
A Proposal for Organizing Source Code Variability in the Git
Version Control System

Junior Cupe Casquina
junior.cupe@ic.unicamp.br
University of Campinas
Campinas, SP, Brazil

Leonardo Montecchi
leonardo@ic.unicamp.br
University of Campinas
Campinas, SP, Brazil

ABSTRACT
Often, either to expand the target market or to satisfy specific new
requirements, software systems inside a company are cloned, refac-
tored, and customized, generating new derived software systems.
Although this is a practical solution, it is not effective in the long-
term because of the high maintenance costs when maintaining
each of these derived software systems. Software product lines
(SPLs) were proposed to reduce these costs; however, the lack of
integration between variability realization mechanisms and version
control systems reduces its attractiveness in the software develop-
ment industry, especially in small and medium software companies.
In this paper we propose an approach to integrate the conditional
compilation mechanism used to implement the SPL variabilities and
the Git version control system used to manage software versions
in order to increase the attractiveness of the SPLs in the industry.
The proposed solution also could be seen as a method to manage
software system families’ evolution in space and time.

CCS CONCEPTS
• Software and its engineering→ Software product lines.

KEYWORDS
Software product lines, Conditional Compilation, SPL, Git, VarCS
ACM Reference Format:
Junior Cupe Casquina and Leonardo Montecchi. 2021. A Proposal for Orga-
nizing Source Code Variability in the Git Version Control System. In 25th
ACM International Systems and Software Product Line Conference - Volume
A (SPLC ’21), September 6–11, 2021, Leicester, United Kingdom. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3461001.3471141

1 INTRODUCTION
Software product line engineering (SPLE) provides notions for de-
veloping a software product line (SPL) across the entire develop-
ment cycle through its common and variable features [21]. An SPL is
a family of software systems (SSs) that share common features [63]
and in which a unique combination of features defines a specific
software [44]. SPLE aims to automatically construct specific SSs
after selecting features that have to be included in them [69], and it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’21, September 6–11, 2021, Leicester, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8469-8/21/09. . . $15.00
https://doi.org/10.1145/3461001.3471141

is meant as an alternative to the clone-and-own (CaO) practice [32],
whereby a new variant of a software system is built by copying
and adapting an existing variant. The use of SPLE in a corporation
reduces the cumulative costs in the long-term software develop-
ment [52], and it is therefore an attractive approach to optimize
costs. Although the initial cost of developing an SPL is high, there
is a breakpoint—three or four SSs to be developed—after which it
brings benefits to the company [81].

Variability models—e.g., the feature modeling [22], the decision
modeling [70], among others [6, 8, 9, 28, 35, 37]—represent the com-
mon and variable features of products in an SPL [10]. These models
guide the SPL development but do not implement its source code
variability. To implement this variability, developers use variability
realization mechanisms (VRMs)—e.g., the conditional compilation
(CC) mechanism [41], feature-oriented programming [66], among
others. Since the SPL topic is not new, at present, we can find
diverse SPLs either in the industry—e.g., the ArgoUML SPL [20],
E-Phenology Collector SPL [83]—or in the academy—e.g., the Chess
SPL [84], Robocode SPL [51]. Organized catalogs have appreased
over time; for instance, the LabSoft catalog [46] exhibits thirty-eight
SPLs; the ESPLA catalog [50] exhibits case studies on extractive SPL
adoption; and the Ferreira et al. dataset [31] exhibits configurable
SSs with their test suite.

Most of the SPL case studies focus on how to manage the vari-
ability given by different versions of a software, and not on its
evolution over time. The “variability in space” is understood as the
concept that an artifact (or part of it) can appear in different shapes
at the same time [60]. In the SPLs, this kind of variability is com-
monly represented in the traditional variability models—e.g., the
feature model (FM). The FM is a hierarchical composition of related
features where each feature describes some functionalities of the
product line [76]. Conversely, the “variability in time” is commonly
managed by version control systems (VCSs) and is understood as
different versions of an artifact (or part of it) being valid at differ-
ent times [60]. In SPLs, this kind of variability is represented only
in specific variability models—e.g., the hyper feature model [72],
which basically is a FM that adds versions to the features.

VCSs are the de facto mechanisms for, but not limited to, manag-
ing “variability in time”. Git, for example, is a popular VCS [17] that
facilitates the development of software projects, from small projects
with only a few programmers to large projects with hundreds of
programmers. Nowadays, most software projects rely on Git for
version control, and the fact that the VRMs are not integrated with
it (or in general with a VCS) reduces their attractiveness in the soft-
ware industry. Still, effectively managing variability in space and
time is among the main challenges of developing and maintaining
large-scale yet long-living software-intensive systems [3].

https://doi.org/10.1145/3461001.3471141
https://doi.org/10.1145/3461001.3471141

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Casquina and Montecchi

In this work, we propose a new approach to integrate variabil-
ity management and the Git VCS. The objective is to organize
variability-enabled source code in Git, and at the same time ab-
stract the variability details from the developer. In particular, in
this first proposal we focus on conditional compilation. The ap-
proach organizes the code into branches, based on features, and
then periodically propagates the changes (Git commits) to the other
branches resolving product and down conflicts (see Section 4.3.3).
The approach combines the advantages of applying VCSs (i.e., vari-
ability in time) and the CCmechanism (i.e., variability in space). The
remainder of this paper proceeds as follows. Section 2 presents the
essential concepts to understand the proposal. Section 3 overviews
existing VRMs. Section 4 details our proposal. Finally, we present
the related work and ongoing activities in Section 5.

