
IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020 293

A Template-Based Methodology for the Specification
and Automated Composition of

Performability Models
Leonardo Montecchi , Paolo Lollini, and Andrea Bondavalli , Member, IEEE

Abstract—Dependability and performance analysis of modern
systems is facing great challenges: their scale is growing, they
are becoming massively distributed, interconnected, and evolving.
Such complexity makes model-based assessment a difficult and
time-consuming task. For the evaluation of large systems, reusable
submodels are typically adopted as an effective way to address the
complexity and to improve the maintainability of models. When
using state-based models, a common approach is to define libraries
of generic submodels, and then compose concrete instances by state
sharing, following predefined “patterns” that depend on the class
of systems being modeled. However, such composition patterns are
rarely formalized, or not even documented at all. In this paper, we
address this problem using a model-driven approach, which com-
bines a language to specify reusable submodels and composition
patterns, and an automated composition algorithm. Clearly defin-
ing libraries of reusable submodels, together with patterns for their
composition, allows complex models to be automatically assembled,
based on a high-level description of the scenario to be evaluated.
This paper provides a solution to this problem focusing on: formally
defining the concept of model templates, defining a specification
language for model templates, defining an automated instantiation
and composition algorithm, and applying the approach to a case
study of a large-scale distributed system.

Index Terms—Composition, model-based evaluation, model-
driven engineering (MDE), modularity, performability, state based,
stochastic activity networks (SANs), template models.

I. INTRODUCTION

MODEL-based evaluation [1] plays a key role in depend-
ability [2] and performability [3] evaluation of systems.

Modeling allows the system to be analyzed at different levels
of abstraction; it can be used to perform sensitivity analysis,
to identify problems in the design, to guide experimental
activities, and to provide answers to “what-if” questions, all

Manuscript received June 12, 2018; revised November 13, 2018; accepted
January 22, 2019. Date of publication May 9, 2019; date of current version
March 2, 2020. This work was supported in part by the REGIONE TOSCANA
POR FESR 2014-2020 SISTER “Signaling & Sensing Technologies in Rail-
way Application,” and in part by the DEVASSES (Design, Verification and
Validation of large-scale, dynamic Service Systems) project, funded by the
European Union’s Seventh Framework Programme under Grant PIRSES-GA-
2013-612569. Associate Editor: M. Grottke. (Corresponding author: Leonardo
Montecchi.)

L. Montecchi is with the Institute of Computing, University of Campinas,
Campinas 13083-970, Brazil (e-mail:,leonardo@ic.unicamp.br).

P. Lollini and A. Bondavalli are with the Dipartimento di Matematica e In-
formatica, University of Firenze, 50121 Firenze, Italy (e-mail:, lollini@unifi.it;
bondavalli@unifi.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2019.2898351

without actually exercising the real system. For this reason,
modeling and simulation are widely used in the assessment of
high-integrity systems and infrastructures, for which faults and
attacks can potentially lead to catastrophic consequences.

While ad hoc simulators are used in some domains, (e.g., see
[4]), state-based formalisms like stochastic petri nets (SPNs)
and their extensions [5] are widely used to assess nonfunctional
properties across different domains. Such formalisms have
several key advantages: they provide a convenient graphical
notation, they support different abstraction levels, they enable
modular modeling via state sharing (i.e., superposition of state
variables), and they are well suited for the representation of
random events (e.g., component failures). Moreover, due to their
generality, such formalisms can be used in different domains,
and for the analysis of different kinds of system properties.

Nowadays, the analysis of modern systems is facing great
challenges: their scale is growing and they are becoming mas-
sively distributed, interconnected, and evolving. The high num-
ber of components, their interactions, and rapidly-changing
system configurations represent notable challenges for model-
based evaluation. A transition toward the systems-of-systems
paradigm [6], [7] is occurring: new services emerge by the aggre-
gation of preexisting, independent, constituent systems, whose
internals may not be precisely known.

A key principle in addressing the complexity in the spec-
ification of analysis models is modularization. When using
approaches based on SPNs, reusable submodels addressing dif-
ferent concerns are typically defined and then composed by state
sharing, following predefined “patterns” based on the scenario
to be analyzed. The reusability and maintainability of the ob-
tained analysis model is, therefore, improved: submodels can
be modified in isolation from the rest of the model, they can be
substituted with more refined implementations, and they can be
rearranged based on modifications in the system configuration.

In practice, “libraries” of reusable models are defined,
specific to a certain system or class of systems. However,
while models in those libraries can be precisely defined using
well-established formalisms (e.g., SPNs), means to specify
customized patterns for their instantiation and composition are
limited, and in practice such patterns are often defined only
informally. As a result, first, model libraries are difficult to be
shared and reused, and second, composite models for different
scenarios must be assembled by hand by people who know
the appropriate rules to follow. Even when rules have been

0018-9529 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7603-9695
https://orcid.org/0000-0001-7366-6530
mailto:leonardo@ic.unicamp.br
mailto:lollini@unifi.it
mailto:bondavalli@unifi.it

294 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

properly specified, obtaining a valid (i.e., correctly assembled)
composite model requires a lot of manual effort, involving
error-prone, time-consuming, and repetitive tasks.

In this paper, we address this problem by defining a method-
ology that supports the automated assembly of large performa-
bility models, based on well-specified libraries of reusable
submodels. The approach is built around the concept of “model
templates” and a specification language that we call Template
Models Description Language (TMDL), used to precisely spec-
ify and instantiate model templates. The idea behind the ap-
proach was initially introduced in [8]. In this paper, we provide
a formal definition of the approach, and we apply it to a real use
case from the literature.

Summarizing, the contributions of this paper are the
following:

1) We formally define the concept of model templates and
their composition.

2) We define a specification language for model templates.
3) We define an automated instantiation and composition

algorithm.
4) We apply the approach to a concrete case study of a

large-scale distributed system.
The approach has been devised with the main objective of

facilitating the selection, parametrization, and composition of
predefined models from model libraries. The key distinguishing
aspects of our approach are the following.

1) It enables the formal specification of libraries of model
templates and composition patterns, with a clear separa-
tion between model specification (the “interface” mod-
eling elements required for model composition) and
model implementation (the internal, formalism-specific,
structure of the model).

2) It enables the formal specification of the different scenar-
ios that need to be analyzed, which are used to automati-
cally assemble model templates to form the global system
model, via a model-transformation algorithm.

3) Such model-transformation algorithm is defined and im-
plemented only once, since composition patterns become
part of reusable model libraries.

In the application of the approach, we focus on the stochastic
activity networks (SANs) formalism [9], [10], for two practical
reasons: first, the use case we use as a reference [11] was modeled
with SANs (see Section VI), and second, we can use the discrete-
event simulator provided by Möbius [12] to actually analyze the
composed models that are generated.

The paper is organized as follows. Related work is discussed
in Section II, whereas an overview of the proposed approach
is presented in Section III. Formal definitions are then given in
Section IV. The language to concretely support our framework,
TMDL, is introduced in Section V. The application to the use
case is then presented in Section VI. Finally, Section VII con-
cludes this paper

II. RELATED WORK

Work related to this paper can be grouped according to the
following three main topics.

1) Modular approaches to construct performability models.
2) Variants of Petri nets that provide a compact notation.
3) Model-driven approaches applied to performability

evaluation.
Each group is discussed in more detail in the following.

A. Modularity in Performability Models

The application of modularity and composition for tack-
ling the complexity of modern systems is well established in
domains like software engineering, e.g., [13], and real-time
embedded systems, e.g., [14] and [15]. Our focus is on the
modular construction of state-based models for performability
analysis, by means of reusable elements. In this context,
compositional modeling approaches were initially introduced
to reduce the size of the generated state space [16] or its rep-
resentation [17]. Other approaches, e.g., [18] and [19], define
strategies for decomposing models in submodels having specific
characteristics, and exploit them to achieve a more efficient
solution.

