

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Modeling attacker behavior in

Cyber-Physical-Systems

Juan Betancourt Osorio
Dept. Of Industrial Engineering

Universidad de los Andes

Bogotá, Colombia
jm.betancourt@uniandes.edu.co

Germán Pardo González
Dept. Of Industrial Engineering

Universidad de los Andes

Bogotá, Colombia
gr.pardo@unianeds.edu.co

Samuel Rodriguez Gonzalez
School of Industrial and Systems

Egineering

University of Oklahoma

Norman, OK, US
s.rodriguez@ou.edu

Daniel Cuellar
Dept. Of Industrial Engineering

Universidad de los Andes

Bogotá, Colombia
dh.cuellar@uniandes.edu.co

Camilo Gomez
Dept. Of Industrial Engineering

Universidad de los Andes

Bogotá, Colombia
gomez.ch@uniandes.edu.co

Francesco Mariotti
Dip. Sistemi e Informatica

University of Florence

Florence, Italy
francesco.mariotti@unifi.it

Leonardo Montecchi
Department of Computer Science

Norwegian University of Science

and Technology

Trondheim, Norway

leonardo.montecchi@ntnu.no

Paolo Lollini
Dip. Sistemi e Informatica

University of Florence

Florence, Italy
paolo.lollini@unifi.it

Abstract— Societies are increasingly dependent on Cyber

Physical Systems (CPSs), which are exposed to natural and

human-made attacks. Attacks on CPSs can result in security

breaches and behaviors that may impose harm on their

environments. Understanding attack mechanisms is crucial to

preventing losses or damage to people, assets or information. We

develop a computational environment based on the ADVISE

formalism to model attack paths on CPSs, using a generalized

stochastic optimization framework that allows to implement

attacker agents based on different techniques, including

approximate dynamic programming, reinforcement learning, or

stochastic programming among others. We test the proposed

environment by simulating attacks on a SCADA system previously

addressed in the literature, demonstrating satisfactory

convergence for a Q-learning algorithm, which allows to identify

the attack steps that most frequently lead to successful attacks.

The proposed approach allows to conceive models with interacting

attacker and defender agents, which is left as the main goal of

future work.

Keywords— attacker-defender, cyber-physical systems,

reinforcement learning, stochastic optimization.

I. INTRODUCTION

Cyber-Physical-Systems (CPSs) are an instance of complex

engineering systems involving interrelated physical assets,

technological intricacy (particularly regarding their cyber

nature), and humans-in-the-loop. Typically, CPSs are involved

in providing societal services such as the automation of

processes in transportation or infrastructure systems, among

others. Moreover, CPSs are exposed to harm due to natural or

man-made (intentional) hazards, but also can impose harm on

their embedding environments (including people) as a result of

inherent or induced errors. This motivates the need to detect and

prevent disruptions in their operation, which may affect the

services they provide, the security and privacy of sensible

information, and the integrity of people and the environment.

Modeling the complex dynamics of technological systems and

human decisions is a challenge for which no single technique or

approach is sufficient; physical, logical, and organizational

aspects of the problem demand specific approaches and

modeling techniques. The Stochastic Optimization framework

proposed by Powell [1] offers a general scheme (based on the

logic of Markov Decision Processes -MDPs) to articulate

sequential decision problems in which the dynamics of a system

evolves because of the actions made on the system and the

occurrence of external phenomena over time. Different forms of

simulation and optimization can be integrated, along with

probabilistic and statistical models, to describe the dynamics and

decisions of complex systems. This general modeling approach

has proven useful to solve complex problems in robotics,

autonomous driving, and games, thanks to the adoption of

prescriptive techniques such as Approximate Dynamic

Programming (ADP) and Reinforcement Learning (RL).

