpecification
according to the results obtained across all the analyzed
projects.

The results show that more than half of the rules are
classified as Same (45.5%) or Better (14.3%), meaning that
almost 60% of the checkers generated from CCSL specifi-
cations performed equal or better than the corresponding
PMD implementation. We registered only 14 rules (18.2%)
in which the PMD tool consistently performed better across
the projects, and 6 rules (7.8%) that we could not specify
with CCSL. The remaining 11 rules (14.3%) are classified
as Inconclusive, meaning that the results were not consistent
across the projects. However, this also means that, for all
these 11 rules, the generated CCSLCheckers foundmore true
positives or fewer false positives than PMD, at least in one
project.

Further, we note that such aggregated classification
abstracts away more complex results that also depend on
the violations present in the projects. For example, rule
UnusedNullCheckInEquals was classified as ‘‘Worse’’ even
though it resulted in PMD+ for only one project, because
no violations were found in the other projects. Conversely,
rule EmptyCatchBlock being classified as ‘‘Better’’ actually
means that it resulted in CCSL+ for 3 projects, and Exact for
other 4 projects. Those detailed results are available in the
Appendix.

D. THREATS TO VALIDITY
The experiment we performed is subject to some threats to
validity, discussed in the following, together with the adopted
mitigations.

As mentioned earlier, we do not know the ground truth for
the analyzed projects. When the results between the two tools
were different, we had to analyze whether the reported alerts
were true positives or not. This is somehow subjective, due to
the ambiguity in the textual description of rules.Wemitigated
this threat by using the PMD documentation as a reference
and, when needed, by analyzing the implementation of the
PMDchecker. The two tasks of i) specifying the selected rules
with CCSL and ii) analyzing the reported violations; were
performed by two different authors separately. Doubts in the
classification of rules were solved by discussion among all
three authors.

For the same reason (lack of ground truth), the quality of
our checkers was not analyzed in absolute terms, but only in
comparison with PMD. This is of course a threat in case PMD
results are of poor quality. However, PMD is one of the most
popular SATs for Java, it has been under active development
for more than 20 years, and it is used by hundreds of real
projects. Furthermore, we applied the tools on real projects
from GitHub; obtaining comparable results in such a real
setting confirms the feasibility of the proposed approach.

In the experiment we only analyzed a limited set of
rules. The analysis of results is extremely time consuming,
especially when violation alerts differ between the tools.
Typically, such cases involve analyzing corner cases, under-
standing why the two tools are reporting different results,
verifying what the rule actually prescribes for that situation
(if it is specified at all), and whether there are ambiguities
in the rule description. We mitigated this threat by selecting
multiple projects, so that different rules were activated in
various of them and in different situations. Also, note that
only a few rules present violations in a typical project, thus
reducing the practical benefit of including additional rules to
the experiment.

X. DISCUSSION
The checkers generated from CCSL specifications showed
an accuracy comparable to that of the popular PMD tool.
The results demonstrate that the proposed MDE approach is
feasible and that it can generate checkers of good quality.

VOLUME 11, 2023 25749



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

FIGURE 15. Results of the experimental comparison between our CCSL checkers and PMD. Classification of rules
across different projects.

We note that our transformations are still part of a prototype,
while on the other hand the PMD implementation of rules

has been refined through more than 20 years of open source
development.

25750 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

TABLE 2. Software projects selected for the evaluation.

TABLE 3. Results of the experimental comparison between our CCSL Checker and PMD. Classification of rules, organized per project. Please see
Section IX-A for the adopted methodology.

FIGURE 16. Results from the aggregate classification of rules. Please see
Section IX-A for an explanation of the terms.

The main takeaways from this experiment reinforce our
initial motivation for this work. Coding rules described in nat-
ural language seldom describe all the conditions that should
be taken into account, so SAT developers need to be aware of
possible special cases, which often lead to mistakes and omis-
sions. In the analysis of mismatching reports, we encountered
several cases caused by corner cases not considered in the rule
description.