Modularization has later gained importance also for improv-
ing the specification of models, since it also brings a number
of other practical advantages: submodels are usually simpler
to be managed, they can be reused, they can be refined, and
they can be modified in isolation from other parts of the model.
While techniques for efficient analysis of performability mod-
els are fundamental, the growing complexity of modern sys-
tems is also posing challenges for the specification of models.
In this paper, we focus on this aspect, whereas discussions on
efficient evaluation methods can be found, for example, in [1]
and [20].

Several approaches based on Petri nets and their extensions
apply modularity in the construction of performability mod-
els. In such approaches, the overall model is built out of a
well-defined set of submodels addressing specific aspects of the
systems, which are then composed by state sharing following
predefined rules based on the actual scenario to be represented.
Often, submodels include parameters and structural variability,
to improve their reuse. Examples of works that apply such ap-
proach are [11] and [21]–[28].

However, composition patterns and variability aspects are typ-
ically provided informally or by examples. Sometimes, those
“rules” are not even written somewhere, but they are only known
to the person(s) that developed the library of models for the sys-
tem under analysis. The main gap in applying this approach is
that while established formalisms exist both for defining the sub-
models (SPNs) and for composing them (state sharing) means
to define customized patterns for their instantiation and compo-
sition are limited. Consequently, reusing submodels and com-
position patterns and sharing them between different teams is
currently impracticable.

In this paper, we address exactly this problem, by defining a
methodology for specifying and using libraries of reusable sub-
models. The ability to precisely define generic submodels and
composition patterns allows the overall performability model
to be automatically assembled via model transformation from a
high-level specification of the scenario of interest.

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 295

B. Compact Specification of PN-Based Models

In the literature, several variants of the Petri nets (PN) formal-
ism have been defined, some of them having features that pro-
vide more compact and reusable specifications. The box algebra
[29] operates on a restricted class of Petri net models (boxes)
that represent a step of computation. Boxes are composed using
process algebra operators, which are mapped to specific Petri
net submodels (operator boxes). Composition is performed by
essentially replacing the transitions of operator boxes with the
submodels used as operands, possibly synchronizing transitions
based on their labels. In our approach, composition is performed
by fusion of state variables, without knowledge of the internal
behavior (transitions) of models. Therefore, we do not impose
restrictions on their internal structure.

Colored Petri nets (CPNs) [30] allow tokens to be distin-
guished, by attaching data to them. Tokens can be of different
data types, called colors. Hierarchical CPNs support modular-
ization by means of substitution transitions, i.e., a transition is
replaced by a whole subnet in a more detailed model. CPNs are
able to provide very compact representations, and use concepts
similar to those we propose in this paper (e.g., multiplicity).

Stochastic reward nets [31] also contain features that allow
for a compact specification of SPNs, e.g., marking dependency,
variable-cardinality arcs, priorities, etc. Furthermore, they em-
bed extensions to define reward rates. We emphasize, however,
that our objective is not to propose a new variant of Petri nets,
but to automatize the composition of models exploiting existing
primitives (i.e., sharing of state variables).

SANs can also be considered a variant of SPNs [10]. In their
Möbius implementation [12], they support tokens having dif-
ferent datatypes, including structured datatypes. The input gate
and output gate primitives can be used to specify arbitrary com-
plex functions for the enabling of transitions (called activities)
and for their effects. SANs models can be composed using the
Rep/Join state sharing formalism [16]. However, which state
variables are composed, and how, is specified manually for each
composition. In this paper, we propose an approach based on
model-driven engineering (MDE) [32] techniques to: first, de-
fine reusable composition patterns, and second, automate their
application. Such automation also reduces the possibility of
introducing human mistakes in the model specification.

C. Model-Driven Approaches

Several works in the literature have applied MDE techniques
for the automatic derivation of performance and/or dependabil-
ity models from unified modeling language (UML) or similar
representations, e.g., see [33]–[35]. However, the purpose of
such approaches is usually to provide an application-specific
abstraction to users of a certain domain, in the form of a UML
profile, and then automatically derive formal models defined
by an expert. Composition patterns are embedded in the model
transformation algorithm, which is different for every different
library of submodels. Reuse across different domains or with
different libraries of submodels is not usually a concern.

More recently, Bernardi et al. [36] defined an approach to in-
tegrate different model generation chains. They assume the exis-
tence of multiple, independent, transformation chains, each one

directly generating a formal model (e.g., SPNs) from a high-level
model (e.g., UML). The integration of a pair of such transfor-
mation chains is performed by means of an “integration model,”
defined at UML level, which is then processed by a third transfor-
mation to generate a low-level integration model that connects
the generated formal models.

While we share a similar long-term objective (a framework
to reuse performability models), we address the problem from a
different perspective. Our approach defines a method to specify
and instantiate libraries of reusable submodels specified with
SPNs. The language we define, TMDL (see Section V), is a
sort of “intermediate model” to specify composition patterns for
SPNs, as opposed to using generic transformation languages. In
a certain sense, we are proposing an application programming
interface for the composition of SPN-based models. Composi-
tion rules become part of model libraries, and only one single
model transformation/composition algorithm is defined, which
is the same for every library of model templates. Essentially, we
use a horizontal intermediate model (between the design-level
representation and formal models), whereas Bernardi et al. [36]
uses a vertical intermediate model (between different transfor-
mation chains).

Finally, it should be noted that existing modeling frameworks,
e.g., Möbius [12] or CPNTools [30], provide some means for
reducing the effort in the specification of complex models. For
example, they both allow multiple instances of a submodel to be
reused. However, instances have identical structures, and each
of them still needs to be manually connected to the rest of the
model. Our objective here is to propose an approach that facil-
itates the selection, parametrization, and composition of prede-
fined models from model libraries, without knowledge of their
internal implementation.

With a partially similar idea, Masetti et al. [37] defines an
approach for automated “nonanonymous” replication of SANs
models. That is, instead of replicating SANs models with the Rep
operator [12], leading to identical replicas, they automatically
generate a set of model instances, auxiliary places, and Join
operators, based on predefined rules. Their objective is, however,
to achieve efficient simulation, and do not focus on simplifying
the specification or reusing models. Also, the approach in [37]
is limited to replication only. In this paper, we define a generic
approach to specify complex composition patterns and automate
their application using MDE techniques.

III. APPROACH OVERVIEW

Before introducing formal definitions, here, we provide an
overview of the proposed approach, in terms of its requirements
(see Section III-A), the overall workflow (see Section III-B),
the underlying methodology (see Section III-C), and the main
concepts (see Section III-D). Formal definitions of such concepts
are provided next in Section IV.

A. Requirements

Throughout this paper we use the term formalism to mean “a
class of models that share the same primitives and notation.” In

296 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 1. Our workflow for the automated generation of performability models. Elements depicted in gray are specified using the TMDL, which is defined in
Section V.

MDE terms, this concept is called a metamodel [38]. Our frame-
work assumes the existence of an instance-level formalism, and
a template-level formalism.

The instance-level formalism is a formalism having the con-
cept of state variable [39], and it is the one that is actually used
for performability evaluation (e.g., SANs). A template-level for-
malism provides a generalized representation of a set of similar
instance-level models, by including variability and parameters.
We do not impose the use of a specific template-level formalism.
We only assume the existence of a concretize() function, which
generates an instance-level model, taking as input a template-
level model and an assignment of values to its parameters.
Further details on this function are provided in Section IV-F.