We explore the use of Powell’s framework to model an attacker

decision process based on their access to a CPSs, taking

advantage of the MDP-like nature of the problem, as currently

implemented in the ADVISE framework [2]. Our objective is to

implement a computational environment to model an attacker’s

decisions on a CPSs, which can be compared against ADVISE,

to later be extended to an attacker-defender problem.

We use the SCADA system analyzed in [2] as an instantiation

of the proposed approach. We model the SCADA system as an

mailto:jm.betancourt@uniandes.edu.co
mailto:jm.betancourt@uniandes.edu.co
mailto:gr.pardo@uniandes.edu.co
mailto:gomez.ch@uniandes.edu.co
mailto:gomez.ch@uniandes.edu.co
mailto:gomez.ch@uniandes.edu.co
mailto:francesco.mariotti@unifi.it
mailto:leonardo.montecchi@ntnu.no
mailto:paolo.lollini@unifi.it

MDP based on the HTML description of the ADVISE model.

The MDP modeling is developed in the form of a computational

environment compatible with the OpenAI-Gym standard [3],

thus, allowing the use of different solution techniques (e.g., rule-

of-thumb policies, RL, ADP). We implement a value iteration

algorithm that provides optimal attack paths over the MDP,

allowing us to evaluate the convergence of other policies. We

implement and evaluate the performance of a Q-learning

algorithm as a promising alternative approach to model attacker

agents. While further testing is required to suit realistic

applications, the implemented algorithms prove the capability to

replicate ADVISE’s main features, with possibility of further

insight based on the access to the complete MDP and setting the

basis to develop attacker-defender simulation for CPSs.

II. RELATED WORK

The Supervisory Control and Data Acquisition (SCADA)

systems are widely used in sectors such as power transmission,

telecommunications and manufacturing control systems. The

reliable and continuous operation of SCADA systems is vital

because data acquisition and control are critically important.

Due to its wide use, a number of standards and directives dealing

with the cyber security of SCADA systems have emerged [4].

There have been different cyber-attacks on SCADA systems

over time such as the targeted Stuxnet attack in 2010, which was

attributed to the US and Israel and pretended to exploit the

Siemens Programmable Logic Controllers in SCADA networks

with the intention of destroying centrifuges used to process

nuclear material [5].

There have been different approaches to model cyber security

attacks over the years such as Model-Based Security Metrics

using ADversary VIew Security Evaluation (ADVISE), in

which they create an executable state-based security model of a

system and an adversary. This method consists of three main

phases: characterization of the system and its adversaries and the

specification of the desired security metrics; generation of a

dynamic model; and the execution of the model [2] [6]. It is also

possible to use the ADVISE model to cover the attack patterns

in the CAPEC database to enrich the combination of

adversaries’ profiles and attack paths [7].

One of the main approaches related to our work is the MDP

model of competition for control of the power substations from

[8]. They propose three different cyber-attack models to study

the attackers’ actions and its consequences: the adversary action

model, the intrusion activity model and the strategy

competitions between adversary and defender. They use

interesting defensive tools like an anomaly detection system. In

the end, they obtained the optimal policies of the attacker’s and

defender’s worst scenario based on the MDP model.

M. Rasouli et al. [9] divided cybersecurity in two main

categories: static and dynamic. In the first category, the agents

(attacker and defender) receive no new information during the

time horizon; these problems can be classified as resource

allocation, where the defender and the attacker make a single

decision regarding where to allocate their resources. Dynamic

security problems permit the system and the agents to evolve

over time, that is, the defender is continuously taking actions

while observing the evolution of the system. [9] modeled the

problem from a defender’s point of view and with imperfect

information and determined an optimal policy using dynamic

programming.

Another interesting approach is in [10] where they used a deep

reinforcement learning algorithm to maximize the robustness of

autonomous vehicles' dynamics control to cyber-physical

attacks. They study the autonomous vehicles’ reaction to the

attacker’s actions, such as the injection of faulty data to the

sensor readings or the manipulation of the inter-vehicle safe

spacing in order to increase the risk of accidents on these types

of vehicles. On the other hand, they also modeled autonomous

vehicles acting as a defender where its goal is to ensure

robustness to the attacker’s action.