For example, rule NullAssignment says that one should not
directly assign null to a variable, except in its initialization.
In the implementation of this rule, PMD ignores variables
marked as final, because their value cannot change after
initialization. However, it also ignores arrays that are marked
as final. In this case, the reference to the array itself cannot
be changed, but the references to the individual elements of
the array can still be set to null. This is what causes the rule
to be classified as CCSL+ for the gdxAI project. Note that the
fact that the PMD implementation ignores variables marked
as final was not mentioned in the rule documentation.
Similarly, the rule ConstructorCallsOverridableMethod

mandates that a constructor should not invoke methods that

can be overridden, because it ‘‘poses a risk of invoking
methods on an incompletely constructed object’’. In the Tink
project, the CCSL Checker reported a violation in the con-
structor of an abstract class; this violation was not reported
by PMD. The constructor could not be invoked because
the class is abstract; however, subclasses could still call the
constructor with the super keyword. On the other hand, sub-
classes would also be in control of the overridden method,
thus potentially reducing the risk of introducing defects.
We decided to consider this case as a violation, because
nothing about abstract classes was mentioned in the rule
description.

Finally, it should be mentioned that some of the violations
that were missed by our CCSL Checkers are due to a limita-
tion of the underlyingMoDisco tool that we use for the extrac-
tion of the model of the source code (see Figure 10). In fact,
MoDisco is not aware of some constructs introduced in recent
Java versions, and it simply discards such information from
the model. In particular, this affected some violations that
appeared inside lambda expressions [51]. Possibly, some of
the rules classified as Worse (due to PMD+ occurrences)
would turn into Same if the model of the source code could
be extracted correctly. In future versions of our tool we
will investigate alternatives to MoDisco for the extraction of
a model of source code. Projects like MLIR (Multi-Level
Intermediate Representation) [52] look promising for this
purpose.

XI. CONCLUSION
This paper proposed an approach for the management and
enforcement of coding conventions based on model-driven
engineering techniques. To the best of our knowledge, there

VOLUME 11, 2023 25751



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

TABLE 4. Detailed results of the experimental comparison between our CCSL Checker and PMD.

is little work in such direction.We defined a language, CCSL,
that is used to specify coding rules as structured models, from

which checkers are derived by automated transformations.
One of the benefits of this approach is that checkers can be

25752 VOLUME 11, 2023



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

automatically generated from any rule that can be specified
using our language.

We analyzed the effectiveness of the approach in a thor-
ough experiment in which we applied 77 coding rules on
8 real open source projects written in Java. The experiment
compared the violations reported by checkers generated from
CCSL with those reported by the popular PMD tool. Overall,
the results are promising and show the feasibility of the
approach. In about 74% of the analyzed rules (57 out of 77),
the checkers generated from CCSL specifications performed
comparably or even better than PMD. Note that for many
rules, the PMD checker consists of imperative code written
in Java, and no high-level specification is available.

As future work, we plan to provide a simple textual nota-
tion to define CCSL specifications and integrate the checkers
in the Eclipse IDE with inline notification of violations, thus
providing a complete environment to developers. Further-
more, we plan to investigate the adaptation of the approach
to other programming languages.

APPENDIX A
See Table 4.

REFERENCES
[1] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, ‘‘Code convention

adherence in evolving software,’’ in Proc. 27th IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2011, pp. 504–507.

[2] Y. H. Tian, ‘‘String concatenation optimization on Java bytecode,’’ in Proc.
Int. Conf. Softw. Eng. Res. Pract. (SERP), Las Vegas, NV, USA, vol. 2,
2006, pp. 945–951.

[3] M. Ochodek, R. Hebig,W.Meding, G. Frost, andM. Staron, ‘‘Recognizing
lines of code violating company-specific coding guidelines using machine
learning,’’ Empirical Softw. Eng., vol. 25, no. 1, pp. 220–265, Nov. 2019.