Different approaches for defining a template-level formalism
can be used, depending on the adopted instance-level formalism,
and on the desired level of detail. A possible approach is to use
languages like the common variability language (see [40]) to
specify parameterized variation points. This approach can, in
principle, be applied to define a “template-level version” of any
formalism.

On the other extreme, it is possible to use the same formalism
both at template level and at instance level. In this case, con-
cretize() is the identity function, implying that template-level
models do not include variability at all. Automated model com-
position based on predefined state sharing patterns would still
be applicable.

B. Workflow

The overall workflow of our approach is depicted in Fig. 1.
Note that the activities in the workflow are not strictly sequential.
In particular, the creation of the model library (Activity 1) is

performed once, and the resulting library stored for future access.
Libraries are then used repeatedly to construct and to evaluate
system models (Activities 2 and 3). When needed, libraries can,
however, be updated.

Activity 1: Starting from requirements and architecture of a
system (or class of systems), an expert in performability mod-
eling develops a “model templates library”, i.e., a library of
reusable model templates and composition rules. Such library
consists of the following two parts.

1) Templates specifications, which contain a description of
the available model templates, their interfaces, and pa-
rameters and information on where their implementation
is stored. Templates are specified using the TMDL, which
is described later (see Section V).

2) Templates implementations, which are the internal imple-
mentation of atomic model templates specified in the li-
brary. For atomic templates, the implementation is a model
in the instance-level formalism and the storage format de-
pends on the specific tools that are adopted. The Petri
net markup language [41] is an option for models based
on Petri nets. Another possibility is to store models us-
ing XML metadata interchange [42], which can be used
for any template-level formalism having a metamodel in
the metaobject facility standard [43]. For composite tem-
plates, the implementation consists in a set of composition
rules, and it is specified using the TMDL.

Descriptions in textual format can also be associated to tem-
plates in the library, to facilitate users in managing and selecting
them.

Activity 2: The second activity consists in defining the differ-
ent system configurations that should be analyzed. The input for
this activity may come from different sources, e.g., designs of

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 297

the system architecture, a new system configuration detected by
in-place sensors, etc. The configuration to be analyzed is speci-
fied using the TMDL as well as aScenario element. A TMDL
Scenario defines which templates are needed and how they
have to be instantiated. From a practical perspective,Scenario
specifications can be either created manually starting from in-
formal descriptions (e.g., provided using the natural language)
or they can be automatically generated from structured models
(e.g., UML models), by applying model transformation tech-
niques. Generation of TMDL Scenario specifications from
UML models or other high-level representations is outside the
scope of this paper.

Activity 3: Starting from the model templates library defined
by Activity 1, and from the description of scenarios provided by
Activity 2, the models for all the different system configurations
are automatically instantiated, assembled, and evaluated. The
generation of composed models is accomplished by means of
the TMDL “automated composition algorithm,” which takes as
input a TMDL Scenario specification and generates the cor-
responding model by generating model instances and properly
assembling them based on the patterns specified in the TMDL
Library specification.

It is important to note that the “automated composition algo-
rithm” of Fig. 1 is the same for every library of template models,
i.e., it is specified and implemented only once, and it is reused
to automatically assemble models of different systems, possibly
implemented in different state-based formalisms. This is one of
the key points of our approach, and the main reason to develop
the TMDL.

C. Composition Systems

From a methodological point of view, our approach defines a
new composition system for the domain of state-based models.

According to [44], a composition system is defined by three
elements: composition technique, component model, and com-
position language. The component model defines what a com-
ponent is, how it can be accessed, and which are its interfaces
for composition. The composition technique defines how com-
ponents are physically connected. The composition language is
used to specify “composition programs”, i.e., specifications of
which components should be selected and connected, and how,
in order to obtain the intended product.

Looking at the workflow shown in Fig. 1 under this perspec-
tive, the component model is given by the definition of model
templates (see Section IV-C); the composition technique is su-
perposition of state variables on model interfaces; the compo-
sition language is the TMDL we define in Section V. TMDL
Scenario specifications are our notion of composition pro-
grams. Finally, the automated composition algorithm of Fig. 1
is the composition engine, which interprets composition pro-
grams specified in TMDL, and properly assembles instances of
the selected model templates.

D. Main Concepts

We introduce here the main concepts of our approach. The
basic building blocks are model templates, which are the result

of Activity 1. A set of model templates constitutes a model tem-
plates library (or model library for short). A model template
consists of a specification and an implementation. The specifi-
cation includes a set of interfaces, which specify how a template
can interact with the other models, a set of parameters, and a set
of observation points. The latters are the selected state variables
that can be used to “observe” the model, i.e., to define metrics.
Interfaces and observation points are defined in terms of state
metavariables, i.e., state variables with variability elements.

The implementation describes how the internal behavior of
the template is realized. Based on its implementation, a model
template can be either an atomic template or a composite tem-
plate. For atomic templates, the implementation consists in a
model in the template-level formalism of choice.

Composite templates specify patterns to compose other model
templates. Their implementation consists of a set of blocks and
a set of composition rules. Each block is a placeholder for
instances of other model templates. Composition rules define
patterns to connect such instances.

A model variant is obtained from a model template by re-
solving all the variation points. That is, an atomic variant is a
reference to an atomic template and an assignment for its pa-
rameters. A composite variant, in addition to assigning values
to template parameters, also specifies which other variants are
used to fill the blocks defined in the template. A selection of
model variants defines a scenario to be analyzed, and it is the
output of Activity 2.

A model instance is an individual instantiation of a model
variant. Multiple instances of a model variant can be used to con-
struct a global system model. An atomic instance is a concrete
model in the instance-level formalism of choice (e.g., SANs),
derived by applying the concretize() function to the atomic tem-
plate implementation and the assignment of parameters in the
variant. A composite instance is an instance of a composite vari-
ant, i.e., a collection of other model instances that get composed
according to the rules defined in the composite template. Model
instances are the output of Activity 3, and are automatically
generated by the model composition algorithm.

IV. TEMPLATES FRAMEWORK: FORMAL DEFINITIONS

We now take a step forward and provide formal definitions for
the concepts introduced in the previous section. In Section IV-A,
we introduce basic definitions that will be used in the rest of the
paper, whereas in Section IV-B, we define the concept of model
interfaces. Section IV-C, IV-D, and IV-E formalize the concepts
of templates, variants, and instances, respectively.

A. Preliminaries

1) Basic Definitions: We adopt the definitions of sort, oper-
ator, term, and assignment from the ISO/IEC 15909 standard
[45], which apply to a wide range of formalisms based on Petri
nets. However, instead of places, we use the more general con-
cept of state variable, as in [39]. The definitions of term and
assignment will be used extensively in the rest of the paper.

298 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

A state variable is the basic unit of decomposition of system
state. The set of possible values of a state variable is defined by
its associated sort (i.e., type).

A many-sorted signature is a pair (S,O), where S is a set of
sorts and O is a set of operators, together with their arity. Arity
is a function from the set of operators to S∗ × S, where S∗ is the
set of finite sequences over S, including the empty string ε. An
operator is, thus, denoted as o(σ,s), where σ ∈ S∗ are the input
sorts and s ∈ S is the output sort. Constants are operators with
empty input sorts, and are denoted as o(ε,s) or simply os.

We denote with Δ a set of parameters; a parameter in Δ of
sort s ∈ S is denoted by δs. Δs ⊆ Δ is the set of parameters of
sort s.