2 BACKGROUND
2.1 Software Product Lines
A Software Product Line (SPL) is a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific
needs of a particular market segment and are developed from a com-
mon set of core assets in a prescribed way [18]. For the development
of SPLs, currently, SPLE establishes two complementary develop-
ment processes [56, 65]: Domain Engineering (DE) and Application
Engineering (AE). DE is the process of analyzing the domain of
a product line and developing reusable artifacts [36]. In contrast,
AE has the goal of developing a specific product for the needs of a
particular customer [4]. Besides, each of these two processes can be
observed in two different spaces: problem space and solution space.
The problem space refers to systems’ specifications established dur-
ing the domain analysis and requirements engineering phases [7],
commonly from the stakeholder’s perspective [4, 39]. In contrast,
the solution space refers to the concrete systems created during the
architecture, design, and implementation phases [7], usually from
the developer’s perspective [4].

An essential output of the DE phase is the variability model of
the SPL, which is typically represented as a Feature Model (FM). An
FM essentially represents the software features that are available
in an SPL [16]. An FM is a tree-like structure and consists of: i)
features; ii) relations between a parent feature and its child fea-
tures; and iii) cross-tree constraints that are typically inclusion or
exclusion statements [5]. A feature is a distinctive characteristic
of a SS that may refer to a requirement, a software-architecture
component, or source code pieces [67]. A feature can be classified
as abstract or concrete; an abstract feature is commonly used only
to organize concrete features, and it does not appear in concrete
product configurations.

2.2 Version Control Systems
A version control system (VCS), also known as a revision control
system or source control system [68], is a specialized type of data-
base used by developers to store the different versions of the source
code that they are developing [61]. VCS can be categorized as cen-
tralized or distributed. Centralized VCSs are characterized by a
single master repository accessed by all the developers to “check
out” and “check in” version commits [73]. Distributed VCSs are

characterized by complete local repositories to each developer, al-
lowing developers to exchange and integrate code changes in a
peer-to-peer fashion [34]. VCSs usually manage the “variability in
time” of a software system, either storing only changes—like Darcs
[25]—or storing a complete copy of a modified file—like Git. Git is
currently the most popular VCS in the software industry [62] with
various tools that support its use, such as the GitHub and Bitbucket
web code-sharing platforms.

3 VARIABILITY REALIZATIONMECHANISMS
3.1 Conditional Compilation
Conditional Compilation (CC) is a simple mechanism to imple-
ment compile-time variability and one of the most popular VRMs
[42, 54, 77] in the SPL industry. The NASA’s flight control software,
HP’s product line of printer firmware and the Linux kernel are
some of the SPL projects that use this mechanism to implement
its variability [42]. CC utilizes special directives to manage the
variability and a lexical preprocessor to processes them according
to a product configuration. This kind of annotations can be used
with anything that is in textual form—e.g., annotations in depend-
ability models [14]—, but with the drawback that it disrupts the
language/format involved. To avoid this issue, the preprocessor
directives are typically embedded in the comments of the host lan-
guage. The C preprocessor [40], for example, implements this VRM,
being one of the most used approaches in open-source and industry
projects [45]. Other implementations include the Pascal’s prepro-
cessor [74], Munge preprocessor [77], Antenna preprocessor [77],
pure::variants’s preprocessor [11], and Gears’s preprocessor [42].

The C preprocessor (CPP) uses simple directives such as #if,
#elif, #else, and #endif to add variability inside source code writ-
ten in C, allowing developers to create conditional statements like
“if a specific feature is selected, include this specific source code.”
However, because these directives are not part of the syntax of the
host programming language, development environments often re-
port errors in conditional code. For example, multiple declarations
of the same variable in different parts of a CC-controlled code can
trigger errors in the development environment. Additionally, the
fact of having the source code all the variants mixed together limits
the readability of the code, thus increasing the difficulty of writing
and maintaining the project. Directives defined by Munge (such as
if[tag] , else[tag], ifnot[tag], and end[tag]), and Antenna
(such as #if expression, #elif expression,#else, #endif and
#condition expression) in Java comments also limit the read-
ability of the code and, in some cases, in how to write the source
code. Mainstream programming languages could integrate these
directives in some standard (it is the case of C); however, for the
moment, very few languages support this VRM off-the-shelf.

3.2 Object-Oriented Programming
In object-oriented programming (OOP), SSs are organized as coop-
erative collections of objects, each being an instance of some class,
and whose classes are members of a hierarchy of classes connected
via inheritance and usage relationships [12]. The distinctive char-
acteristics of OOP like polymorphism, inheritance, and software
design patterns (SDPs) allow creating the variability in the source
code of an SPL. In [33], for example, we can find descriptions of how

A Proposal for Organizing Source Code Variability in the Git Version Control SystemSPLC ’21, September 6–11, 2021, Leicester, United Kingdom

SDPs can be used to implement the variability described in an FM.
With OOP mechanisms, developers can also create frameworks or
libraries to manage the variability in the source code of an SS or SPL.
The COSMOS* model [23, 59] is an example of applying OOP mech-
anisms to define an implementation model for the specification and
development of SPLs. The COSMOS* model is also a component
implementation model, and it can also be classified as VRM focused
on components (See Section 3.3). The COSMOS* model was used
to create one of the implementations of the MobileMedia SPL [78].

