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ABSTRACT
Often, either to expand the target market or to satisfy specific new
requirements, software systems inside a company are cloned, refac-
tored, and customized, generating new derived software systems.
Although this is a practical solution, it is not effective in the long-
term because of the high maintenance costs when maintaining
each of these derived software systems. Software product lines
(SPLs) were proposed to reduce these costs; however, the lack of
integration between variability realization mechanisms and version
control systems reduces its attractiveness in the software develop-
ment industry, especially in small and medium software companies.
In this paper we propose an approach to integrate the conditional
compilation mechanism used to implement the SPL variabilities and
the Git version control system used to manage software versions
in order to increase the attractiveness of the SPLs in the industry.
The proposed solution also could be seen as a method to manage
software system families’ evolution in space and time.

CCS CONCEPTS
• Software and its engineering→ Software product lines.
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1 INTRODUCTION
Software product line engineering (SPLE) provides notions for de-
veloping a software product line (SPL) across the entire develop-
ment cycle through its common and variable features [21]. An SPL is
a family of software systems (SSs) that share common features [63]
and in which a unique combination of features defines a specific
software [44]. SPLE aims to automatically construct specific SSs
after selecting features that have to be included in them [69], and it
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is meant as an alternative to the clone-and-own (CaO) practice [32],
whereby a new variant of a software system is built by copying
and adapting an existing variant. The use of SPLE in a corporation
reduces the cumulative costs in the long-term software develop-
ment [52], and it is therefore an attractive approach to optimize
costs. Although the initial cost of developing an SPL is high, there
is a breakpoint—three or four SSs to be developed—after which it
brings benefits to the company [81].

Variability models—e.g., the feature modeling [22], the decision
modeling [70], among others [6, 8, 9, 28, 35, 37]—represent the com-
mon and variable features of products in an SPL [10]. These models
guide the SPL development but do not implement its source code
variability. To implement this variability, developers use variability
realization mechanisms (VRMs)—e.g., the conditional compilation
(CC) mechanism [41], feature-oriented programming [66], among
others. Since the SPL topic is not new, at present, we can find
diverse SPLs either in the industry—e.g., the ArgoUML SPL [20],
E-Phenology Collector SPL [83]—or in the academy—e.g., the Chess
SPL [84], Robocode SPL [51]. Organized catalogs have appreased
over time; for instance, the LabSoft catalog [46] exhibits thirty-eight
SPLs; the ESPLA catalog [50] exhibits case studies on extractive SPL
adoption; and the Ferreira et al. dataset [31] exhibits configurable
SSs with their test suite.

Most of the SPL case studies focus on how to manage the vari-
ability given by different versions of a software, and not on its
evolution over time. The “variability in space” is understood as the
concept that an artifact (or part of it) can appear in different shapes
at the same time [60]. In the SPLs, this kind of variability is com-
monly represented in the traditional variability models—e.g., the
feature model (FM). The FM is a hierarchical composition of related
features where each feature describes some functionalities of the
product line [76]. Conversely, the “variability in time” is commonly
managed by version control systems (VCSs) and is understood as
different versions of an artifact (or part of it) being valid at differ-
ent times [60]. In SPLs, this kind of variability is represented only
in specific variability models—e.g., the hyper feature model [72],
which basically is a FM that adds versions to the features.

VCSs are the de facto mechanisms for, but not limited to, manag-
ing “variability in time”. Git, for example, is a popular VCS [17] that
facilitates the development of software projects, from small projects
with only a few programmers to large projects with hundreds of
programmers. Nowadays, most software projects rely on Git for
version control, and the fact that the VRMs are not integrated with
it (or in general with a VCS) reduces their attractiveness in the soft-
ware industry. Still, effectively managing variability in space and
time is among the main challenges of developing and maintaining
large-scale yet long-living software-intensive systems [3].
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In this work, we propose a new approach to integrate variabil-
ity management and the Git VCS. The objective is to organize
variability-enabled source code in Git, and at the same time ab-
stract the variability details from the developer. In particular, in
this first proposal we focus on conditional compilation. The ap-
proach organizes the code into branches, based on features, and
then periodically propagates the changes (Git commits) to the other
branches resolving product and down conflicts (see Section 4.3.3).
The approach combines the advantages of applying VCSs (i.e., vari-
ability in time) and the CCmechanism (i.e., variability in space). The
remainder of this paper proceeds as follows. Section 2 presents the
essential concepts to understand the proposal. Section 3 overviews
existing VRMs. Section 4 details our proposal. Finally, we present
the related work and ongoing activities in Section 5.