Terms of sort s ∈ S may be built from a signature (S,O) and
a set of parameters Δ. The set of terms of sort s is denoted by
TERM(O ∪Δ)s, defined inductively as [45] follows:

1) for all o(ε,s) ∈ O, o(ε,s) ∈ TERM(O ∪Δ)s;
2) Δs ⊆ TERM(O ∪Δ)s;
3) for s1, . . . , sn ∈ S, if e1 ∈ TERM(O ∪Δ)s1 , . . . , en ∈

TERM(O ∪Δ)sn are terms and o(s1...sn,s) ∈ O is an op-
erator, then o(s1...sn,s)(e1, . . . , en) ∈ TERM(O ∪Δ)s.

A many-sorted algebraH provides an interpretation of a sig-
nature (S,O). For every sort s ∈ S, there is a corresponding set
Hs, and for every operator os1...sn,s ∈ O, there is a correspond-
ing function oH : Hs1 × · · · ×Hsn → Hs. A many-sorted al-
gebra is, thus, a pair H = (SH , OH), where SH = {Hs|s ∈
S}, ∀s ∈ S,Hs �= ∅, and OH = {oH |o(σ,s) ∈ O} is the set of
corresponding functions.

Given a many-sorted algebra H , and many-sorted parame-
ters in Δ, an assignment for H and Δ is a family of func-
tions ξ, comprising an assignment function for each sort s ∈ S,
ξs : Δs → Hs. The function may be extended to terms by defin-
ing a family of functions V alξ comprising for each sort s ∈ S
the function V als,ξ : TERM(O ∪Δ)s → Hs [45].

To support the subsequent definitions, we require the ex-
istence of at least the “integer,” “real,” “set of integers,”
and “set of reals” sorts. Formally, we assume a signature
(S,O), such that {Int, Real, Set{Int}, Set{Real}} ⊆ S,
and O contains the common operators applicable on such
sorts. The corresponding many-sorted algebra is (SH , OH), with
{N,R,P(N),P(R)} ⊆ SH , andOH containing the set of func-
tions corresponding to operators in O.

2) Indices, Multiplicity, Labels: Template-level models con-
tain variable elements, which serve as a placeholder for a set of
concrete elements that will be derived upon the instantiation of
the template. Multiple concrete elements can be originated from
the same variable element. We use indices to distinguish them.
Such indices are not required to form a progressive sequence.

Fig. 2 shows a simple example adapted from the SANs mod-
els in [24]. The right part of the figure shows two models in
the instance-level formalism (SANs), representing two different
classes of users in a mobile network. UserX may make requests
for services 1, 6, or 7, by adding a token in places Req1, Req6,
or Req7, with a certain probability. Similarly, UserAmbulance
may make requests for services 3 or 7, by adding a token in
places Req3 or Req7, with a certain probability. This behavior

Fig. 2. Example of two different instances originating from the same User
template, using SAN as the instance-level formalism. The IUser model interface
is formed by the state metavariables Req, Failed, and Dropped.

can be abstracted to a generic User template model, shown in the
left part of the figure. Such a model contains a generic “place
template” Req. Based on the value assigned to parameters of
the template-level model, different models in the instance-level
formalism are generated by concretize(), resulting in a different
model structure and different indices.

The number of concrete elements to which a template element
gets mapped, and their indices, is called its multiplicity, denoted
as k. The multiplicity is specified as a set of values in N (i.e., k ⊆
N), which indicate the indices assigned to concrete elements. In
the previous example, the multiplicity assigned to the Req place
in the generation of UserX would be k = {1, 6, 7}. In general,
the multiplicity may depend from the parameters of the template,
and is, thus, more accurately defined as a term of sort “set of
integers,” i.e., k ∈ TERM(O ∪Δ)Set{Int}.

In our framework, variability (and, thus, multiplicity) ap-
pears at different levels, i.e., elements of an atomic template,
instances of atomic templates, block of composite templates, and
instances of composite templates. For this reason, state variables
in a model may be assigned more than one index, identifying
the variable across different dimensions. To generalize this as-
pect, each index is coupled with a label, which identifies the
dimension that is captured by the index.

Formally, a labeled state variable is a triple (vs, Lξ, f), where
vs is the state variable (of sort s), Lξ is the set of labels, and f :
Lξ → N is a function that associates a numeric index with each
label. Labeled state variables belong to instance-level models;
the concrete values of Lξ and f are a result of the instantiation
process, discussed later (see Section IV-F). In the rest of the
paper, we denote with L∗ the set of all the possible labels.

B. Model Interface

A model interface defines in which ways a model template
can interact with the other models, and with the rest of the
framework. A model interface can be realized by different model

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 299

templates having different implementations. Two template mod-
els that realize exactly the same model interfaces can be in-
terchanged. Clearly, depending on the internal implementation,
the resulting behavior might be different. The selection of the
most appropriate template should be based on the scenario under
analysis.

A model interface specifies a set of state variables that a model
must have. As model templates include variability, model inter-
faces are specified by means of state variables having variability
information, that is, multiplicity and labels. A model interface
is, thus, a set of state “metavariables” V .

Formally, a state metavariable is a tuple (vs,Δv, L, k), where
v is the state variable (of sort s), Δv is a set of parameters,
L ⊆ L∗ is a set of labels, and k ∈ TERM(O ∪Δv)Set{Int} is the
parametric multiplicity. A multiplicity k = ∅ indicates that any
multiplicity is admitted for that variable. The instantiation pro-
cess generates a set of labeled state variables (in the instance-
level model) from each state meta-variable, and assigns labels
and indices to them. We denote as V ξ(v) the set of labeled
state variables generated from a state meta-variable v under an
assignment ξ.

Following this definition, the IUser interface of Fig. 2 contains
three state meta-variables, and it is specified as

IUser = {v1, v2, v3}
v1 = (ReqInt, {sSet{Int}}, {srv}, sSet{Int})
v2 = (FailedInt, ∅, ∅, {1})
v3 = (DroppedInt, ∅, ∅, {1}.

(1)

Note, in particular, that: the multiplicity k for the Req place is
defined by the s parameter of sort “set of integers” (sSet{Int}),
the multiplicity of Failed and Dropped is constant, and the Req
state meta variable is labeled with the srv label.

C. Templates

A model template is defined as

MT = ((I,Δ, O, LT),Ψ)

Ψ =

{
M, for atomic templates

(B,R), for composite templates
.

The quadruple (I,Δ, O, LT) constitutes the specification of
the template. I is the set of model interfaces that are realized
by the template, Δ is the set of parameters, O is the set of ob-
servation points, and LT ⊆ L∗ is the set of template-specific
labels. Note that ∀V ∈ I, ∀(v,Δv, L, k) ∈ V, Δv ⊆ Δ must
hold, i.e., the parameters of the template must include all the pa-
rameters of its interfaces. Observation points are specific state
metavariables that the model shall have, with the purpose to de-
fine metrics for observation. A state metavariable may act at
the same time as an interface variable and as an observation
point.
Ψ is the implementation of the template, which can be either

atomic or composite. For an atomic template, Ψ = M, where

M is a model in the template-level formalism of choice; in our
examples we use a formalism derived from SANs. For com-
pleteness, its formal definition can be found in a technical report
[46]. The implementation of the template must be compatible
with its specification, i.e., the implementation should contain
all the state metavariables that are declared in the specification
(interface variables and observation points).

The implementation of a composite template is given by
Ψ = (B,R), where B is a set of blocks and R is a set of com-
position rules. Blocks are slots to be filled by instances of other
templates, which will then be composed together according to
the rules in R. Blocks define which kinds of templates are re-
quired to perform the composition and their roles.