A. Nandi et al. [11] presented a bi-level mixed integer linear

program model to find an optimal subset of arcs (interdiction

plan) based on an attack graph representing the cyber-physical

system. The attack graph of a system contains all the possible

paths that an attacker can use to penetrate the system in diverse

ways. The final goal is to minimize the loss due to security

breaches given by the attack graph and the exact algorithm

proposed can solve relatively large instances of the problem.

III. METHODOLOGY

A. Problem rationale

In order to model attacker behaviors in CPS under Powell’s

MDP-based framework for stochastic optimization, we rely on

the ADVISE formalism to define the rules and dynamics of the

“game” to be played by the attacker (and, at a later stage, the

defender). The formalism is based on sets of: attack steps the

attacker may execute at a cost, with certain probability of

success and certain probability of detection; knowledges and

skills with which an attacker must comply to achieve different

attack steps; accesses that situate the attacker in a position within

the system where certain attack steps are reachable; and goals

that the attacker may obtain, with an associated reward based on

the completion of specific attack steps.

Given an initial set of access(es), knowledge(s) and skill(s)

available to the attacker, we aim at determining the sequence of

valid attack steps that maximizes the attackers objective

function, which combines the cost of executing attack steps, the

probability of being detected, and the reward obtained when

attaining the goal.

B. Modeling attacks in CPSs under the unified stochastic

optimization framework

The unified stochastic optimization framework consists of five

elements: states (S), which include any known or belief related

information about the current situation of the system of interest;

actions (X), which contain the available decisions at the current

state; information (W), which represents exogenous events

(often uncertain, for which only distributions may be known)

that are revealed after an action is executed; transition function,

which determines the problem’s logic or dynamics, i.e., how the

system or process evolves from being in one state to another as

a result of the execution of a certain action and the realization of

exogenous events at that particular original state. In the

following, we define the five elements of the framework for the

case of modeling attacks in CPSs following the ADVISE

formalism.

State: The state variable, all the relevant information for any

algorithm/agent, can be decomposed on three main components.

For this application we found that two of the three categories are

enough:

• Physical State: The agent has available information of

which of the access, knowledge, skills and goals that it

has achieved. This was encoded on a binary vector

which for each component, indicates if the attacker has

this component available. In an example with three

accesses and two knowledges, skills and goals, the state

would be:

 r1 r2 r3 k1 k2 s1 s2 g1 g2

1 0 0 1 0 1 0 1 0

• Other deterministic information: The agent also has

available which goal they are pursuing, and which are

the available actions on a given time-step.

Action: The actions on this MDP are the attacks to perform on

the time-step. The agent can only perform one action per time-

step and cannot repeat actions it has already successfully

executed. As an example, with the action space 𝑋𝑡 =
{𝑎2, 𝑎3, 𝑎6}, the action on a given time-step could be:

𝑥𝑡 = 𝑎6

Exogenous information: Professor Powell proposes an

additional variable which contains the realizations of the

stochastic phenomena of the system. This information is

computed after the actions are performed. This means that the

agent has no knowledge of the value and cannot act once the

variable is known. For this problem, the stochasticity is given on

the success or failure of the attack performed. That is, each

attack has an intrinsic probability of success. For the given state

and the chosen action, the exogenous information could be

𝑤𝑡 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

Transition Function: The transition function models the

dynamics of the system on the decision process. When the agent

is in a given state, takes a given action and the exogenous

information is computed, there is a transition to a new state. This

function is.

𝑆𝑀
𝑋(𝑆𝑡 , 𝐴𝑡 , 𝑊𝑡+1) → 𝑆𝑡+1

Cost Function: As the transition function, the cost function takes

a given state, an action and stochastic realizations and returns

the cost/reward product of the transition. For this problem, the

reward is composed of the following:

• Action cost: Each action has a defined cost; it is

charged every time the action is performed (even in

unsuccessful attempts).