[4] R. Teixeira, E. Guerra, P. Lima, P. Meirelles, and F. Kon, ‘‘Does it make
sense to have application-specific code conventions as a complementary
approach to code annotations?’’ inProc. 3rd ACM SIGPLAN Int. Workshop
Meta-Program. Techn. Reflection, Boston, MA, USA, Nov. 2018.

[5] G. J. Holzmann, ‘‘The power of 10: Rules for developing safety-critical
code,’’ Computer, vol. 39, no. 6, pp. 95–99, Jun. 2006.

[6] D. C. Schmidt, ‘‘Guest editor’s introduction: Model-driven engineering,’’
Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.

[7] E. Rodrigues and L. Montecchi, ‘‘Towards a structured specification of
coding conventions,’’ in Proc. IEEE 24th Pacific Rim Int. Symp. Depend-
able Comput. (PRDC), Dec. 2019, pp. 168–177.

[8] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, ‘‘Maintainability and
source code conventions: An analysis of open source projects,’’ Dept.
Comput. Sci., Univ. Alberta, Edmonton, AB, Canada, Tech. Rep. TR11-
06, Jun. 2011.

[9] N. Ogura, S. Matsumoto, H. Hata, and S. Kusumoto, ‘‘Bring your own
coding style,’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng.
(SANER), Campobasso, Italy, Mar. 2018, pp. 527–531.

[10] G. J. Holzmann, ‘‘Mars code,’’ Commun. ACM, vol. 57, no. 2, pp. 64–73,
Feb. 2014.

[11] Guidelines for the Use of the C++ Language in Critical Systems, MISRA-
C++:2008, MIRA Ltd., Warwickshire, U.K., Jun. 2008.

[12] ‘‘JPL java coding standard—JPL institutional coding standard for th java
programming language,’’ Jet Propuls. Lab., Tech. Rep., Mar. 2014.

[13] (2022). SEI CERT Coding Standard. [Online]. Available: https://wiki.sei.
cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards/

[14] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, ‘‘Why don’t
software developers use static analysis tools to find bugs?’’ in Proc.
35th Int. Conf. Softw. Eng. (ICSE), San Francisco, CA, USA, May 2013,
pp. 672–681.

[15] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
‘‘Lessons from building static analysis tools at Google,’’ Commun. ACM,
vol. 61, no. 4, pp. 58–66, Mar. 2018.

[16] L. N. Q. Do, S. Kruger, P. Hill, K. Ali, and E. Bodden, ‘‘Debugging static
analysis,’’ IEEE Trans. Softw. Eng., vol. 46, no. 7, pp. 697–709, Jul. 2020.

[17] D. Hovemeyer andW. Pugh, ‘‘Finding bugs is easy,’’ACMSigplan Notices,
vol. 39, no. 12, pp. 92–106, Dec. 2004.

[18] (2022). QJ-Pro. [Online]. Available: http://qjpro.sourceforge.net/
[19] A. Gosain and G. Sharma, ‘‘Static analysis: A survey of techniques

and tools,’’ in Intelligent Computing and Applications. New Delhi,
India: Springer, 2015, pp. 581–591. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-81-322-2268-2_59

[20] (2022). PMD. [Online]. Available: https://pmd.github.io/
[21] (2022). CheckStyle. [Online]. Available: http://checkstyle.sourceforge.net/
[22] W3C, XML Path Language (XPath) 3.1, W3C Recommendation, World

Wide Web Consortium, Cambridge, MA, USA, Mar. 2017.
[23] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st ed.

Shelter Island, NY, USA: Manning, 2013.
[24] B. Goncharenko and V. Zaytsev, ‘‘Language design and implementation

for the domain of coding conventions,’’ in Proc. ACM SIGPLAN Int. Conf.
Softw. Lang. Eng., Oct. 2016, pp. 90–104.

[25] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, ‘‘Learning natural coding
conventions,’’ in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
Nov. 2014, pp. 281–293.

[26] P. Nunes, I. Medeiros, J. C. Fonseca, N. Neves, M. Correia, and M. Vieira,
‘‘Benchmarking static analysis tools for web security,’’ IEEE Trans. Rel.,
vol. 67, no. 3, pp. 1159–1175, Sep. 2018.