2 BACKGROUND
2.1 Software Product Lines
A Software Product Line (SPL) is a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific
needs of a particular market segment and are developed from a com-
mon set of core assets in a prescribed way [18]. For the development
of SPLs, currently, SPLE establishes two complementary develop-
ment processes [56, 65]: Domain Engineering (DE) and Application
Engineering (AE). DE is the process of analyzing the domain of
a product line and developing reusable artifacts [36]. In contrast,
AE has the goal of developing a specific product for the needs of a
particular customer [4]. Besides, each of these two processes can be
observed in two different spaces: problem space and solution space.
The problem space refers to systems’ specifications established dur-
ing the domain analysis and requirements engineering phases [7],
commonly from the stakeholder’s perspective [4, 39]. In contrast,
the solution space refers to the concrete systems created during the
architecture, design, and implementation phases [7], usually from
the developer’s perspective [4].

An essential output of the DE phase is the variability model of
the SPL, which is typically represented as a Feature Model (FM). An
FM essentially represents the software features that are available
in an SPL [16]. An FM is a tree-like structure and consists of: i)
features; ii) relations between a parent feature and its child fea-
tures; and iii) cross-tree constraints that are typically inclusion or
exclusion statements [5]. A feature is a distinctive characteristic
of a SS that may refer to a requirement, a software-architecture
component, or source code pieces [67]. A feature can be classified
as abstract or concrete; an abstract feature is commonly used only
to organize concrete features, and it does not appear in concrete
product configurations.

2.2 Version Control Systems
A version control system (VCS), also known as a revision control
system or source control system [68], is a specialized type of data-
base used by developers to store the different versions of the source
code that they are developing [61]. VCS can be categorized as cen-
tralized or distributed. Centralized VCSs are characterized by a
single master repository accessed by all the developers to “check
out” and “check in” version commits [73]. Distributed VCSs are

characterized by complete local repositories to each developer, al-
lowing developers to exchange and integrate code changes in a
peer-to-peer fashion [34]. VCSs usually manage the “variability in
time” of a software system, either storing only changes—like Darcs
[25]—or storing a complete copy of a modified file—like Git. Git is
currently the most popular VCS in the software industry [62] with
various tools that support its use, such as the GitHub and Bitbucket
web code-sharing platforms.

3 VARIABILITY REALIZATIONMECHANISMS
3.1 Conditional Compilation
Conditional Compilation (CC) is a simple mechanism to imple-
ment compile-time variability and one of the most popular VRMs
[42, 54, 77] in the SPL industry. The NASA’s flight control software,
HP’s product line of printer firmware and the Linux kernel are
some of the SPL projects that use this mechanism to implement
its variability [42]. CC utilizes special directives to manage the
variability and a lexical preprocessor to processes them according
to a product configuration. This kind of annotations can be used
with anything that is in textual form—e.g., annotations in depend-
ability models [14]—, but with the drawback that it disrupts the
language/format involved. To avoid this issue, the preprocessor
directives are typically embedded in the comments of the host lan-
guage. The C preprocessor [40], for example, implements this VRM,
being one of the most used approaches in open-source and industry
projects [45]. Other implementations include the Pascal’s prepro-
cessor [74], Munge preprocessor [77], Antenna preprocessor [77],
pure::variants’s preprocessor [11], and Gears’s preprocessor [42].

The C preprocessor (CPP) uses simple directives such as #if,
#elif, #else, and #endif to add variability inside source code writ-
ten in C, allowing developers to create conditional statements like
“if a specific feature is selected, include this specific source code.”
However, because these directives are not part of the syntax of the
host programming language, development environments often re-
port errors in conditional code. For example, multiple declarations
of the same variable in different parts of a CC-controlled code can
trigger errors in the development environment. Additionally, the
fact of having the source code all the variants mixed together limits
the readability of the code, thus increasing the difficulty of writing
and maintaining the project. Directives defined by Munge (such as
if[tag] , else[tag], ifnot[tag], and end[tag]), and Antenna
(such as #if expression, #elif expression,#else, #endif and
#condition expression) in Java comments also limit the read-
ability of the code and, in some cases, in how to write the source
code. Mainstream programming languages could integrate these
directives in some standard (it is the case of C); however, for the
moment, very few languages support this VRM off-the-shelf.