A block b ∈ B is a triple (Ib, Lb, kb), where: Ib is the set
of required model interfaces; Lb ⊆ L∗ is a set of block-specific
labels; and kb ∈ TERM(O ∪Δ)Set{Int} is the block multiplicity.
kb = ∅ indicates an optional block with unspecified multiplicity.
Block-specific labels allow instances originating from different
blocks to be distinguished, i.e., they identify different roles in
the composition. The multiplicity defines how many instances
of the block should be generated, possibly based on template
parameters.

Each composition rule r ∈ R defines how a specific set of
labeled state variables belonging to different block instances
will be connected together. Three composition rules are possible
in our framework: all, match, and forward. Clearly, only state
variables of the same sort can be connected. Besides specifying
how variables are connected, they also specify how indices and
labels are altered, thus defining labeled state variables for the
resulting composite model instance.

We denote with V B the set of all the interface variables that
are required by all the blocks in B, i.e., V B = {v ∈ V | V ∈
I, (I, L, k) ∈ B}. The subset of V B formed by its elements hav-
ing sort s is denoted as V B

s . Then, for each s ∈ S , the following
hold.

1) An all rule is a pair (ω,W), withW ⊆ V B
s . The rule spec-

ifies that all the labeled state variables generated from in-
terface variables inW should be composed together. Such
composition forms a new labeled state variable (ω, ∅, ∅).

2) A match rule is a triple (ω,W,L), with W ⊆ V B
s , and

L ⊆ L∗ a set of labels. The rule specifies that labeled state
variables generated from interface variables in W should
be composed together based on their labels and associ-
ated indices. That is, instances having the same indices
for labels inL are composed together: a labeled state vari-
able (a, La, fa) is composed with any (b, Lb, fb) such that
fa(l) = fb(l) ∀l ∈ L. Each of such compositions forms a
new labeled state variable (ω,La ∪ Lb, f

′).
3) A forward rule is a pair (ω,W), with W ⊆ V B

s , specify-
ing that all the interface variable instances generated from
interface variables in W will simply become state vari-
ables of the composite instance, available to be exposed
as interfaces.

Note that, also for composite templates, the implementation
(B,R)must comply with the specification (I,Δ, O, LT). In this
case, it means that for each metavariable of interfaces specified
in I, there is at least one rule in R such that v = ω, and for each

300 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

observation point in O there is an interface variable required by
one of the blocks B.

D. Variants

A model variant is derived from a template by assigning
concrete values to its parameters. Formally, a model variant is
defined as

MV = (MT, ξ, γ)

γ =

{
∅, for atomic variants

γ : B → P(V), for composite variants

where MT is a model template, and ξ is an assignment. For com-
posite variants (i.e., those derived from composite templates),
γ : B → P(V), with V the set of all model variants, is a func-
tion that assigns a set of variants to each block of the referenced
template. Note that the variants selected by γ must realize all
the model interfaces required by the block, i.e., ∀(Ib, Lb, kb) ∈
B, ∀((I,Δ, O, LT),Ψ) ∈ γ(b), Ib ⊆ I. For variants of atomic
templates, γ is the empty function.

E. Instances

A model instance is derived by combining the implementation
given in the model template, and the assignment of parameters
given in the model variant. To build a model for a given scenario,
many instances derived from the different variants are typically
needed. The definition of a composite template is recursive: it is
built connecting together other model templates, which in turn
can be either atomic or composite. Instances are, thus, organized
in a tree, where internal nodes are instances of composite tem-
plates, and leaves are instances of atomic templates. The root of
the tree is the model instance representing the complete model
of the system. We call such model instance the model root.

Formally, a model instance is defined as

MI = (kξ, V ξ, Oξ,Ψξ)

Ψξ =

{
Mξ, for atomic instances

(Iξ, Cξ), for composite instances

where kξ ∈ N is the index of the instance, V ξ is the set of
labeled state variables derived from interface variables of the
template, Oξ is the set of labeled state variables derived from
observation points of the template, andΨξ is the implementation
of the instance.

For an atomic instance, Ψξ = Mξ is a concrete model in the
instance-level formalism (SANs in our case), derived through the
concretize() function from the implementation of the template
M, and the assignment ξ in the variant.

For a composite instance, Ψξ = (Iξ, Cξ), where Iξ is the set
of model instances that have been generated from the blocks
of the template, and Cξ is a set of connections (i.e., superpo-
sition of state variables) of such model instances, as in [30].
The implementation of composite instances is generated by the
automated composition algorithm, described in the following
section. In both cases, V ξ, Oξ, and kξ are also generated by the

automated composition algorithm. That is, model instances are
fully generated by the composition algorithm.

F. Instantiation and Composition Algorithm

The instantiation and composition algorithm is constituted of
three procedures: instantiateVariant, concretize, and connect-
StateVariables, described in the following.

1) instantiateVariant: This is the main procedure of the com-
position algorithm, and it is executed on the model variant cor-
responding to the scenario to be analyzed. The algorithm is
recursive, and consists of two phases. In the first phase, the tree of
model templates is traversed top–down, all the model instances
are generated, and they are temporarily added to a list. This step
defines the set Iξ of each composite instance. Indexes are as-
signed by evaluating the terms in the multiplicity specification
with current parameter values.

In the second phase, instances are progressively retrieved from
the list, and connected together according to the composition
rules in their template. The pseudo code of this procedure is
listed in the following.

2) concretize: As introduced in Section III-A, we assume the
existence of a concretize() function, which generates a model in
the instance-level formalism, based on a template-level formal-
ism and an assignment of parameters. That is, it takes as input the
pair (M, ξ) and returns Mξ. The actual implementation of this
function depends on the selected template-level and instance-
level formalisms. An interested reader may find a definition of

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 301

this function for a template-level formalism based on SANs in
the technical report in [46].

3) connectStateVariables: This procedure assigns labels and
indices to interface variables of the generated instances,
and executes connection rules specified in composite tem-
plates. The procedure takes as input a model instance
MIi = (i, V ξ, Oξ,Ψξ).

For atomic instances, the procedure generates labeled state
variables from metavariables, assigning them initial indices and
labels. That is, it populates sets V ξ and Oξ. Given a state
metavariable (v,Δv, L, k), and the assignment ξ, the set of
labeled state variables derived from it is

{
(vj , L

ξ, f) | j ∈ V alξ(k)
}

with Lξ = L ∪ LT , and LT the set of labels associated with the
template. Being j the index associated to the state variable, the
function f is defined as

f =

{
j ∀τ ∈ L

i ∀τ ∈ (LT \L)
.

That is, for each state metavariable, the indices of generated
labeled state variables is given by the set of integers resulting
from evaluating the multiplicity k. Each generated state variable
receives the labels from its metavariable L, which gets assigned
its index j, as well as those of the template itself LT , which get
assigned the index of the model instance, i.

For composite instances, i.e., Ψ = (Iξ, Cξ), the procedure
executes the composition rules in the corresponding template
(I,Δ, O, LT ,Ψ = (B,R)), consequently generating labeled
state variables for the composite instance. Before actually exe-
cuting the rules, labeled state variables of children instances in Iξ

are updated, based on properties of the originating blocks. Each
labeled state variable (v, Lξ, f), belonging to an instance filling
block (Ib, Lb, kb), is updated to (v, L′, f ′), whereL′ = Lξ ∪ Lb,
and, denoting with j the index of the model instance

f ′(α) =

{
j, if α ∈ Lb

f(α), otherwise
.

Then, composition rules are applied. Their application defines
the sets Cξ and V ξ for the composite instance. This step is de-
scribed in the following, denoting with ψ(x) the state metavari-
able from which the labeled state variable x has originated, and
with i the index of the composite instance being processed.