[27] P. Nunes, I. Medeiros, J. Fonseca, N. Neves, M. Correia, and M. Vieira,
‘‘An empirical study on combining diverse static analysis tools for web
security vulnerabilities based on development scenarios,’’ Computing,
vol. 101, no. 2, pp. 161–185, Feb. 2019.

[28] Y. Wu, R. A. Gandhi, and H. Siy, ‘‘Using semantic templates to study
vulnerabilities recorded in large software repositories,’’ in Proc. ICSE
Workshop Softw. Eng. Secure Syst., Cape Town, South Africa, May 2010,
pp. 22–28.

[29] N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. L. Meur, ‘‘DECOR:
A method for the specification and detection of code and design smells,’’
IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20–36, Jan. 2010.

[30] H. Li and S. Thompson, ‘‘A domain-specific language for scripting refac-
torings in Erlang,’’ in Fundamental Approaches to Software Engineering
(FASE). Berlin, Germany: Springer, 2012, pp. 501–515.

[31] C. Raibulet, F. A. Fontana, and M. Zanoni, ‘‘Model-driven reverse engi-
neering approaches: A systematic literature review,’’ IEEE Access, vol. 5,
pp. 14516–14542, 2017.

[32] ‘‘Architecture-driven modernization: Knowledge discovery meta-model
(KDM),’’ Object Manag. Group, Milford, MA, USA, Tech. Rep.
formal/16-09-01, Version 1.4, Sep. 2016.

[33] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, ‘‘MoDisco: A generic
and extensible framework for model driven reverse engineering,’’ in
Proc. IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2010,
pp. 173–174.

[34] P. Avgustinov, O. D. Moor, M. P. Jones, and M. Schäfer, ‘‘QL: Object-
oriented queries on relational data,’’ in Proc. 30th Eur. Conf. Object-
Oriented Program. (ECOOP), Dagstuhl, Germany, vol. 56, 2016, p. 2.

[35] N. Kahani, M. Bagherzadeh, R. James Cordy, J. Dingel, and D. Varró,
‘‘Survey and classification of model transformation tools,’’ Softw. Syst.
Model., vol. 18, pp. 2361–2397, Aug. 2019.

[36] ‘‘Object constraint language,’’ Object Manag. Group, Milford, MA, USA,
Tech. Rep. formal/2014-02-03, Feb. 2014, Version 2.4.

[37] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed. Boston, MA, USA: Addison-Wesley,
Dec. 2008.

[38] E. Rodrigues Jr., and L. Montecchi. (2022). CCSL Metamodel. [Online].
Available: https://github.com/Elderjr/Coding-Conventions-Specification-
Language

[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, ‘‘Design patterns:
Abstraction and reuse of object-oriented design,’’ in Proc. Eur. Conf.
Object-Oriented Program. Berlin, Germany: Springer, 1993, pp. 406–431.
[Online]. Available: https://link.springer.com/chapter/10.1007/3-540-
47910-4_21

[40] ‘‘OMG unified modeling language (OMG UML),’’ Object Manag.
Group, Milford, MA, USA, Tech. Rep. formal/2017-12-06, Version 2.5.1,
Dec. 2017.

[41] ‘‘XMLmetadata interchange,’’ Object Manag. Group, Milford, MA, USA,
Tech. Rep. formal/15-06-07, Jun. 2015, Version 2.5.1.

[42] H. G. Rice, ‘‘Classes of recursively enumerable sets and their decision
problems,’’ Trans. Amer.Math. Soc., vol. 74, no. 2, pp. 358–366, Feb. 1953.

[43] Eclipse Modeling Project. (2022). Eclipse OCL (Object
Constraint Language). [Online]. Available: https://projects.eclipse.
org/projects/modeling.mdt.ocl

VOLUME 11, 2023 25753



E. Rodrigues Jr. et al.: Model-Driven Approach for the Management and Enforcement of Coding Conventions

[44] (2022). Acceleo. [Online]. Available: https://www.eclipse.org/acceleo/
[45] ‘‘MOF model to text transformation language, v1.0,’’ Object Manag.