3.3 Component-Oriented Programming
Component-Oriented Programming (COP) is focused on develop-
ing software by assembling components, while OOP emphasizes
classes and objects [85]. The COP separates concerns into enti-
ties called components [64]. A component is not an object, but
can provide the resources to instantiate objects [13] if it supports
OOP. Components are reusable and could be seen as black boxes
[53], that is, they describe what can be done, rather than how it is
done. Components are characterized by their required (i.e., input)
interfaces and provided (i.e., output) interfaces, and they can be
connected though these interfaces. As a result, components can be
put together in various configurations to form a SS [15]. Being able
to interchange components and component configurations creates
the variability required for the different SSs of an SPL.

OSGi [19] and Docker [27] are technologies that can be adapted
to implement SPLs using this VRM. The OSGi platform, for exam-
ple, defines modules that can be seen as components [2], while
the Docker virtualization technology defines containers that could
also be seen as components. In both cases, it depends on what we
put inside the component (e.g., Microservices) and on how it de-
fines the protocol of its interfaces of communication (e.g., REST).
Additionally, both technologies have a kind of orchestrator to man-
age its kind of component that is useful for this VRM—e.g., in the
context of Docker, container orchestrators allow to define how to
select, deploy, track and dynamically manage the configuration of
multi-container packaged applications

3.4 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) is a technology for dealing ex-
plicitly with the separation of concerns [82]. AOP is a programming
paradigm that supports themodular implementation of crosscutting
concerns [75]. For instance, considering the source that implements
security policies across the different modules of a SS, AOP allows
to factor these policies in a single element called aspect. Aspects
change an existing application without modifying its source code
[55]. Having a base application implemented in an object-oriented
language (e.g., Java), developers can apply aspects to extend the
application. AspectJ is an aspect-oriented extension to Java [43].
AspectJ defines an annotation called Pointcut to specify where the
aspect modules can manipulate the base source code. Aspect mod-
ules may alter the control flow, overwrite methods, or add source
code before or after a specific method. AspectJ code is compiled
into standard Java bytecode.

3.5 Feature-Oriented Programming
Feature-oriented programming (FOP) is a paradigm to develop SPLs
and a specialized form of generative programming [55]. Generative
programming is a computing paradigm allowing the automatic cre-
ation of entire software families using the configuration of primary
components [80]. FOP encapsulates features into separate feature
modules to achieve separation of concerns, and through the inte-
gration of these feature modules, it generates a variety of software
products [80]. Unlike COP, this integrates feature modules instead
of linking components: when features are merged, consistent ar-
tifacts that define a program are synthesized [79]. Additionally,
in FOP, the composition order matters because altering the order
can alter the resulting product variant [55]. FeatureHouse [30] and
AHEAD [1] are some of the available tools that support FOP.

3.6 Delta-Oriented Programming
Delta oriented programming (DOP) is a compositional approach to
implement SPLs [24]. The delta modules comprise modifications
of an object-oriented program similar to the aspects in the aspect-
oriented programming. DOP allows generating a product by adding
a set of actions encapsulated in a delta module (e.g., add a new
method to the class X) to a core module. DeltaJ is a Java-like lan-
guage that supports DOP by organizing classes and interfaces in
delta modules [26]. There are two kinds of delta modules: core and
delta. Core modules are collections of classes, while delta modules
are a set of operations that allow adding, modifying, or removing
classes or methods declared in other modules. Thus, a delta module
allows adding classes, methods, and fields, removing classes, meth-
ods, and fields, changing superclasses or constructors, and finally
renaming methods and fields. In DOP, a SS is assembled using a
single core module and several delta modules, which are selected
based on the features to be included.

4 THE PROPOSED APPROACH FOR
ORGANIZING THE SPL SOURCE CODE

4.1 Motivation
Like SSs evolve, SPLs also evolve, and thus the SPL source code
changes over time. Changes to the SPL source code, even minor
ones, can affect multiple features and products of an SPL. Under-
standing the impact of change implies dealing with a high number
of logical expressions, depending on how the SPL and its variabil-
ity are implemented. Over time the number of variants to handle
increases, and so does the number of revisions, thus becoming
a cognitively complex task [48, 57]—this complexity is increased
drastically when altering the variability model.

Thus, in the SPL development cycle, there is a need for a practical
approach that can simplify the system evolution over time. On the
other hand, developers should be able to focus on the specific or the
generic source code separately as needed. For example, they should
be able to focus on fixing a bug in a feature without the distraction
of code involving other features. Besides, developers should be
able to generate a product with all the latest modifications after
committing changes. However, in current approaches, developers
are somehow forced to work with code “extremely polluted” with

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Casquina and Montecchi

variability mechanisms, where a small unintended change can affect
many features without the developer’s knowledge.