3.2 Object-Oriented Programming
In object-oriented programming (OOP), SSs are organized as coop-
erative collections of objects, each being an instance of some class,
and whose classes are members of a hierarchy of classes connected
via inheritance and usage relationships [12]. The distinctive char-
acteristics of OOP like polymorphism, inheritance, and software
design patterns (SDPs) allow creating the variability in the source
code of an SPL. In [33], for example, we can find descriptions of how
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SDPs can be used to implement the variability described in an FM.
With OOP mechanisms, developers can also create frameworks or
libraries to manage the variability in the source code of an SS or SPL.
The COSMOS* model [23, 59] is an example of applying OOP mech-
anisms to define an implementation model for the specification and
development of SPLs. The COSMOS* model is also a component
implementation model, and it can also be classified as VRM focused
on components (See Section 3.3). The COSMOS* model was used
to create one of the implementations of the MobileMedia SPL [78].

3.3 Component-Oriented Programming
Component-Oriented Programming (COP) is focused on develop-
ing software by assembling components, while OOP emphasizes
classes and objects [85]. The COP separates concerns into enti-
ties called components [64]. A component is not an object, but
can provide the resources to instantiate objects [13] if it supports
OOP. Components are reusable and could be seen as black boxes
[53], that is, they describe what can be done, rather than how it is
done. Components are characterized by their required (i.e., input)
interfaces and provided (i.e., output) interfaces, and they can be
connected though these interfaces. As a result, components can be
put together in various configurations to form a SS [15]. Being able
to interchange components and component configurations creates
the variability required for the different SSs of an SPL.

OSGi [19] and Docker [27] are technologies that can be adapted
to implement SPLs using this VRM. The OSGi platform, for exam-
ple, defines modules that can be seen as components [2], while
the Docker virtualization technology defines containers that could
also be seen as components. In both cases, it depends on what we
put inside the component (e.g., Microservices) and on how it de-
fines the protocol of its interfaces of communication (e.g., REST).
Additionally, both technologies have a kind of orchestrator to man-
age its kind of component that is useful for this VRM—e.g., in the
context of Docker, container orchestrators allow to define how to
select, deploy, track and dynamically manage the configuration of
multi-container packaged applications

3.4 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) is a technology for dealing ex-
plicitly with the separation of concerns [82]. AOP is a programming
paradigm that supports themodular implementation of crosscutting
concerns [75]. For instance, considering the source that implements
security policies across the different modules of a SS, AOP allows
to factor these policies in a single element called aspect. Aspects
change an existing application without modifying its source code
[55]. Having a base application implemented in an object-oriented
language (e.g., Java), developers can apply aspects to extend the
application. AspectJ is an aspect-oriented extension to Java [43].
AspectJ defines an annotation called Pointcut to specify where the
aspect modules can manipulate the base source code. Aspect mod-
ules may alter the control flow, overwrite methods, or add source
code before or after a specific method. AspectJ code is compiled
into standard Java bytecode.

3.5 Feature-Oriented Programming
Feature-oriented programming (FOP) is a paradigm to develop SPLs
and a specialized form of generative programming [55]. Generative
programming is a computing paradigm allowing the automatic cre-
ation of entire software families using the configuration of primary
components [80]. FOP encapsulates features into separate feature
modules to achieve separation of concerns, and through the inte-
gration of these feature modules, it generates a variety of software
products [80]. Unlike COP, this integrates feature modules instead
of linking components: when features are merged, consistent ar-
tifacts that define a program are synthesized [79]. Additionally,
in FOP, the composition order matters because altering the order
can alter the resulting product variant [55]. FeatureHouse [30] and
AHEAD [1] are some of the available tools that support FOP.

3.6 Delta-Oriented Programming
Delta oriented programming (DOP) is a compositional approach to
implement SPLs [24]. The delta modules comprise modifications
of an object-oriented program similar to the aspects in the aspect-
oriented programming. DOP allows generating a product by adding
a set of actions encapsulated in a delta module (e.g., add a new
method to the class X) to a core module. DeltaJ is a Java-like lan-
guage that supports DOP by organizing classes and interfaces in
delta modules [26]. There are two kinds of delta modules: core and
delta. Core modules are collections of classes, while delta modules
are a set of operations that allow adding, modifying, or removing
classes or methods declared in other modules. Thus, a delta module
allows adding classes, methods, and fields, removing classes, meth-
ods, and fields, changing superclasses or constructors, and finally
renaming methods and fields. In DOP, a SS is assembled using a
single core module and several delta modules, which are selected
based on the features to be included.