• Goal payoff: When the active goal is reached and the

episode terminates a defined reward is given to the

agent.

• Termination penalization: When an episode is

terminated because the maximum number of time-

steps is reached, a large cost is given as a penalization

to the agent.

𝐶𝑡+1(𝑆𝑡 , 𝐴𝑡 , 𝑊𝑡+1) → 𝑐𝑡 = 𝐺𝑜𝑎𝑙 𝑝𝑎𝑦𝑜𝑓𝑓 − 𝐴𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 − 𝑇𝑒

Where 𝑇𝑒 stands for the termination penalization

C. Implementation of the computational environment

We modeled the system under the adopted framework: Let 𝑆𝑡 be

the state variable of the system, 𝑥𝑡 are all the decision variables,

𝑋𝑡(𝑆𝑡) is the set of the available actions given the state 𝑆𝑡, the

exogenous information (information available just after we

make a decision) is 𝑊𝑡+1 , the transition function is

𝑆𝑀(𝑆𝑡 , 𝑥𝑡 , 𝑊𝑡+1) and finally the objective function would be:

max
𝜋

𝔼[∑𝐶(𝑆𝑡 , 𝑋𝜋(𝑆𝑡))|𝑠0]

where 𝐶(𝑆𝑡 , 𝑋𝜋(𝑆𝑡)) is the cost or reward function given by the

state 𝑆𝑡 and the policy 𝑋(𝑆𝑡).

For our system consider the representation of a CPS presented

on Fig 1:

Fig 1. Example of CPS system

In this example the state variable is defined as:

• 𝑆𝑡 = {(𝑟1, 𝑟2, 𝑟3), (𝑘1), (𝑠1), (𝑔1)} where every

variable is binary and takes the value of 1 if the access,

knowledge, skill, or goal is available. The 𝑟 represents

the accesses, 𝑘 stands for knowledge, 𝑠 for skills and 𝑔

for the goals achieved.

• 𝑋𝑡 = {𝑎1, 𝑎2} are the available actions depending on

the current system state 𝑆𝑡.

• 𝑊𝑡 is the outcome of taking action 𝑋𝑡, that is, whether

the action is successful or not.

• 𝑆𝑡+1 = 𝑆𝑋
𝑀(𝑆𝑡 , 𝑋𝑡 , 𝑊𝑡) represents the transition

function. Where, depending on the outcome of the

action, the system remains in the same state or

transitions to a new state.

• 𝑅𝑡(𝑆𝑡 , 𝑊𝑡 , 𝑆𝑡+1) is the cost or reward function that

considers the cost of performing action 𝑋𝑡 and if the

attacker reached a goal or not.

The challenges in this problem are the uncertainty modelling and

the optimal policy design.

D. Solving the decision problem for the CPS attacker

First, we describe the value iteration algorithm, which provides

convergence guarantees (at the expense of potentially long

computational times). Then, we describe the Q-Learning

algorithm as a first attempt to train a reinforcement learning

based attacker agent within our computational environment.

1) Value iteration

The value iteration algorithm is one of the most famous

algorithms in dynamic programming and it is used to solve a

broad variety of sequential decision problems. It resembles

backwards induction but instead of using the epochs from 𝑇 to

0 it uses an iteration counter 𝑛. Therefore, it is used for infinite

horizon problems and the convergence is guaranteed under a

specified criterion. One of the issues of value iteration is that its

applicability can be limited because of the so-called curse of

dimensionality, that is, the computational time needed to solve

problems with a large space of states can become ridiculously

long. Nevertheless, in our example case the computational time

is not a problem. Value iteration is based on the computation of

the following expression:

𝑣𝑛(𝑠) = max
𝑎

{𝐶(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) 𝑣𝑛−1(𝑠′)

𝑠∈𝑠′

}

Where 𝐶(𝑠, 𝑎) is the cost of taking action a given that the system

is in the state 𝑠 , 𝛾 is the discount factor that reflects how

valuable is the future reward and 𝑃(𝑠′|𝑠, 𝑎) represents the

probability of transitioning to state 𝑠′ given that the system is in

the state 𝑠 and took the action 𝑎.

