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Abstract— Societies are increasingly dependent on Cyber 

Physical Systems (CPSs), which are exposed to natural and 

human-made attacks. Attacks on CPSs can result in security 

breaches and behaviors that may impose harm on their 

environments. Understanding attack mechanisms is crucial to 

preventing losses or damage to people, assets or information. We 

develop a computational environment based on the ADVISE 

formalism to model attack paths on CPSs, using a generalized 

stochastic optimization framework that allows to implement 

attacker agents based on different techniques, including 

approximate dynamic programming, reinforcement learning, or 

stochastic programming among others. We test the proposed 

environment by simulating attacks on a SCADA system previously 

addressed in the literature, demonstrating satisfactory 

convergence for a Q-learning algorithm, which allows to identify 

the attack steps that most frequently lead to successful attacks. 

The proposed approach allows to conceive models with interacting 

attacker and defender agents, which is left as the main goal of 

future work. 

Keywords— attacker-defender, cyber-physical systems, 

reinforcement learning, stochastic optimization. 

I. INTRODUCTION  

Cyber-Physical-Systems (CPSs) are an instance of complex 

engineering systems involving interrelated physical assets, 

technological intricacy (particularly regarding their cyber 

nature), and humans-in-the-loop. Typically, CPSs are involved 

in providing societal services such as the automation of 

processes in transportation or infrastructure systems, among 

others. Moreover, CPSs are exposed to harm due to natural or 

man-made (intentional) hazards, but also can impose harm on 

their embedding environments (including people) as a result of 

inherent or induced errors. This motivates the need to detect and 

prevent disruptions in their operation, which may affect the 

services they provide, the security and privacy of sensible 

information, and the integrity of people and the environment. 

 

Modeling the complex dynamics of technological systems and 

human decisions is a challenge for which no single technique or 

approach is sufficient; physical, logical, and organizational 

aspects of the problem demand specific approaches and 

modeling techniques. The Stochastic Optimization framework 

proposed by Powell [1] offers a general scheme (based on the 

logic of Markov Decision Processes -MDPs) to articulate 

sequential decision problems in which the dynamics of a system 

evolves because of the actions made on the system and the 

occurrence of external phenomena over time. Different forms of 

simulation and optimization can be integrated, along with 

probabilistic and statistical models, to describe the dynamics and 

decisions of complex systems. This general modeling approach 

has proven useful to solve complex problems in robotics, 

autonomous driving, and games, thanks to the adoption of 

prescriptive techniques such as Approximate Dynamic 

Programming (ADP) and Reinforcement Learning (RL). 

 

We explore the use of Powell’s framework to model an attacker 

decision process based on their access to a CPSs, taking 

advantage of the MDP-like nature of the problem, as currently 

implemented in the ADVISE framework [2]. Our objective is to 

implement a computational environment to model an attacker’s 

decisions on a CPSs, which can be compared against ADVISE, 

to later be extended to an attacker-defender problem. 

 

We use the SCADA system analyzed in [2] as an instantiation 

of the proposed approach. We model the SCADA system as an 
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MDP based on the HTML description of the ADVISE model. 

The MDP modeling is developed in the form of a computational 

environment compatible with the OpenAI-Gym standard [3], 

thus, allowing the use of different solution techniques (e.g., rule-

of-thumb policies, RL, ADP). We implement a value iteration 

algorithm that provides optimal attack paths over the MDP, 

allowing us to evaluate the convergence of other policies. We 

implement and evaluate the performance of a Q-learning 

algorithm as a promising alternative approach to model attacker 

agents. While further testing is required to suit realistic 

applications, the implemented algorithms prove the capability to 

replicate ADVISE’s main features, with possibility of further 

insight based on the access to the complete MDP and setting the 

basis to develop attacker-defender simulation for CPSs. 

 

II. RELATED WORK 

The Supervisory Control and Data Acquisition (SCADA) 

systems are widely used in sectors such as power transmission, 

telecommunications and manufacturing control systems. The 

reliable and continuous operation of SCADA systems is vital 

because data acquisition and control are critically important. 