4.2 The Feature Branching Graph
We notice that the Git branch structure could be seen as a tree
where each node is a branch, and each relationship between parent
and child is used to identify the branch taken as a base to create
a new branch. We called this structure a Feature Branching Graph.
The Feature Branching Graph (FBG) is used to organize the generic
and specific source code of an SPL, with the more specific parts of
the source code reside in the nodes with greater depth. The FBG
is created from the FM of the SPL, following three main rules. We
create: (i) a variability branch for each abstract feature that is not a
feature leaf, (ii) a feature branch for each concrete feature that is a
feature leaf, and (iii) two branches for each concrete feature that
is not a feature leaf, being one branch for the feature and one for
storing the variability of his child features.

By structuring the source code correctly in the FBG in Git, devel-
opers can focus on different variability aspects (feature or groups
of features) without affecting each other’s work, because branches
are focused on features. Figure 1 shows the FBG created using the
Elevator SPL’s partial FM. As we can observe, the hierarchy in the
FM is maintained in the FBG. When implementing the FBG in Git,
the structure of the FBG is used to know which branches should be
taken as base to create the other Git branches. For example, after
creating the ‘ElevatorSPL’ branch from the master branch, it is
created the ‘ElevatorSPL Variability’ branch from the ‘ElevatorSPL’
branch, and so on for the other branches of the graph (See Figure
1). This way, the FBG in Git can maintain commits related to the
common parts in higher branches in the hierarchy, and commits
related to the specific parts in lower branches in the hierarchy.

4.3 SPL Development Process
4.3.1 Workflow Overview. Figure 2 shows a detailed review of this
process. When having existing artifacts, we have to collect them
(step 1) and then manually or automatically analyze them (step
2) to find patterns and then design the FM (step 3). In the case
there are no existing artifacts to be considered, we can skip steps
1 and 2. Having already the FM, we can define the valid product
configurations (step 4) and then the corresponding FBG in Git (step
5). To use our approach correctly, developers have to follow a series
of activities to implement the SPL. Of course, our objective is to
create a tool that makes this as transparent as possible to them.
First, developers choose what mechanisms to control the variability
will be used in SPL development. For the moment, our proposal
focuses on conditional compilation, being the most general and one
of the most practical. Second, developers create the common parts
of the SPL (e.g., the essential codebase), and store and organize
the most common codebase into the FBG by depth. For example,
the essential codebase common to all the features is added to the
root branch. Then, these changes have to be propagated to all the
derived branches (step 6).

When implementing a feature, commits related to common code-
bases must be stored in branches with low depth, while commits
related to specific features or groups of features must be stored
in branches with higher depth (step 7). As before, all the derived

branches must be updated with these new changes. For this ap-
proach to work, the FBG must be maintained in a state that we call
pure state, which implies that there are no conflict downwards the
tree, or among the different features of a product. This is achieved
by adding statements that have as function managing the variability
(step 8), for example, Git commits with conditional compilation
directives added inside the variability branches. We call product
conflict a conflict that emerges when merging branches represent-
ing different features in the same product configuration. A down
conflict emerges instead when propagating changes (i.e., commits)
to more specific branches (child branches), following the structure
of the FBG.

4.3.2 Generation of products. To generate a product with the pro-
posed approach, a new temporary branch is generated from the
root branch of the FBG (e.g., the ElevatorSPL branch in Figure 1).
Then, this branch is merged with the specific branches related to
the features selected in the product’s configuration. The next step
is to create another temporary branch from the resulting branch,
to separate the merged branch from the branch with the resolution
of the variability in order to have a backup of the merged branch.
Finally, in this new created branch, we have to resolve the variabil-
ity, depending on the approach used to implement the variability
realization. At the end of this process, we will have a Git branch
with the source code of the desired product according to the se-
lected features of the product’s configuration. However, when some
merge generates conflicts, it indicates that the FBG is not in a pure
state and needs changes to be pure.

4.3.3 Resolving down conflicts and product conflicts. When adding
some commit to a parent branch, the approach proposes to spread
the commit to the child branches (Git rebase command) respecting
the hierarchical order. However, this activity can generate a Git
rebase conflict with some of its child branches that in this paper
we called a down conflict. When the conflict is detected, developers
must resolve the conflict in that specific variability child branch or
in the closest higher variability branch as possible, and then spread
the now new commits to the child branches. On the other hand, the
product conflicts emerge when verifying that a specific software
product can be generated using its product configuration. In this
case, the conflict has to be resolved in the closest higher variability
branch and then spread the commit to his child branches, resolving
also the down conflicts when spreading the commit.

We believe that, to a certain extent, the resolution of conflicts
can be automated and possibly without human intervention. When
no automated solution is possible, the tool should at least propose
different candidate solutions, from which the developer could select
the most appropriate one. In our first investigation of this proposal,
conflicts will be solved by the CC mechanism. More in general,
we foresee a component that takes care of solving conflicts in the
code base; a specific implementation of this component would be
needed to support other VRMs. When merging feature branches,
this component would be in charge to resolve the down conflicts
and the product conflicts in the FBG.