4 THE PROPOSED APPROACH FOR
ORGANIZING THE SPL SOURCE CODE

4.1 Motivation
Like SSs evolve, SPLs also evolve, and thus the SPL source code
changes over time. Changes to the SPL source code, even minor
ones, can affect multiple features and products of an SPL. Under-
standing the impact of change implies dealing with a high number
of logical expressions, depending on how the SPL and its variabil-
ity are implemented. Over time the number of variants to handle
increases, and so does the number of revisions, thus becoming
a cognitively complex task [48, 57]—this complexity is increased
drastically when altering the variability model.

Thus, in the SPL development cycle, there is a need for a practical
approach that can simplify the system evolution over time. On the
other hand, developers should be able to focus on the specific or the
generic source code separately as needed. For example, they should
be able to focus on fixing a bug in a feature without the distraction
of code involving other features. Besides, developers should be
able to generate a product with all the latest modifications after
committing changes. However, in current approaches, developers
are somehow forced to work with code “extremely polluted” with
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variability mechanisms, where a small unintended change can affect
many features without the developer’s knowledge.

4.2 The Feature Branching Graph
We notice that the Git branch structure could be seen as a tree
where each node is a branch, and each relationship between parent
and child is used to identify the branch taken as a base to create
a new branch. We called this structure a Feature Branching Graph.
The Feature Branching Graph (FBG) is used to organize the generic
and specific source code of an SPL, with the more specific parts of
the source code reside in the nodes with greater depth. The FBG
is created from the FM of the SPL, following three main rules. We
create: (i) a variability branch for each abstract feature that is not a
feature leaf, (ii) a feature branch for each concrete feature that is a
feature leaf, and (iii) two branches for each concrete feature that
is not a feature leaf, being one branch for the feature and one for
storing the variability of his child features.

By structuring the source code correctly in the FBG in Git, devel-
opers can focus on different variability aspects (feature or groups
of features) without affecting each other’s work, because branches
are focused on features. Figure 1 shows the FBG created using the
Elevator SPL’s partial FM. As we can observe, the hierarchy in the
FM is maintained in the FBG. When implementing the FBG in Git,
the structure of the FBG is used to know which branches should be
taken as base to create the other Git branches. For example, after
creating the ‘ElevatorSPL’ branch from the master branch, it is
created the ‘ElevatorSPL Variability’ branch from the ‘ElevatorSPL’
branch, and so on for the other branches of the graph (See Figure
1). This way, the FBG in Git can maintain commits related to the
common parts in higher branches in the hierarchy, and commits
related to the specific parts in lower branches in the hierarchy.

4.3 SPL Development Process
4.3.1 Workflow Overview. Figure 2 shows a detailed review of this
process. When having existing artifacts, we have to collect them
(step 1) and then manually or automatically analyze them (step
2) to find patterns and then design the FM (step 3). In the case
there are no existing artifacts to be considered, we can skip steps
1 and 2. Having already the FM, we can define the valid product
configurations (step 4) and then the corresponding FBG in Git (step
5). To use our approach correctly, developers have to follow a series
of activities to implement the SPL. Of course, our objective is to
create a tool that makes this as transparent as possible to them.
First, developers choose what mechanisms to control the variability
will be used in SPL development. For the moment, our proposal
focuses on conditional compilation, being the most general and one
of the most practical. Second, developers create the common parts
of the SPL (e.g., the essential codebase), and store and organize
the most common codebase into the FBG by depth. For example,
the essential codebase common to all the features is added to the
root branch. Then, these changes have to be propagated to all the
derived branches (step 6).

When implementing a feature, commits related to common code-
bases must be stored in branches with low depth, while commits
related to specific features or groups of features must be stored
in branches with higher depth (step 7). As before, all the derived

branches must be updated with these new changes. For this ap-
proach to work, the FBG must be maintained in a state that we call
pure state, which implies that there are no conflict downwards the
tree, or among the different features of a product. This is achieved
by adding statements that have as function managing the variability
(step 8), for example, Git commits with conditional compilation
directives added inside the variability branches. We call product
conflict a conflict that emerges when merging branches represent-
ing different features in the same product configuration. A down
conflict emerges instead when propagating changes (i.e., commits)
to more specific branches (child branches), following the structure
of the FBG.