Due to its wide use, a number of standards and directives dealing 

with the cyber security of SCADA systems have emerged [4]. 

There have been different cyber-attacks on SCADA systems 

over time such as the targeted Stuxnet attack in 2010, which was 

attributed to the US and Israel and pretended to exploit the 

Siemens Programmable Logic Controllers in SCADA networks 

with the intention of destroying centrifuges used to process 

nuclear material [5]. 

 

There have been different approaches to model cyber security 

attacks over the years such as Model-Based Security Metrics 

using ADversary VIew Security Evaluation (ADVISE), in 

which they create an executable state-based security model of a 

system and an adversary. This method consists of three main 

phases: characterization of the system and its adversaries and the 

specification of the desired security metrics; generation of a 

dynamic model; and the execution of the model [2] [6]. It is also 

possible to use the ADVISE model to cover the attack patterns 

in the CAPEC database to enrich the combination of 

adversaries’ profiles and attack paths [7]. 

 

One of the main approaches related to our work is the MDP 

model of competition for control of the power substations from 

[8]. They propose three different cyber-attack models to study 

the attackers’ actions and its consequences: the adversary action 

model, the intrusion activity model and the strategy 

competitions between adversary and defender. They use 

interesting defensive tools like an anomaly detection system. In 

the end, they obtained the optimal policies of the attacker’s and 

defender’s worst scenario based on the MDP model. 

 

M. Rasouli et al. [9] divided cybersecurity in two main 

categories: static and dynamic. In the first category, the agents 

(attacker and defender) receive no new information during the 

time horizon; these problems can be classified as resource 

allocation, where the defender and the attacker make a single 

decision regarding where to allocate their resources. Dynamic 

security problems permit the system and the agents to evolve 

over time, that is, the defender is continuously taking actions 

while observing the evolution of the system. [9] modeled the 

problem from a defender’s point of view and with imperfect 

information and determined an optimal policy using dynamic 

programming. 

 

Another interesting approach is in [10] where they used a deep 

reinforcement learning algorithm to maximize the robustness of 

autonomous vehicles' dynamics control to cyber-physical 

attacks. They study the autonomous vehicles’ reaction to the 

attacker’s actions, such as the injection of faulty data to the 

sensor readings or the manipulation of the inter-vehicle safe 

spacing in order to increase the risk of accidents on these types 

of vehicles. On the other hand, they also modeled autonomous 

vehicles acting as a defender where its goal is to ensure 

robustness to the attacker’s action. 

A. Nandi et al. [11] presented a bi-level mixed integer linear 

program model to find an optimal subset of arcs (interdiction 

plan) based on an attack graph representing the cyber-physical 

system. The attack graph of a system contains all the possible 

paths that an attacker can use to penetrate the system in diverse 

ways. The final goal is to minimize the loss due to security 

breaches given by the attack graph and the exact algorithm 

proposed can solve relatively large instances of the problem. 

 

III. METHODOLOGY 

A. Problem rationale 

 

In order to model attacker behaviors in CPS under Powell’s 

MDP-based framework for stochastic optimization, we rely on 

the ADVISE formalism to define the rules and dynamics of the 

“game” to be played by the attacker (and, at a later stage, the 

defender). The formalism is based on sets of: attack steps the 

attacker may execute at a cost, with certain probability of 

success and certain probability of detection; knowledges and 

skills with which an attacker must comply to achieve different 

attack steps; accesses that situate the attacker in a position within 

the system where certain attack steps are reachable; and goals 

that the attacker may obtain, with an associated reward based on 

the completion of specific attack steps. 

 

Given an initial set of access(es), knowledge(s) and skill(s) 

available to the attacker, we aim at determining the sequence of 

valid attack steps that maximizes the attackers objective 

function, which combines the cost of executing attack steps, the 

probability of being detected, and the reward obtained when 

attaining the goal. 