1) When applying an all rule (ω,W), all labeled state vari-
ables x, such that ψ(x) ∈W , are connected together. The
result, which is added to V ξ, is a single labeled state vari-
able (ω,L′, f ′), with L′ = LT and f ′(α) = i ∀α ∈ L′.

2) When applying a match rule (ω,W,Lω), any labeled
state variable x = (ωx, Lx, fx) is composed with any
other labeled state variable y = (ωy, Ly, fy), such that
ψ(x), ψ(y) ∈ V and fx(α) = fy(α), ∀α ∈ Lω . Each
composition results in a labeled state variable (ω,L′, f ′)

being added to V ξ, with L′ = Lx ∪ Ly ∪ LT , and

f ′(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fx(α) ≡ fy(α), if α ∈ Lω ∩ Lx ∩ Ly

fx(α), if α ∈ Lx \ Ly

fy(α), if α ∈ Ly \ Lx

i, otherwise

.

Note that when applying a match rule, each labeled state
variable may be composed with one or more other labeled
state variables. If no matching variable exists, the outcome
of a match rule is exactly the same as the forward rule,
defined in the following.

3) When applying a forward rule (ω,W), any labeled state
variable x = (ωx, Lx, fx) such thatψ(x) ∈W simply be-
comes a labeled state variable (ωx, L′, f ′) ∈ V ξ of the
composite instance, with L′ = Lx ∪ LT , and

f ′(α) =

{
i, if α ∈ LT

f(α), otherwise
.

The final step of this procedure consists in managing the
observation points of composite instances, that is, defining
the Oξ sets. This task is performed simply by looking at the
metavariables in O in the corresponding template: all the la-
beled state variables generated from them are added to Oξ, i.e.,
Oξ = {v ∈ V (ω) | ω ∈ O}.

G. Definition of Metrics

The main purpose for constructing this kind of models is to
understand the behavior of a complex system, and evaluate prob-
abilistic metrics. Such metrics are typically defined as reward
variables [39], [47].

Normally, a reward variable is defined based on a function that
maps each state of the model and each transition of the model
to a number in R. One of the main objectives of our framework
is to encapsulate the internal implementation of templates, and
improve reusability of models. For this reason, we restrict re-
ward variables to be defined based on observation points only,
that is, all the labeled state variables in set Oξ of any model
instance. Such observation points are part of the specification of
the template. The model library would then include a textual de-
scription of the purpose and meaning of each observation point.
Examples of reward variables definition based on observation
points are provided in the case study in Section VI.

It should be noted that this approach implies that all the re-
ward variables must be based on rate rewards only, since all the
observation points are state variables. From a practical point of
view, the absence of impulse rewards (defined on the firing of
transitions) is not a limitation, as an equivalent rate reward can
be defined by adding a state variable that tracks the number of
transition firings and exposing it as an observation point.

V. TEMPLATE MODELS DESCRIPTION LANGUAGE

We have now introduced all the concepts that enable our au-
tomated model composition approach. In this section, we define

302 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 3. TMDL metamodel.

a domain-specific language (DSL) [48] that can be used to con-
cretely specify and use libraries of model templates. We call this
language the TMDL.

The metamodel of the TMDL is shown in Fig. 3, using the
Ecore notation. We use the support for generic types provided by
Ecore [49] to implement the sort concept; that is, some entities
of the metamodel accept a type parameter S, indicating their
sort. We denote an element of sort S with <S>.

A TMDLSpecification may be either a Library (of
model templates) or a Scenario.

Some elements are common to both kinds of specifications. A
TMDL Parameter has a name and type S. An Assignment
references a Parameter<S>, and assigns it a concrete value
of type S. The Set entity is a representation of the set concept;
accordingly, it contains items of type S. A Term<S> is an ab-
stract element representing a generic term t ∈ TERM(O ∪Δ)s.
Each Term<S> can be evaluated with respect to a set of
Assignment elements, returning a value of type S.

There can be different kinds of terms, each one repre-
senting an operator in O. In Fig. 3, we included those that
specify: literal values, parametric values, and set of val-
ues. TermLiteral<S> is a term representing a literal
value of sort S. TermParameter<S> is a reference to a
Parameter<S>. TermSet<S> is an abstract element ex-
tending Term<Set<S>>. A TermSetOfTerms<S> con-
tains a set of elements of sort S, thus being able to return
a value of sort Set<S> when evaluated. TermSetInt ex-
tends TermSet<EIntegerObject>,1 meaning that it is a
Term of sort “set of integers,” i.e., t ∈ TERM(O ∪Δ)Set{Int}.
Finally, a TermSetIntInterval represents the set of inte-
gers {n ∈ N | start ≤ n ≤ end}, where start and end are terms
of integer type, i.e., Term<EIntegerObject> elements.

1EIntegerObject is the Ecore type for integer objects, and it is mapped
to java.lang.Integer.

The hierarchy can then be extended with new operators as
needed, thus extending the expressiveness of the framework. For
example, aSumInt operator could be added to specify a term of
sort Int as the arithmetic sum of other terms of sort Int. This
would allow the modeler, for example, to define a multiplicity
as the sum of the values assigned to various parameters.

A. TMDL Library

A TMDL Library is created in Activity 1 of the workflow
shown in Fig. 1. A Library contains a set of Interface
and Template elements.

A MetaVariable has a name (v), a sort (S), a set of
labels (L), and a mutliplicity (k), which is specified as a
Term of sort Set<EIntegerObject>. In TMDL, param-
eters are owned by Interface and Template elements. As
such, each MetaVariable only contains references to the
parameters it uses.

AnInterface contains a set ofMetaVariable elements
(V) and a set of Parameters; this is the union of all the
parameters of all metavariables contained in the interface, i.e.,
{δ ∈ Δv | (v, s,Δv, L, k) ∈ V }.

Each template references a set of Interface elements (I),
it has a set of Parameter elements (Δ), a set of MetaVari-
able elements that define observation points (O), and a set
of labels (LT), which collectively represent the specification
of the template. A template also includes an Implementa-
tion (Ψ), which may be either atomic or composite. An Im-
plementationAtomic consists of a source attribute that
indicates where the implementation of that template can be
found (M). An ImplementationComposite consists of
a set of Block elements (B) and a set of CompositionRule
elements (R).

ABlock has a name and a set of labels (Lb), and it references
a set of Interface elements (Ib). As for metavariables, the

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 303

multiplicity of the block (kb) is specified as a Term of sort
Set<EIntegerObject>.

A CompositionRule has a name (ω) and it references a
set of MetaVariable elements (W). In accordance with the
definitions in Section IV, three kinds of composition rules exist:
CompositionRuleAll, CompositionRuleMatch, and
CompositionRuleForward. For rules of kind Composi-
tionRuleMatch, a set of labels on which the composition is
restricted can be specified (L). If it is not specified, we assume
L = L∗, i.e., composition is performed taking into account all
the labels.

B. TMDL Scenario

A TMDL Scenario defines a concrete scenario to be evalu-
ated, and it is produced during Activity 2 of the workflow shown
in Fig. 1.

A Scenario consists of a set of model variants (Variant
elements). One of them is marked as the model root, which iden-
tifies the entry point of the automated composition algorithm.
Each Variant contains a reference to a Template (MT) and
a set of Assignment elements (ξ). A composite variant also
contains a set of BlockRealization elements (γ): each of
them associates a Block b with the set of Variant elements
that fill that block, i.e., it defines γ(b).

VI. APPLICATION EXAMPLE

In this section, we demonstrate the application of our approach
to a concrete case study from the literature. The case study is
based on the work in [11], in which a large-scale distributed
application was analyzed, focusing on how different configura-
tion and arrangement of system components would reflect on
performability metrics.