4.3.2 Generation of products. To generate a product with the pro-
posed approach, a new temporary branch is generated from the
root branch of the FBG (e.g., the ElevatorSPL branch in Figure 1).
Then, this branch is merged with the specific branches related to
the features selected in the product’s configuration. The next step
is to create another temporary branch from the resulting branch,
to separate the merged branch from the branch with the resolution
of the variability in order to have a backup of the merged branch.
Finally, in this new created branch, we have to resolve the variabil-
ity, depending on the approach used to implement the variability
realization. At the end of this process, we will have a Git branch
with the source code of the desired product according to the se-
lected features of the product’s configuration. However, when some
merge generates conflicts, it indicates that the FBG is not in a pure
state and needs changes to be pure.

4.3.3 Resolving down conflicts and product conflicts. When adding
some commit to a parent branch, the approach proposes to spread
the commit to the child branches (Git rebase command) respecting
the hierarchical order. However, this activity can generate a Git
rebase conflict with some of its child branches that in this paper
we called a down conflict. When the conflict is detected, developers
must resolve the conflict in that specific variability child branch or
in the closest higher variability branch as possible, and then spread
the now new commits to the child branches. On the other hand, the
product conflicts emerge when verifying that a specific software
product can be generated using its product configuration. In this
case, the conflict has to be resolved in the closest higher variability
branch and then spread the commit to his child branches, resolving
also the down conflicts when spreading the commit.

We believe that, to a certain extent, the resolution of conflicts
can be automated and possibly without human intervention. When
no automated solution is possible, the tool should at least propose
different candidate solutions, from which the developer could select
the most appropriate one. In our first investigation of this proposal,
conflicts will be solved by the CC mechanism. More in general,
we foresee a component that takes care of solving conflicts in the
code base; a specific implementation of this component would be
needed to support other VRMs. When merging feature branches,
this component would be in charge to resolve the down conflicts
and the product conflicts in the FBG.

4.3.4 Discussion. Although our approach focuses on organizing
branches to reduce the pollution generated by some variability
mechanisms, there may be cases where the FBG is contaminated
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Figure 1: The FBG generated from the Elevator SPL’s partial FM

Figure 2: A review of the SPL development using the proposed approach

by them. To resolve this problem, we have been testing a different
version of the approach with delay spreading, so commits related to
conflict resolution only are stored in variability branches without
polluted the feature branches. Finally, the scope of applicability of
the proposed approach will be explored in future work.

5 RELATEDWORK AND ONGOING
ACTIVITIES

The grown-and-prune model [29, 58] and the PLE-Flow model [38]
propose branching models to manage SPLs similarly to our ap-
proach. Each of these models has its advantages and disadvantages.
Our approach focuses on the features of the SPL and not on its prod-
ucts, as the grown-and-prune model does. So products generated
using our approach are stored in temporary branches. Besides, if
the generated product has a bug, it is fixed in the feature branches
and not in the product branch. On the other hand, our approach
has a similar complexity as the PLE-Flow model; however, we are
developing tools to reduce this complexity.

Variation control systems (VarCSs)—e.g., ECCO [47] and Super-
Mod [71]—allow working on one or multiple variants by providing
views (or projections) that filter irrelevant details of configurable
artifacts to facilitate their comprehension and lower the cogni-
tive complexity when editing the variants [48]. However, current

VarCSs have and depend on a particular restrictive style [57], so
that it is not attractive for developers. On the other hand, our ap-
proach is less stringent because it is based on Git, a well-known
tool in the software industry.

We are currently working on the concrete realization of this
proposal, by defining the activities that should be performed by a
supporting tool, and by developing a command-line prototype of
such tool (new VarCS) as a layer on top of Git. Therefore, all the
recurring mechanical activities, like propagating the commits or
resolving product conflicts and down conflicts would be automati-
cally handled by the tool. Regarding the management of conflicts,
the tool must at least generate and list recommended solutions.
Finally, the tool should also be able to create a product from a valid
product configuration, and manage the graph branch on top of Git.

Following the VarCS characteristics proposed in [49], our new
VarCS would be categorized as: “boolean” for the entity dimension;
“variability model” as constraints; “text” and “files and folders” for
the kind of variable artifacts; “per feature” for revisions; “database”
as internal storage; “annotative” as internal variation points; “mate-
rialized” as external type; “fixed” as external state; and “distributed”
as collaboration. We plan to validate our approach using one of the
existing SPLs whose source code is publicly available, for example
the ArgoUML SPL [20].
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