4.3.4 Discussion. Although our approach focuses on organizing
branches to reduce the pollution generated by some variability
mechanisms, there may be cases where the FBG is contaminated

A Proposal for Organizing Source Code Variability in the Git Version Control SystemSPLC ’21, September 6–11, 2021, Leicester, United Kingdom

Figure 1: The FBG generated from the Elevator SPL’s partial FM

Figure 2: A review of the SPL development using the proposed approach

by them. To resolve this problem, we have been testing a different
version of the approach with delay spreading, so commits related to
conflict resolution only are stored in variability branches without
polluted the feature branches. Finally, the scope of applicability of
the proposed approach will be explored in future work.

5 RELATEDWORK AND ONGOING
ACTIVITIES

The grown-and-prune model [29, 58] and the PLE-Flow model [38]
propose branching models to manage SPLs similarly to our ap-
proach. Each of these models has its advantages and disadvantages.
Our approach focuses on the features of the SPL and not on its prod-
ucts, as the grown-and-prune model does. So products generated
using our approach are stored in temporary branches. Besides, if
the generated product has a bug, it is fixed in the feature branches
and not in the product branch. On the other hand, our approach
has a similar complexity as the PLE-Flow model; however, we are
developing tools to reduce this complexity.

Variation control systems (VarCSs)—e.g., ECCO [47] and Super-
Mod [71]—allow working on one or multiple variants by providing
views (or projections) that filter irrelevant details of configurable
artifacts to facilitate their comprehension and lower the cogni-
tive complexity when editing the variants [48]. However, current

VarCSs have and depend on a particular restrictive style [57], so
that it is not attractive for developers. On the other hand, our ap-
proach is less stringent because it is based on Git, a well-known
tool in the software industry.

We are currently working on the concrete realization of this
proposal, by defining the activities that should be performed by a
supporting tool, and by developing a command-line prototype of
such tool (new VarCS) as a layer on top of Git. Therefore, all the
recurring mechanical activities, like propagating the commits or
resolving product conflicts and down conflicts would be automati-
cally handled by the tool. Regarding the management of conflicts,
the tool must at least generate and list recommended solutions.
Finally, the tool should also be able to create a product from a valid
product configuration, and manage the graph branch on top of Git.

Following the VarCS characteristics proposed in [49], our new
VarCS would be categorized as: “boolean” for the entity dimension;
“variability model” as constraints; “text” and “files and folders” for
the kind of variable artifacts; “per feature” for revisions; “database”
as internal storage; “annotative” as internal variation points; “mate-
rialized” as external type; “fixed” as external state; and “distributed”
as collaboration. We plan to validate our approach using one of the
existing SPLs whose source code is publicly available, for example
the ArgoUML SPL [20].

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Casquina and Montecchi

ACKNOWLEDGMENTS
This work is partially supported by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior (CAPES), and by the Fundação
de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under
Grant No. 2019/02144-6.

REFERENCES
[1] AHEAD. 2021. AHEAD Tool Suite. https://www.cs.utexas.edu/~schwartz/ATS/

fopdocs/ accessed 2021-04-03.
[2] E. Almeida, E. C. Santos, A. Alvaro, V. Garcia, S. Meira, D. Lucrédio, and R. Fortes.

2008. Domain Implementation in Software Product Lines Using OSGi. Seventh
International Conference on Composition-Based Software Systems (ICCBSS 2008)
(2008), 72–81.

[3] Sofia Ananieva, T. Kehrer, Heiko Klare, A. Koziolek, Henrik Lönn, S. Ramesh,
A. Burger, G. Taentzer, and B. Westfechtel. 2019. Towards a Conceptual Model
for Unifying Variability in Space and Time. Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume B (2019).

[4] S. Apel, D. Batory, Christian Kstner, and G. Saake. 2013. Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation.

[5] David Benavides, A. Cortés, Pablo Trinidad Martín-Arroyo, and S. Segura. 2006.
A Survey on the Automated Analyses of Feature Models. In JISBD.

[6] Nelly Bencomo and Gordon Blair. 2009. Using architecture models to support
the generation and operation of component-based adaptive systems. In Software
engineering for self-adaptive systems. Springer, 183–200.

[7] Kathrin Berg, Judith Bishop, and Dirk Muthig. 2005. Tracing software product
line variability: from problem to solution space. In SAICSIT, Vol. 5. Citeseer,
182–191.

[8] T. Berger. 2012. Variability modeling in the wild. In SPLC ’12.
[9] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof

Czarnecki. 2013. A study of variability models and languages in the systems
software domain. IEEE Transactions on Software Engineering 39, 12 (2013), 1611–
1640.

[10] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. 2013. A Study
of Variability Models and Languages in the Systems Software Domain. IEEE
Transactions on Software Engineering 39, 12 (2013), 1611–1640. https://doi.org/10.
1109/TSE.2013.34

[11] Danilo Beuche. 2013. pure:: variants. In Systems and Software Variability Man-
agement. Springer, 173–182.

[12] G. Booch, R. A. Maksimchuk, M. Engle, Bobbi J. Young, and Jim Conallen. 2008.
Object-oriented analysis and design with applications, third edition. ACM SIG-
SOFT Softw. Eng. Notes 33 (2008).

[13] J. Bosch, C. Szyperski, and W. Weck. 2003. Component-Oriented Programming.
In ECOOP Workshops.

[14] L. Bressan, A. L. D. Oliveira, Fernanda Campos, and R. Capilla. 2021. A variability
modeling and transformation approach for safety-critical systems. 15th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems
(2021).