A. World Opera

The modeled system is the one envisioned by “the world
opera” (WO) consortium, which aims at conducting distributed,
real-time, live opera performances across the world. Participat-
ing artists from different real-world stages are mapped to virtual-
world stages, which are projected as video and shown to the
audience at the local opera house as well as to audiences at
geographically distributed (remote) opera houses.

The infrastructure enabling such an application includes a
high number of specialized hardware and software components,
whose slight malfunction could severely affect the performance.
Fault-tolerant architectural solutions are, therefore, necessary to
ensure the correct execution of a WO performance. To design
such solutions, it is essential to understand the interactions be-
tween components, and the potential effects of their failures on
the overall quality as perceived by users.

The typical setup for a world opera performance consists of 3
to 7 real-world stages with different artists and possibly a differ-
ent set of technical components (microphones, projectors, etc).
Components like cameras and microphones generate multime-
dia streams of different kinds: video, audio, and sensor (e.g.,
to track the movement of an artist on the stage). Streams are

then processed in different ways and transmitted to and from
the remote stages. Finally, streams are rendered, i.e., decoded,
synchronized, and reproduced to the audience.

The number and kinds of components in a certain stage and
their interconnections depend on the artists present in the stage,
and the role of the stage in the overall performance. For example,
some stages may only contain audience, whereas others may
contain only a specific set of artists.

In this context, model-based evaluation is needed to eval-
uate the impact of component failures and compare different
architectural solutions. Metrics for this kind of systems are
based on the reliability and availability of individual applica-
tion streams (i.e., video and audio streams) during the show.
Given an application stream j (e.g., audio or video stream), and
being T the duration of the show, we are interested in the fol-
lowing metrics: first, Rj(T), the reliability of the stream un-
til the end of the show, and second, Aj(0, T), the fraction of
time the stream is available during the show (interval-of-time
availability).

This scenario is well-suited for showing the benefits of our ap-
proach. The complexity is given not only by components having
variability in their structure, but also by the complex intercon-
nections that exist between them, and the need to modify them
in order to assess different configurations.

B. Model Templates

The model in [11] considers components and streams as the
basic elements of a WO performance, both having different
possible working states (e.g., working/failed for components,
good/missing/delayed for streams). The state of a stream in a
certain point of the architecture depends on the state of all the
components that have processed it so far (including components
that captured it). The state of different streams as they are re-
produced to the audience determines the quality as perceived by
the users and it is therefore the target of evaluation.

In [11], a template-based approach was “empirically” used,
that is, without formally defining such templates, variability as-
pects, or composition rules. Four atomic templates were iden-
tified: Component, StreamAcquiring, StreamProcessing, and
StreamMixing. Component represents a single functional com-
ponent of the WO architecture, StreamAcquiring models the
process of capturing a stream, and StreamProcessing models
the processing of the stream by some component. StreamMix-
ing represents the act of mixing two or more streams in a single
one.

Instances of those templates are connected in a way that re-
flects the path that multimedia streams follow across the stage
components. By changing the way in which such templates are
arranged, it is possible to assess different scenarios in an ef-
ficient way. For example, it may be required to evaluate how
the target metrics would change if a certain stream is processed
by a given workstation instead of another one, or if different
combinations of components are used to reproduce multimedia
streams.

All the model templates for the WO system interact by means
of the following three model interfaces, each comprising a single

304 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 4. Implementation based on SANs of the StreamProcessing atomic
template.

metavariable (vs,Δ
v, L, k):

IComponent = {(FailedStateInt, ∅, ∅, {1})}
IStreamInput = {(StreamStateInInt, ∅, ∅, ∅)}
IStreamOutput = {(StreamStateOutInt, ∅, ∅, ∅)} .

(2)

The IComponent interface provides a view of the current work-
ing state of a component, through the FailedState metavari-
able. The IStreamInput interface models the reception of input
streams, with StreamStateIn encoding the current stream state.
Similarly, the IStreamOutput interface models the production of
stream as output, with the current stream state encoded in the
StreamStateOut metavariable. The multiplicity of StreamStateIn
and StreamStateOut is not specified, meaning that the interface
may refer to any number of streams.

The Component model template realizes the IComponent
model interface, and adds specific parameters

Component = ((I,Δ, O, LT),Ψ)

I = {IComponent}, Δ = {λReal, NInt, cReal, tReal}
O = {FailedState}, LT = ∅, Ψ = [SAN template]

(3)

where λ is the failure rate of the component, N is the num-
ber of spares, and c and t are the coverage and delay of the
failover process, respectively. The current state of the compo-
nent (FailedState) is provided as an observation point.

The StreamProcessing model template represents the process-
ing of one multimedia stream by a component of the stage ar-
chitecture. It realizes all the three model interfaces as

StreamProcessing=((I,Δ, O, LT),Ψ)

I={IComponent, IStreamInput, IStreamOutput}, Δ = ∅
O={StreamStateOut}, LT = {s}, Ψ = [SAN template].

(4)

The SAN implementation of this model template is very simple
(see Fig. 4). Basically, the current state of the stream produced as
output (StreamStateOut from the IStreamOutput interface) is set
based on the state of the stream received in input (StreamStateIn
from the IStreamInput interface), and the current state of the
component itself (FailedState from IComponent).

The Component and StreamProcessing atomic templates can
be composed together using the WONode composite template,
which represents a node of the WO stage architecture as

WONode = ((I,Δ, O, LT),Ψ)

I = {IStreamOutput, IStreamInput}
Δ = {sSet{Int}}, O = ∅, LT = ∅, Ψ = (B,R).

(5)
The s parameter defines how many streams are flowing through
the node and their identifiers. The composite template has three
blocks, which are formally defined as follows:

B = {Bcomponent, Bstreams, Bpreviousnode}
Bcomponent = ({IComponent}, ∅, {1})

Bstreams =

⎛
⎜⎝
⎧⎪⎨
⎪⎩
IComponent,

IStreamInput,

IStreamOutput

⎫⎪⎬
⎪⎭ , ∅, sSet{Int}

⎞
⎟⎠

Bpreviousnode = ({IStreamOutput}, ∅, ∅) .

(6)

The block Bcomponent represents the functional component asso-
ciated to the architectural node (e.g., a workstation and a mixer),
Bstreams are the streams that flow through the component, and
Bpreviousnode is the previous node in the architecture, i.e., another
instance of the WONode template to which it is directly con-
nected. Actually, it could be an instance of any model template
that realizes the IStreamOutput model interface.Bcomponent has a
constant multiplicity of {1}, whereas the multiplicity ofBstreams

is given by parameter s: there is a model instance for each stream
that flows through the node, and their identifiers are given by the
values assigned to the set s. The multiplicity of blockBpreviousnode

is unspecified, meaning that there can be any number of its re-
alizations; in fact, different streams can reach the node from
different paths.

Composition rules in R are given in the TMDL notation.

Lines 1–6 define the WONode template, its parameters, and
its blocks. Three composition rules are defined. Line 8 defines
an all rule, in which the FailedState interface variable of
the Component block is composed with the one having the
same name in each of the Streams blocks. Basically, this al-
lows instances of the StreamProcessing template to ac-
cess the current state of the component. Lines 9–12 specify that

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 305

Fig. 5. SAN composed model for a WO stage, built from multiple instances
of the four identified atomic templates. Figure adapted from [11].

the StreamStateIn interface variables belonging to a given
stream should be connected with the matching StreamSta-
teOut interface variables from the previous node in the archi-
tecture. To be able to distinguish the states of different multi-
media streams, a match rule is used, specifying that interfaces
should be joined based on the identifiers associated to the “s”
label.