 

B. Modeling attacks in CPSs under the unified stochastic 

optimization framework 

 



 

 

The unified stochastic optimization framework consists of five 

elements: states (S), which include any known or belief related 

information about the current situation of the system of interest; 

actions (X), which contain the available decisions at the current 

state; information (W), which represents exogenous events 

(often uncertain, for which only distributions may be known) 

that are revealed after an action is executed; transition function, 

which determines the problem’s logic or dynamics, i.e., how the 

system or process evolves from being in one state to another as 

a result of the execution of a certain action and the realization of 

exogenous events at that particular original state. In the 

following, we define the five elements of the framework for the 

case of modeling attacks in CPSs following the ADVISE 

formalism. 

 

State: The state variable, all the relevant information for any 

algorithm/agent, can be decomposed on three main components. 

For this application we found that two of the three categories are 

enough: 

• Physical State: The agent has available information of 

which of the access, knowledge, skills and goals that it 

has achieved. This was encoded on a binary vector 

which for each component, indicates if the attacker has 

this component available. In an example with three 

accesses and two knowledges, skills and goals, the state 

would be: 

 

               r1     r2      r3     k1     k2     s1    s2      g1    g2       

1 0 0 1 0 1 0 1 0 

 

                               

• Other deterministic information: The agent also has 

available which goal they are pursuing, and which are 

the available actions on a given time-step. 

    

Action: The actions on this MDP are the attacks to perform on 

the time-step. The agent can only perform one action per time-

step and cannot repeat actions it has already successfully 

executed. As an example, with the action space 𝑋𝑡 =
{𝑎2, 𝑎3, 𝑎6}, the action on a given time-step could be: 

 

𝑥𝑡 = 𝑎6 

 

Exogenous information: Professor Powell proposes an 

additional variable which contains the realizations of the 

stochastic phenomena of the system. This information is 

computed after the actions are performed. This means that the 

agent has no knowledge of the value and cannot act once the 

variable is known. For this problem, the stochasticity is given on 

the success or failure of the attack performed. That is, each 

attack has an intrinsic probability of success. For the given state 

and the chosen action, the exogenous information could be 

 

𝑤𝑡 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 

 

Transition Function: The transition function models the 

dynamics of the system on the decision process. When the agent 

is in a given state, takes a given action and the exogenous 

information is computed, there is a transition to a new state. This 

function is. 

 

𝑆𝑀
𝑋(𝑆𝑡 , 𝐴𝑡 , 𝑊𝑡+1) → 𝑆𝑡+1 

 

Cost Function: As the transition function, the cost function takes 

a given state, an action and stochastic realizations and returns 

the cost/reward product of the transition. For this problem, the 

reward is composed of the following: 

• Action cost: Each action has a defined cost; it is 

charged every time the action is performed (even in 

unsuccessful attempts). 

• Goal payoff: When the active goal is reached and the 

episode terminates a defined reward is given to the 

agent. 

• Termination penalization: When an episode is 

terminated because the maximum number of time-

steps is reached, a large cost is given as a penalization 

to the agent. 

 

𝐶𝑡+1(𝑆𝑡 , 𝐴𝑡 , 𝑊𝑡+1) → 𝑐𝑡 = 𝐺𝑜𝑎𝑙 𝑝𝑎𝑦𝑜𝑓𝑓 − 𝐴𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 − 𝑇𝑒 

 

Where 𝑇𝑒 stands for the termination penalization 

 

C. Implementation of the computational environment 

 

We modeled the system under the adopted framework: Let 𝑆𝑡 be 

the state variable of the system, 𝑥𝑡 are all the decision variables, 

𝑋𝑡(𝑆𝑡) is the set of the available actions given the state 𝑆𝑡, the 

exogenous information (information available just after we 

make a decision) is 𝑊𝑡+1 , the transition function is 

𝑆𝑀(𝑆𝑡 , 𝑥𝑡 , 𝑊𝑡+1) and finally the objective function would be: 

max
𝜋

𝔼[∑𝐶(𝑆𝑡 , 𝑋𝜋(𝑆𝑡))|𝑠0] 

where 𝐶(𝑆𝑡 , 𝑋𝜋(𝑆𝑡)) is the cost or reward function given by the 

state 𝑆𝑡 and the policy 𝑋(𝑆𝑡). 
 