[15] A. Brooks, T. Kaupp, Alexei Makarenko, Stefan B. Williams, and Anders Orebäck.
2005. Towards component-based robotics. 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems (2005), 163–168.

[16] Junior Cupe Casquina, Jane DA Sandim Eleuterio, and Cecilia MF Rubira. 2016.
Adaptive deployment infrastructure for android applications. In 2016 12th Euro-
pean Dependable Computing Conference (EDCC). IEEE, 218–228.

[17] Chaminda Chandrasekara and Pushpa Herath. 2020. Getting Started with Azure
Git Repos. In Hands-on Azure Repos. Springer, 139–170.

[18] Paul Clements and Linda Northrop. 2002. Software product lines - practices and
patterns. In SEI series in software engineering.

[19] Equinox Committers. 2021. Equinox | The Eclipse Foundation. https://www.
eclipse.org/equinox/ accessed 2021-04-03.

[20] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. 2011.
Extracting software product lines: A case study using conditional compilation. In
2011 15th European Conference on Software Maintenance and Reengineering. IEEE,
191–200.

[21] Javier Cuenca, Felix Larrinaga, and Edward Curry. 2019. Experiences on applying
SPL Engineering Techniques to Design a (Re) usable Ontology in the Energy
Domain.. In SEKE. 606–777.

[22] K. Czarnecki, P. Grünbacher, Rick Rabiser, K. Schmid, and A. Wasowski. 2012.
Cool features and tough decisions: a comparison of variability modeling ap-
proaches. In VaMoS ’12.

[23] MC Jr da Silva, Paulo A de C Guerra, and Cecília MF Rubira. 2003. A java
component model for evolving software systems. In 18th IEEE International
Conference on Automated Software Engineering, 2003. Proceedings. IEEE, 327–330.

[24] Ferruccio Damiani and Ina Schaefer. 2011. Dynamic delta-oriented programming.
In Proceedings of the 15th International Software Product Line Conference, Volume
2 (SPLC ’11). Association for Computing Machinery, Munich, Germany, 1–8.

https://doi.org/10.1145/2019136.2019175
[25] Darcs. 2021. Darcs. http://darcs.net/ accessed 2021-04-03.
[26] João P Diniz, Gustavo Vale, Felipe Gaia, and Eduardo Figueiredo. 2017. Evalu-

ating delta-oriented programming for evolving software product lines. In 2017
IEEE/ACM 2nd International Workshop on Variability and Complexity in Software
Design (VACE). IEEE, 27–33.

[27] Docker. 2021. Empowering App Development for Developers | Docker. https:
//www.docker.com/ accessed 2021-04-03.

[28] H. Eichelberger and K. Schmid. 2013. A systematic analysis of textual variability
modeling languages. In SPLC ’13.

[29] D. Faust and C. Verhoef. 2003. Software product line migration and deployment.
Software: Practice and Experience 33 (2003).

[30] FeatureHouse. 2021. FeatureHouse. https://www.se.cs.uni-saarland.de/apel/fh/
accessed 2021-04-03.

[31] Fischer Ferreira, Markos Viggiato, M. Souza, and E. Figueiredo. 2020. Testing
configurable software systems: the failure observation challenge. Proceedings
of the 24th ACM Conference on Systems and Software Product Line: Volume A -
Volume A (2020).

[32] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing clone-and-own with systematic reuse for developing
software variants. In 2014 IEEE International Conference on Software Maintenance
and Evolution. IEEE, 391–400.

[33] Rachel Gawley. 2007. Automating the identification of variability realisation
techniques from feature models. In ASE ’07.

[34] D. Germán, B. Adams, and A. Hassan. 2014. Continuously mining distributed
version control systems: an empirical study of how Linux uses Git. Empirical
Software Engineering 21 (2014), 260–299.

[35] H. Gomaa. 2005. Designing Software Product Lines with UML. 29th Annual
IEEE/NASA Software Engineering Workshop - Tutorial Notes (SEW’05) (2005), 160–
216.

[36] Hassan Haidar, Manuel Kolp, and YvesWautelet. 2017. Goal-oriented requirement
engineering for agile software product lines: an overview. Louvain School of
Management Research Institute Working Paper Series, Louvain, Belgium (2017),
1–36.

[37] Øystein Haugen, Andrzej Wąsowski, and Krzysztof Czarnecki. 2012. CVL: com-
mon variability language. In Proceedings of the 16th International Software Product
Line Conference-Volume 2. 266–267.

[38] Robert Hellebrand, M. Schulze, and Martin Becker. 2016. A branching model
for variability-affected cyber-physical systems. 2016 3rd International Workshop
on Emerging Ideas and Trends in Engineering of Cyber-Physical Systems (EITEC)
(2016), 47–52.

[39] Jose Miguel Horcas Aguilera et al. 2018. WeaFQAs: A Software Product Line
Approach for Customizing and Weaving Efficient Functional Quality Attributes.
(2018).

[40] Ying Hu et al. 2000. C/C++ conditional compilation analysis using symbolic
execution. In Proceedings 2000 International Conference on Software Maintenance.
IEEE, 196–206.