The convergence of the algorithm occurs when:

|𝑣𝑛 − 𝑣𝑛−1| < 𝛿

Where 𝛿 is the criterion predetermined for convergence. When

convergence is reached, the optimal policy is obtained by

computing:

𝜋(𝑠) = argmax
𝑎

{𝐶(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)

𝑠∈𝑠′

𝑣𝑛−1(𝑠′)}

Where 𝜋(𝑠) represents the optimal policy that maps an action

given a state. [1] [12]

2) Q-learning implementation to experiment with the agent

construct

Q-Learning is an off-policy Temporal Difference

Reinforcement Learning algorithm developed in the early 90's

in order to solve Markov Decision Processes (MDPs) and to find

their optimal or near optimal action-policies. The idea behind Q-

Learning is to estimate an optimal action-value function for each

state, known as the Q-function or Q-table, which consists of the

expected returns or quality (hence the “Q” in Q-Learning) of

taking a determined action at a particular state. The Q value for

every state-action pair converges asymptotically towards their

optimal expected value under the assumption that all of these

state-action pairs are continued to be explored given a

sufficiently large amount of time. The exploration policy is

commonly known as an epsilon-greedy policy: with probability

𝜀, the action selected is going to be greedy with respect to the

highest Q-value for the current state, and the action selected is

randomly sampled with equal probability for all actions in the

actions pool with probability 1 − 𝜀.

𝑄𝑛+1(𝑠, 𝑎) ← (1 − 𝛼)𝑄𝑛(𝑠, 𝑎) + 𝛼[𝑟(𝑠, 𝑎) + 𝛾 max

𝑎′∈ 𝐴
𝑄𝑛(𝑠′, 𝑎′)]

The above Q-Learning update rule represents the value of taking

action 𝑎 in state 𝑠 at each step. The reward 𝑟(𝑠, 𝑎) could be a

random variable following a specific probability distribution

but, without loss of generality, the Q-Learning update rule can

be interpreted as the expected value of 𝑟(𝑠, 𝑎). The transition

dynamics from state 𝑠 to 𝑠′ are determined by a state transition

function. Parameter 0 < 𝛼 < 1 represents a learning rate or

step-size, which is basically a weighted average of past rewards

and the initial estimate for the Q-value. Additionally, 0 < 𝛾 < 1

can be interpreted in two different ways: i) When 𝛾 is close to 1,

a greater importance is given to future rewards, whereas a value

of close to 0 gives more importance to immediate rewards. ii) It

can be seen as a mathematical convenience to guarantee the

convergence to the optimal Q-values when the underlying MDP

consists of only 1 episode with infinite steps.

IV. COMPUTATIONAL EXPERIMENTS

As a proof of concept, two scenarios were tested on both the

value iteration and Q-Learning algorithms using the developed

computational environment. Both scenarios represent different

initial states of the SCADA system under study (i.e., available

accesses, knowledges, etc.). Algorithms were tested and

averaged over a defined set of 50 episodes. The experiments

were performed on Python 3.10.4 and on a computer with the

following specifications: MacBook Pro 2018, CPU Quad-Core

Intel Core i5 of 2.3 GHz and 16 GB RAM. The main hyper-

parameters of the algorithms are:

Value iteration:

• Threshold 𝛿: 1e-15

Q-Learning:

• Number of training episodes: 15000

• 𝛼: 0.05

• 𝛾: 0.99

• Initial 𝜀: 0.7

a) Experiment 1

The initial components available were: Access 1, Knowledge 1

and Skill 2. The episode terminates when the agent reaches Goal

5. The algorithms were given a maximum of 6 time-steps to

reach the goal. Figure 2 shows the initial state for Experiment 1,

whereas Figures 3-6 provide a summary of results, including, in

order: the obtained attack path; the frequency that each attack

step was part of a successful attack path; the evolution of the

reward during training; and the number of successful attacks per

episode during training. The overall stats are as follow:

Value iteration:

• Computation time: 13.11 s

• Average reward of the trained agent: -1.47

• Average success rate of the trained agent: 0.62

Q-Learning

• Training time: 8.05 s

• Average reward of the trained agent: -1.47

• Average success rate of the trained agent: 0.62

Fig 2. Initial state of the SCADA system for Experiment 1

 Fig 3. Optimal attack path for Experiment 1

Fig 4. Histogram of the frequency for each attack in

Experiment 1

Fig 5. Average reward through the episodes in Experiment 1

Fig 6. Proportion of successful episodes in Experiment 1

b) Experiment 2

The initial components available were: Access 6, Knowledge 4,

and Skill 2 and 3. The episode terminates when the agent reaches

Goal 2. The algorithms were given a maximum of 6 time-steps

to reach the goal. Figure 7 shows the initial state for Experiment

1, whereas Figures 8-11 provide a summary of results,

including, in order: the obtained attack path; the frequency that

each attack step was part of a successful attack path; the

evolution of the reward during training; and the number of

successful attacks per episode during training. The overall stats

are as follows:

Value iteration

• Computation time: 11.58 s

• Average reward of the trained agent: 0.38

• Average success rate of the trained agent: 0.88

Q-Learning

• Training time: 8,64 s

• Average reward of the trained agent: 0.38

• Average success rate of the trained agent: 0.88

Fig 7. Initial state of the SCADA system for Experiment 2

Fig 8. Optimal attack path for Experiment 2

Fig 9. Histogram of the frequency for each attack in

Experiment 2

Fig 10. Average reward through the episodes in Experiment 2

Fig 11. Proportion of successful episodes in Experiment 2

To analyze the average reward and average success rate of the

Q-Learning algorithm there are a few important aspects to

consider:

• The algorithm explores the state and action space

throughout the whole training. The exploration rate is

significatively higher at the beginning of the training

period (0.7) and declines (down to 0.04) at the end of

the training. This means, even with consolidated

estimates of the Q-values, that the agent might still take

random actions which can mean unsuccessful

episodes.

• The number of maximum time-steps implies that even

with an optimal policy, there will be unsuccessful

episodes due to realizations of the actions’ successes.

With this basis, the obtained results are very promising. On both

experiments, the average reward and success graphs reveal a

visible learning curve in which the agent starts the training

having erratic performance. But, as the training advances, the

average performance increases and stabilizes at the end of the

training. This means, that the estimates the agent has calibrated

allows it to take effective actions and reach the goal. Having the

optimal policy assured by the value iteration algorithm, we can

conclude that the Q-Learning agent learned the optimal policy

for both experiments. In terms of computational performance,

the Q-Learning training took around 35% less time than the

Value Iteration computation. This represents a big contribution

when working with more complex systems.

In each scenario, the frequency of the actions performed on

successful episodes was recorded. With this information, it is

possible to identify the critical attacks (and components) when

an attacker is pursuing a specific goal. This can provide

insightful information for any defender decision maker, it allows

the profiling of the attacker and taking adequate

countermeasures. The attack-path graphs provide a visual tool to

recognize the sequence of actions that the attacker might take

when exploiting vulnerabilities.

a) Definition of available defender actions with their

associated cost and impact on the probability of attack

success.

b) Definition of attacker variations (e.g., number of

available attempts to attack; initial

accesses/knowledges)

c) Execution of all game-settings defined in (a) and (b)

under the implemented environment, and policy

evaluation reports with visual analytics of players

strategies and outcomes.