For our system consider the representation of a CPS presented 

on Fig 1: 

 

 



 

 

Fig 1. Example of CPS system 

 

In this example the state variable is defined as: 

 

• 𝑆𝑡 = {(𝑟1, 𝑟2, 𝑟3), (𝑘1), (𝑠1), (𝑔1)}  where every 

variable is binary and takes the value of 1 if the access, 

knowledge, skill, or goal is available. The 𝑟 represents 

the accesses, 𝑘 stands for knowledge, 𝑠 for skills and 𝑔 

for the goals achieved. 

• 𝑋𝑡 = {𝑎1, 𝑎2} are the available actions depending on 

the current system state 𝑆𝑡. 

• 𝑊𝑡 is the outcome of taking action 𝑋𝑡, that is, whether 

the action is successful or not. 

• 𝑆𝑡+1 = 𝑆𝑋
𝑀(𝑆𝑡 , 𝑋𝑡 , 𝑊𝑡)  represents the transition 

function. Where, depending on the outcome of the 

action, the system remains in the same state or 

transitions to a new state. 

• 𝑅𝑡(𝑆𝑡 , 𝑊𝑡 , 𝑆𝑡+1)  is the cost or reward function that 

considers the cost of performing action 𝑋𝑡  and if the 

attacker reached a goal or not. 

 

The challenges in this problem are the uncertainty modelling and 

the optimal policy design. 

 

D. Solving the decision problem for the CPS attacker 

 

First, we describe the value iteration algorithm, which provides 

convergence guarantees (at the expense of potentially long 

computational times). Then, we describe the Q-Learning 

algorithm as a first attempt to train a reinforcement learning 

based attacker agent within our computational environment. 

 

 

1) Value iteration 

 

The value iteration algorithm is one of the most famous 

algorithms in dynamic programming and it is used to solve a 

broad variety of sequential decision problems. It resembles 

backwards induction but instead of using the epochs from 𝑇 to 

0 it uses an iteration counter 𝑛. Therefore, it is used for infinite 

horizon problems and the convergence is guaranteed under a 

specified criterion. One of the issues of value iteration is that its 

applicability can be limited because of the so-called curse of 

dimensionality, that is, the computational time needed to solve 

problems with a large space of states can become ridiculously 

long. Nevertheless, in our example case the computational time 

is not a problem. Value iteration is based on the computation of 

the following expression: 

 

𝑣𝑛(𝑠) = max
𝑎

{𝐶(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) 𝑣𝑛−1(𝑠′)

𝑠∈𝑠′

} 

 

Where 𝐶(𝑠, 𝑎) is the cost of taking action a given that the system 

is in the state 𝑠 , 𝛾  is the discount factor that reflects how 

valuable is the future reward and 𝑃(𝑠′|𝑠, 𝑎)  represents the 

probability of transitioning to state 𝑠′ given that the system is in 

the state 𝑠 and took the action 𝑎. 

 

The convergence of the algorithm occurs when: 

 
|𝑣𝑛 − 𝑣𝑛−1| < 𝛿 

 

Where 𝛿 is the criterion predetermined for convergence. When 

convergence is reached, the optimal policy is obtained by 

computing: 

 

𝜋(𝑠) = argmax
𝑎

{𝐶(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)

𝑠∈𝑠′

𝑣𝑛−1(𝑠′)} 

 

Where 𝜋(𝑠) represents the optimal policy that maps an action 

given a state. [1] [12] 

 

 

2) Q-learning implementation to experiment with the agent 

construct 

 

Q-Learning is an off-policy Temporal Difference 

Reinforcement Learning algorithm developed in the early 90's 

in order to solve Markov Decision Processes (MDPs) and to find 

their optimal or near optimal action-policies. The idea behind Q-

Learning is to estimate an optimal action-value function for each 

state, known as the Q-function or Q-table, which consists of the 

expected returns or quality (hence the “Q” in Q-Learning) of 

taking a determined action at a particular state. The Q value for 

every state-action pair converges asymptotically towards their 

optimal expected value under the assumption that all of these 

state-action pairs are continued to be explored given a 

sufficiently large amount of time. The exploration policy is 

commonly known as an epsilon-greedy policy: with probability 

𝜀, the action selected is going to be greedy with respect to the 

highest Q-value for the current state, and the action selected is 

randomly sampled with equal probability for all actions in the 

actions pool with probability 1 − 𝜀. 