[41] Y. Hu, E. Merlo, M. Dagenais, and B. Laguë. 2000. C/C++ conditional compilation
analysis using symbolic execution. Proceedings 2000 International Conference on
Software Maintenance (2000), 196–206.

[42] C. Kaestner, Paolo G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.
2011. Variability-aware parsing in the presence of lexical macros and conditional
compilation. In OOPSLA ’11.

[43] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In ECOOP 2001 — Object-
Oriented Programming (Lecture Notes in Computer Science), Jørgen Lindskov
Knudsen (Ed.). Springer, Berlin, Heidelberg, 327–354. https://doi.org/10.1007/
3-540-45337-7_18

[44] Chang Hwan Peter Kim, Eric Bodden, Don Batory, and Sarfraz Khurshid. 2010.
Reducing configurations to monitor in a software product line. In International
Conference on Runtime Verification. Springer, 285–299.

[45] Jacob Krüger, Ivonne Schröter, Andy Kenner, Christopher Kruczek, and Thomas
Leich. 2016. FeatureCoPP: compositional annotations. In Proceedings of the 7th
International Workshop on Feature-Oriented Software Development. 74–84.

[46] LabSoft. 2021. LabSoft. http://labsoft.dcc.ufmg.br/doku.php?id=about:spl_list
accessed 2021-04-03.

[47] Lukas Linsbauer. 2016. A variability aware configuration management and
revision control platform. In 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 803–806.

[48] Lukas Linsbauer, T. Berger, and P. Grünbacher. 2017. A classification of variation
control systems. Proceedings of the 16th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences (2017).

[49] Lukas Linsbauer, Felix Schwägerl, T. Berger, and Paul Grünbacher. 2021. Concepts
of variation control systems. J. Syst. Softw. 171 (2021), 110796.

[50] J. Martinez, Wesley K. G. Assunção, and T. Ziadi. 2017. ESPLA: A Catalog of
Extractive SPL Adoption Case Studies. Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B (2017).

https://www.cs.utexas.edu/~schwartz/ATS/fopdocs/
https://www.cs.utexas.edu/~schwartz/ATS/fopdocs/
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/TSE.2013.34
https://www.eclipse.org/equinox/
https://www.eclipse.org/equinox/
https://doi.org/10.1145/2019136.2019175
http://darcs.net/
https://www.docker.com/
https://www.docker.com/
https://www.se.cs.uni-saarland.de/apel/fh/
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/3-540-45337-7_18
http://labsoft.dcc.ufmg.br/doku.php?id=about:spl_list

A Proposal for Organizing Source Code Variability in the Git Version Control SystemSPLC ’21, September 6–11, 2021, Leicester, United Kingdom

[51] JabierMartinez, Xhevahire Tërnava, and Tewfik Ziadi. 2018. Software product line
extraction from variability-rich systems: the robocode case study. In Proceedings
of the 22nd International Systems and Software Product Line Conference-Volume 1.
132–142.

[52] JohnDMcGregor, LindaMNorthrop, Salah Jarrad, and Klaus Pohl. 2002. Initiating
software product lines. IEEE Software 19, 4 (2002), 24.

[53] MDouglas McIlroy, J Buxton, Peter Naur, and Brian Randell. 1968. Mass-produced
software components. In Proceedings of the 1st international conference on software
engineering, Garmisch Pattenkirchen, Germany. 88–98.

[54] Jens Meinicke, Thomas ThŘm, Reimar Schr, Fabian Benduhn, Thomas Leich,
Gunter Saake, et al. 2017. Conditional Compilation with FeatureIDE. InMastering
Software Variability with FeatureIDE. Springer, 97–103.

[55] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer
International Publishing, Cham. https://doi.org/10.1007/978-3-319-61443-4

[56] Andreas Metzger and Klaus Pohl. 2007. Variability management in software
product line engineering. In 29th International Conference on Software Engineering
(ICSE’07 Companion). IEEE, 186–187.

[57] G. K. Michelon. 2020. Evolving System Families in Space and Time. Proceedings
of the 24th ACM International Systems and Software Product Line Conference -
Volume B (2020).

[58] Leticia Montalvillo-Mendizabal, O. Díaz, and Thomas Fogdal. 2018. Reducing
coordination overhead in SPLs: peering in on peers. Proceedings of the 22nd
International Systems and Software Product Line Conference - Volume 1 (2018).

[59] A. S. Nascimento, C. Rubira, R. Burrows, and F. C. Filho. 2013. A Model-Driven
Infrastructure for Developing Product Line Architectures Using CVL. 2013 VII
Brazilian Symposium on Software Components, Architectures and Reuse (2013),
119–128.

[60] D. Nestor, L. O’Malley, Aaron J. Quigley, E. Sikora, and S. Thiel. 2007. Visualisation
of Variability in Software Product Line Engineering. In VaMoS.

[61] B. O’Donovan and J. Grimson. 1990. A distributed version control system for
wide area networks. Softw. Eng. J. 5 (1990), 255–262.

[62] Nicolás Paez. 2018. Versioning Strategy for DevOps Implementations. In 2018
Congreso Argentino de Ciencias de La Informática y Desarrollos de Investigación
(CACIDI). IEEE, 1–6.