V. CONCLUSIONS

We proposed a modeling approach for attacker behaviors in CPS

based on a unified framework for stochastic optimization and

following the ADVISE formalism. The modeling approach

follows the logic of Markov decision processes to generalize the

process of sequential decisions under uncertainty and admits a

variety of solution approaches, including approximate dynamic

programming and reinforcement learning. This versatility

enables the implementation of attacker agents based on different

policies (algorithms) and eventually include interacting attacker

and defender agents.

A computational environment was developed as a Python class

designed to be compatible with OpenAI’s gym standards [3]. A

proof of concept was implemented for a SCADA system

previously addressed in the literature, using two different

scenarios of initial states and desired goals. Two algorithms

were successfully implemented and evaluated under the policy

evaluation scheme: Value Iteration and Q-Learning. After

training and calibration, the policies can navigate the ADVISE

graph efficiently and achieve the goal in over 70% of episodes.

This is remarkable considering that the number of maximum

time-steps was designed to be restrictive to few unsuccessful

attacks. The most critical attack steps (i.e., those most

frequently associated with successful attack paths) for each

scenario were identified and serve as a basis for including

defender actions.

Future work includes building an instance set with more

complex systems to evaluate and improve the performance of

the proposed environment and algorithms, as well as including

a defender agent to implement preventive and reactive actions to

reduce the impact of attacks.

VI. REFERENCES

[1] W. Powell, Reinforcement Learning and Stochastic

Optimization, NJ: John Wiley & Sons Inc., 2022.

[2] E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders and C.

Muehrcke, "Model-based Security Metrics using

ADversary VIew Security Evaluation (ADVISE)," in

Eighth International Conference on Quantitative

Evaluation of SysTems, 2011.

[3] G. Brockman, V. Cheung, L. Petterson, J. Schneider, J.

Schulman, J. Tang and W. Zaremba, "OpenAI Gym,"

arXiv preprint arXiv:1606.01540, 2016.

[4] Cherdantseva, B. P. Yulia, A. Blyth, P. Eden, K. Jones,

H. Soulsby and K. Stoddart, "A review of cyber

security risk assessment," Computers & Security, vol.

56, pp. 1-27, 2015.

[5] A. Sood and R. J. Enbody, "Targeted Cyberattacks,"

Cyberwarfare, 2013.

[6] E. LeMay, W. Unkenholz, D. Parks, C. Muehrcke, K.

Keefe and W. H. Sanders, "Adversary-Driven State-

Based System Security Evaluation," in 6th International

Workshop on Security Measurements and Metrics, New

York, 2010.

[7] F. T. M. Mariotti, L. Montecchi and P. Lollini,

"Extending a security ontology framework to model

CAPEC attack paths and TAL adversary profiles," 2022.

[8] Y. Chen and J. L. C. Hong, "Modeling of Intrusion and

Defense for Assessment of Cyber Security at Power

Substations," IEEE Transactions on Smart Grid, vol. 9,

no. 4, pp. 2541-2552, 2018.

[9] M. Rasouli and E. T. D. Miehling, "A Supervisory

Control Approach to Dynamic Cyber-Security," in

Decision and Game Theory for Security, 2014.

[10] A. Ferdowsi, U. Challita, W. Saad and N. B.

Mandayam, "Robust Deep Reinforcement Learning for

Security and Safety in Autonomous Vehicle Systems,"

in 21st International Conference on Intelligent

Transportation Systems, 2018.

[11] A. K. Nandi, H. R. Meda and S. Vadlamani,

"Interdicting attack graphs to protect organizations from

cyber attacks: A bi-level defender–attacker model,"

Computers & Operations Research, pp. 118-131, 2016.

[12] R. Sutton and A. Barto, "Reinforcement Learning: An

Introdutcion," The MIT Press , 2015.