 
𝑄𝑛+1(𝑠, 𝑎) ← (1 − 𝛼)𝑄𝑛(𝑠, 𝑎) + 𝛼[𝑟(𝑠, 𝑎) + 𝛾 max

𝑎′∈ 𝐴
𝑄𝑛(𝑠′, 𝑎′)] 

 

The above Q-Learning update rule represents the value of taking 

action 𝑎 in state 𝑠 at each step. The reward 𝑟(𝑠, 𝑎) could be a 

random variable following a specific probability distribution 

but, without loss of generality, the Q-Learning update rule can 

be interpreted as the expected value of 𝑟(𝑠, 𝑎). The transition 

dynamics from state 𝑠 to 𝑠′ are determined by a state transition 

function. Parameter 0 < 𝛼 < 1  represents a learning rate or 

step-size, which is basically a weighted average of past rewards 

and the initial estimate for the Q-value. Additionally, 0 < 𝛾 < 1 

can be interpreted in two different ways: i) When 𝛾 is close to 1, 

a greater importance is given to future rewards, whereas a value 

of  close to 0 gives more importance to immediate rewards. ii) It 

can be seen as a mathematical convenience to guarantee the 

convergence to the optimal Q-values when the underlying MDP 

consists of only 1 episode with infinite steps. 



 

 

 

IV. COMPUTATIONAL EXPERIMENTS 

As a proof of concept, two scenarios were tested on both the 

value iteration and Q-Learning algorithms using the developed 

computational environment. Both scenarios represent different 

initial states of the SCADA system under study (i.e., available 

accesses, knowledges, etc.). Algorithms were tested and 

averaged over a defined set of 50 episodes. The experiments 

were performed on Python 3.10.4 and on a computer with the 

following specifications: MacBook Pro 2018, CPU Quad-Core 

Intel Core i5 of 2.3 GHz and 16 GB RAM. The main hyper-

parameters of the algorithms are: 

 

Value iteration: 

• Threshold 𝛿: 1e-15 

 

Q-Learning: 

• Number of training episodes: 15000 

• 𝛼: 0.05 

• 𝛾: 0.99 

• Initial 𝜀: 0.7 

 

 

a) Experiment 1 

The initial components available were: Access 1, Knowledge 1 

and Skill 2. The episode terminates when the agent reaches Goal 

5. The algorithms were given a maximum of 6 time-steps to 

reach the goal. Figure 2 shows the initial state for Experiment 1, 

whereas Figures 3-6 provide a summary of results, including, in 

order: the obtained attack path; the frequency that each attack 

step was part of a successful attack path; the evolution of the 

reward during training; and the number of successful attacks per 

episode during training. The overall stats are as follow: 

 

Value iteration: 

• Computation time: 13.11 s 

• Average reward of the trained agent: -1.47 

• Average success rate of the trained agent: 0.62 

Q-Learning 

• Training time: 8.05 s 

• Average reward of the trained agent: -1.47 

• Average success rate of the trained agent: 0.62 

 
Fig 2. Initial state of the SCADA system for Experiment 1 

 

 
 Fig 3. Optimal attack path for Experiment 1 

 

 
Fig 4. Histogram of the frequency for each attack in 

Experiment 1 



 

 

 
Fig 5. Average reward through the episodes in Experiment 1 

 

 
Fig 6. Proportion of successful episodes in Experiment 1 

 

 

b) Experiment 2 

The initial components available were: Access 6, Knowledge 4, 

and Skill 2 and 3. The episode terminates when the agent reaches 

Goal 2. The algorithms were given a maximum of 6 time-steps 

to reach the goal. Figure 7 shows the initial state for Experiment 

1, whereas Figures 8-11 provide a summary of results, 

including, in order: the obtained attack path; the frequency that 

each attack step was part of a successful attack path; the 

evolution of the reward during training; and the number of 

successful attacks per episode during training. The overall stats 

are as follows: 

 