Group, Milford, MA, USA, Tech. Rep. formal/2008-01-16, Jan. 2008.
[46] F. Madiot and M. Paganelli, ‘‘Eclipse sirius demonstration,’’ in Proc.

MoDELS Demo Poster Session Co-Located ACM/IEEE 18th Int.
Conf. Model Driven Eng. Lang. Syst. (MoDELS), in CEUR Workshop
Proceedings, vol. 1554, V. Kulkarni and O. Badreddin, Eds. Ottawa,
ON, Canada, Sep. 2015, pp. 9–11. [Online]. Available: https://ceur-ws.org/
Vol-1554/

[47] M. Eysholdt and H. Behrens, ‘‘Xtext: Implement your language faster than
the quick and dirty way,’’ in Proc. ACM Int. Conf. Companion Object
Oriented Program. Syst. Lang. Appl. Companion (SPLASH), Tahoe, NV,
USA, 2010, pp. 307–309.

[48] M. Voelter, ‘‘Best practices for DSLs and model-driven development,’’
J. Object Technol., vol. 8, no. 6, pp. 1–24, 2009.

[49] A. Arusoaie, S. Ciobaca, V. Craciun, D. Gavrilut, and D. Lucanu,
‘‘A comparison of open-source static analysis tools for vulnerability detec-
tion in C/C++ code,’’ in Proc. 19th Int. Symp. Symbolic Numeric Algo-
rithms Sci. Comput. (SYNASC), Timisoara, Romania, Sep. 2017.

[50] E. Rodrigues Jr., J. D’Abruzzo Pereira, and L. Montecchi. (2022). CCSL
vs. PMD Experiment. [Online]. Available: https://github.com/Elderjr/ccsl-
vs-pmd-experiment

[51] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, ‘‘Understanding the
use of lambda expressions in Java,’’ Proc. ACM Program. Lang., vol. 1,
pp. 1–31, Oct. 2017.

[52] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, ‘‘MLIR: Scal-
ing compiler infrastructure for domain specific computation,’’ in Proc.
IEEE/ACM Int. Symp. Code Gener. Optim. (CGO), Seoul, South Korea,
Feb. 2021, pp. 2–14.

ELDER RODRIGUES JR. received the master’s
degree in computer science from the State Uni-
versity of Campinas, Brazil, in 2020. His master’s
work was primarily focused on formalizing coding
standards using model-driven engineering tech-
niques. He is currently a Senior Java Developer
leading a team with Inter, a digital bank in Brazil.

JOSÉ D’ABRUZZO PEREIRA (Graduate Stu-
dent Member, IEEE) received the B.Sc. degree
in computer science from the State University of
Campinas (Unicamp), Brazil, and the dual M.Sc.
degree in information technology and software
engineering from the University of Coimbra (UC)
and Carnegie Mellon University. He is currently
pursuing the Ph.D. degree in information science
and technology with UC. He is a member of the
Software and System Engineering (SSE) Group,

CISUC. His research interests include security and vulnerability detection,
static code analysis, software project management, software quality, and self-
adaptive systems.

LEONARDO MONTECCHI received the
bachelor’s and master’s degrees from the Univer-
sity of Florence, Italy, in 2007 and 2010, respec-
tively, and the Ph.D. degree in computer science,
systems, and telecommunications from the Uni-
versity of Florence, in 2014. He was an Assistant
Professor with the State University of Campinas,
Brazil, from 2017 to 2021. He is currently anAsso-
ciate Professor with the Norwegian University
of Science and Technology, Trondheim, Norway.

His expertise revolves around the modeling of complex systems, including
formal models, probabilistic models, and model-driven engineering. His
research interests include modeling as a support to the verification and
validation of safety-critical and mission-critical systems. He regularly serves
as a reviewer for international conferences and journals in the area of system
and software reliability.

25754 VOLUME 11, 2023