[63] Richard F Paige, Xiaochen Wang, Zoë R Stephenson, and Phillip J Brooke. 2006.
Towards an agile process for building software product lines. In International
Conference on Extreme Programming and Agile Processes in Software Engineering.
Springer, 198–199.

[64] N. Pessemier, L. Seinturier, T. Coupaye, and L. Duchien. 2006. A Safe Aspect-
Oriented Programming Support for Component-Oriented Programming.

[65] K. Pohl and A. Metzger. 2018. Software Product Lines. In The Essence of Software
Engineering.

[66] C. Prehofer. 1997. Feature-Oriented Programming: A Fresh Look at Objects. In
ECOOP.

[67] C. Prehofer. 2001. Feature-oriented programming: A new way of object composi-
tion. Concurrency and Computation: Practice and Experience 13 (2001).

[68] Nayan B Ruparelia. 2010. The history of version control. ACM SIGSOFT Software
Engineering Notes 35, 1 (2010), 5–9.

[69] Pablo Sánchez, Neil Loughran, Lidia Fuentes, and Alessandro Garcia. 2008. En-
gineering languages for specifying product-derivation processes in software
product lines. In International Conference on Software Language Engineering.
Springer, 188–207.

[70] K. Schmid, Rick Rabiser, and P. Grünbacher. 2011. A comparison of decision
modeling approaches in product lines. In VaMoS ’11.

[71] Felix Schwägerl, Thomas Buchmann, and Bernhard Westfechtel. 2015. Super-
Mod—A model-driven tool that combines version control and software product
line engineering. In 2015 10th International Joint Conference on Software Tech-
nologies (ICSOFT), Vol. 2. IEEE, 1–14.

[72] C. Seidl, I. Schaefer, and U. Assmann. 2014. Capturing variability in space and
time with hyper feature models. In VaMoS ’14.

[73] Russell G. Shirey, K. Hopkinson, K. E. Stewart, D. Hodson, and Brett J. Borghetti.
2015. Analysis of Implementations to Secure Git for Use as an Encrypted Dis-
tributed Version Control System. 2015 48th Hawaii International Conference on
System Sciences (2015), 5310–5319.

[74] Stéphane S Somé and Timothy C Lethbridge. 1998. Parsing minimization when
extracting information from code in the presence of conditional compilation.
In Proceedings. 6th International Workshop on Program Comprehension. IWPC’98
(Cat. No. 98TB100242). IEEE, 118–125.

[75] Olaf Spinczyk and Daniel Lohmann. 2007. The design and implementation of
AspectC++. Knowledge-Based Systems 20, 7 (2007), 636–651.

[76] Mohammad Tanhaei, Jafar Habibi, and Seyed-Hassan Mirian-Hosseinabadi. 2016.
Automating feature model refactoring: A Model transformation approach. Infor-
mation and Software Technology 80 (2016), 138–157. https://doi.org/10.1016/j.
infsof.2016.08.011

[77] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014),
70–85.

[78] Leonardo P Tizzei, Marcelo Dias, Cecília MF Rubira, Alessandro Garcia, and
Jaejoon Lee. 2011. Components meet aspects: Assessing design stability of a
software product line. Information and Software Technology 53, 2 (2011), 121–136.

[79] Salvador Trujillo, Don Batory, and Oscar Diaz. 2007. Feature oriented model
driven development: A case study for portlets. In 29th International Conference
on Software Engineering (ICSE’07). IEEE, 44–53.

[80] Edoardo Vacchi and W. Cazzola. 2015. Neverlang: A framework for feature-
oriented language development. Comput. Lang. Syst. Struct. 43 (2015), 1–40.

[81] Frank J Van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software product
lines in action: the best industrial practice in product line engineering. Springer
Science & Business Media.

[82] John Viega, Joshua T Bloch, and Pravir Chandra. 2001. Applying aspect-oriented
programming to security. Cutter IT Journal 14, 2 (2001), 31–39.

[83] Gustavo M Waku, Edson R Bollis, Cecilia MF Rubira, and Ricardo da S Torres.
2015. A robust software product line architecture for data collection in android
platform. In 2015 IX Brazilian Symposium on Components, Architectures and Reuse
Software. IEEE, 31–39.

[84] Gustavo M Waku, Cecilia MF Rubira, and Leonardo P Tizzei. 2015. A case study
using aop and components to build software product lines in android platform. In
2015 41st Euromicro Conference on Software Engineering and Advanced Applications.
IEEE, 418–421.

[85] Andy Ju An Wang, Kai Qian, et al. 2005. Component-oriented programming.
Vol. 319. Wiley Online Library.

https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1016/j.infsof.2016.08.011
https://doi.org/10.1016/j.infsof.2016.08.011

	Abstract
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.2 Version Control Systems

	3 Variability Realization Mechanisms
	3.1 Conditional Compilation
	3.2 Object-Oriented Programming
	3.3 Component-Oriented Programming
	3.4 Aspect-Oriented Programming
	3.5 Feature-Oriented Programming
	3.6 Delta-Oriented Programming

	4 The Proposed Approach for Organizing the SPL Source Code
	4.1 Motivation
	4.2 The Feature Branching Graph
	4.3 SPL Development Process

	5 Related Work and Ongoing Activities
	Acknowledgments
	References