Value iteration 

• Computation time: 11.58 s 

• Average reward of the trained agent: 0.38 

• Average success rate of the trained agent: 0.88 

Q-Learning 

• Training time: 8,64 s 

• Average reward of the trained agent: 0.38 

• Average success rate of the trained agent: 0.88 

 

 
Fig 7. Initial state of the SCADA system for Experiment 2 

 

 

 
Fig 8. Optimal attack path for Experiment 2 

 

 
Fig 9. Histogram of the frequency for each attack in 

Experiment 2 

 



 

 

 
Fig 10. Average reward through the episodes in Experiment 2 

 

 
Fig 11. Proportion of successful episodes in Experiment 2 

 

 

To analyze the average reward and average success rate of the 

Q-Learning algorithm there are a few important aspects to 

consider: 

 

• The algorithm explores the state and action space 

throughout the whole training. The exploration rate is 

significatively higher at the beginning of the training 

period (0.7) and declines (down to 0.04) at the end of 

the training. This means, even with consolidated 

estimates of the Q-values, that the agent might still take 

random actions which can mean unsuccessful 

episodes.  

• The number of maximum time-steps implies that even 

with an optimal policy, there will be unsuccessful 

episodes due to realizations of the actions’ successes.  

 

With this basis, the obtained results are very promising. On both 

experiments, the average reward and success graphs reveal a 

visible learning curve in which the agent starts the training 

having erratic performance. But, as the training advances, the 

average performance increases and stabilizes at the end of the 

training. This means, that the estimates the agent has calibrated 

allows it to take effective actions and reach the goal. Having the 

optimal policy assured by the value iteration algorithm, we can 

conclude that the Q-Learning agent learned the optimal policy 

for both experiments. In terms of computational performance, 

the Q-Learning training took around 35% less time than the 

Value Iteration computation. This represents a big contribution 

when working with more complex systems.  

 

In each scenario, the frequency of the actions performed on 

successful episodes was recorded. With this information, it is 

possible to identify the critical attacks (and components) when 

an attacker is pursuing a specific goal. This can provide 

insightful information for any defender decision maker, it allows 

the profiling of the attacker and taking adequate 

countermeasures. The attack-path graphs provide a visual tool to 

recognize the sequence of actions that the attacker might take 

when exploiting vulnerabilities. 

   

a) Definition of available defender actions with their 

associated cost and impact on the probability of attack 

success. 

b) Definition of attacker variations (e.g., number of 

available attempts to attack; initial 

accesses/knowledges) 

c) Execution of all game-settings defined in (a) and (b) 

under the implemented environment, and policy 

evaluation reports with visual analytics of players 

strategies and outcomes. 

V. CONCLUSIONS 

We proposed a modeling approach for attacker behaviors in CPS 

based on a unified framework for stochastic optimization and 

following the ADVISE formalism. The modeling approach 

follows the logic of Markov decision processes to generalize the 

process of sequential decisions under uncertainty and admits a 

variety of solution approaches, including approximate dynamic 

programming and reinforcement learning. This versatility 

enables the implementation of attacker agents based on different 

policies (algorithms) and eventually include interacting attacker 

and defender agents.  

 

A computational environment was developed as a Python class 

designed to be compatible with OpenAI’s gym standards [3]. A 

proof of concept was implemented for a SCADA system 

previously addressed in the literature, using two different 

scenarios of initial states and desired goals. Two algorithms 

were successfully implemented and evaluated under the policy 

evaluation scheme: Value Iteration and Q-Learning. After 

training and calibration, the policies can navigate the ADVISE 

graph efficiently and achieve the goal in over 70% of episodes. 

This is remarkable considering that the number of maximum 

time-steps was designed to be restrictive to few unsuccessful 

attacks. The most critical attack steps (i.e., those most 

frequently associated with successful attack paths) for each 

scenario were identified and serve as a basis for including 

defender actions.   

 



 

 

Future work includes building an instance set with more 

complex systems to evaluate and improve the performance of 

the proposed environment and algorithms, as well as including 

a defender agent to implement preventive and reactive actions to 

reduce the impact of attacks. 
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