Finally, line 11 specifies that the interface variablesStream-
StateOut of Streams models should be forwarded as inter-
face of the composite template. This is what allows the states of
the streams to be further propagated. In fact, they will have the
role of PreviousNode.StreamStateOut (as in line 11)
is another instance of the WONode model template.

C. Scenario Specifications

In this section, we revise the scenario analyzed in [11] using
the approach proposed in this paper, and show how alternative
scenarios can be defined.

1) Scenario #1: The scenario consisted of a WO per-
formance comprising three stages and the following five
multimedia streams.

1) Audio of the orchestra.
2) Audio of actors.
3) Video of the orchestra.
4) Video of actors.
5) Video of the director.
Streams 1, 3, and 5 are captured in Stage A, while streams 2

and 4 are captured in Stage B. Stage C only contains the audi-
ence. All the streams are reproduced in all the three stages.

The composed model corresponding to one of the stages,
Stage A, is depicted in Fig. 5. Using the traditional approach,
composing such model requires considerable manual effort.
Each Submodel block is obtained by selecting a previously de-
fined SANs model; if two submodels have the same behavior
but different numerical parameters, the source model typically
needs to be duplicated and modified. Then, for each Join block,
the state variables of submodels need to be carefully connected

together, following the devised patterns. This has to be done re-
cursively, starting from the bottom until reaching the root of the
model; in this case, the Gateway_with_Streams node in the top
right part of the figure.

Furthermore, the one shown in Fig. 5 is only one of the three
stages that are needed in the model; the same procedure has to
be repeated for the other two, which have a different structure.
Then, all the three models have to be composed together. Note
that this is just for the evaluation of a single scenario. If the
architecture of a stage changes or a different show is planned
(i.e., different streams), the model has to be composed again
reflecting the different structure.

Our approach facilitates the composition of the model, which
is automated, as well as the specification and update of the sce-
nario. An excerpt of the TMDL specification corresponding to
this scenario is reported in the following:

Lines 1–4 define two variants of theComponentmodel tem-
plate, setting the parameters corresponding to cameras and work-
stations. Lines 6–10 define a node of the WO architecture based
on the WONode template. As specified by the s parameter, the
node will handle stream number 3, i.e., the video of the orchestra,
and will use an instance of the Camera variant as its Compo-
nent block. A similar structure is defined in line 11 for another
camera; in this case, the involved stream is stream number 5
(video of the director).

Lines 12–17 define another variant of the WONode template;
in this case, representing a video workstation node. This node
handles streams 3 and 5, and uses Camera1Node and Cam-
era2Node to fill PreviousNode block. This means that the
workstation receives the video streams from the two cameras.
Lines 19–24 define variants for each of the involved stages,
identifying which streams are received or transmitted by the
stage, and the model variant that represents the gateway. Fi-
nally, lines 26–28 define the root variant that represents the
scenario.

306 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

Fig. 6. Modification of the base scenario to add a video mixer.

2) Scenario #2: Let us now suppose that the architecture of
Stage A changes, and that a preprocessing step is added before
sending the video streams to the workstation; this is performed
by a video mixer, which synchronizes the two streams and pos-
sibly applies effects like closed captions. Using the TMDL, this
can be modeled by simply modifying the Scenario specifica-
tion, as shown in the listing in Fig. 6. Another variant ofWONode
representing the mixer has been added, using Camera1Node
andCamera2Node as itsPreviousNode block. TheVide-
oWorkstationNode is modified to use this newly created
variant as PreviousNode.

The lower part of the figure highlights the modifications that
would be needed if changes were manually applied on the model.
Note that each connection (Join nodes) that is changed involves
selecting and connecting with the proper pattern the interface
variables of submodels.

3) Scenario #3: Furthermore, we can imagine adding an-
other multimedia stream, Stream 6, which needs to be acquired
by another camera. Suppose the camera is from a different ven-
dor, thus having different parameters. In this case, it is sufficient
to create a new variant of the Component and WONode tem-
plates, and use the latter to fill thePreviousNodeblock for the
node corresponding to the mixer (see TMDL listing in Fig. 7).

Even these simple operations, if performed manually, would
require considerable effort for the modeler. Manually perform-
ing the same modifications would require the following steps.

1) Duplicating the atomic model for the camera, modifying
the parameters as needed.

Fig. 7. Modification of the base scenario to add another camera, which is used
to capture a new video stream.

2) Adding an instance of the new camera node to the
composed model.

3) Properly connecting the interfaces of the new model across
the involved Join nodes. As shown in Fig. 7, this would
lead to modify the shared variables within all the Join
nodes until the root of the overall model, a process that
would also be prone to human errors.

D. Specification of Metrics

Reward structures and variables are then defined as part of
the model evaluation process. In fact, different reward vari-
ables can be defined on the same model, based on the de-
sired metrics and available observation points. Furthermore,
the specification of reward variables is closely related to the
evaluation method, e.g., steady state or transient evaluation,
time points, accuracy, etc. For this reason, we decided not to
provide constructs for defining reward variables [47] directly
in the TMDL. Instead, we only provide means for identify-
ing “interesting” states of the state space, through the con-
cept of observation points. In this way, we leave flexibility on
the kind of metrics that can be defined while keeping TMDL
simple.

In the case study in this section, the composed model gener-
ated by the framework will have an observation point Stream-
StateOut for each instance of StreamProcessing tem-
plate. Such state variable represents the state of the stream
at a given point of the processing chain. Quantitative metrics

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 307

TABLE I
NUMBER OF ACTIONS REQUIRED BY THE USER TO SPECIFY THE WO MODEL OF

STAGE 1 FOR DIFFERENT SCENARIOS. COMPARISON BETWEEN USING A

TRADITIONAL MANUAL APPROACH AND THE PROPOSED FRAMEWORK

can be defined by defining proper reward variables over those
observation points.

Referring to the previously defined metrics Rj(T) and
Aj(0, T), they can be evaluated by defining, for each obser-
vation point StreamStateOutj , a rate reward function Rj

such that

Rj(v) =

{
1, if v = {(StreamStateOutj , 1)}
0, otherwise

and then evaluate the reward functions corresponding to reli-
ability and interval-of-time availability, as in [47]. The actual
evaluation of a wide range of metrics for the WO system can be
found in [11].

E. Approach Evaluation

To quantify the benefits provided by our approach, we com-
pare the number of actions that the user needs to perform when
using the manual approach, and when using the proposed frame-
work. Because they involve different kinds of task, it is somewhat
difficult to precisely compare the two approaches. To perform
a fair comparison, we selected actions that are at a comparable
level of abstraction.

For the “manual” approach, we considered a user creating a
model with the Möbius [12] tool, based on pre-existing atomic
models. We identified the following basic actions

1) Duplicating a SAN atomic model.
2) Modifying2 an element in an atomic SAN model, e.g.,

adding a place or changing the name of a variable.
3) Modifying a node in a Rep/Join model.
4) Modifying a shared state variable in a Rep/Join node. For

the “TMDL” approach proposed in this paper, we instead
consider only the following.

5) Modifying an element in a TMDL scenario specification,
as the whole specification process is performed using the
TMDL. With “element” we mean here an instance of a
metaclass of the metamodel.

The number of actions required to construct the WO models
presented in this section is given in Table I. We analyzed the
effort required to create specifications for the three scenarios
presented in this section as well as the effort to change a sce-
nario into another. As illustrated in the table, the proposed ap-
proach reduces the number of actions in all the analyzed tasks.

2We consider creation and deletion as special cases of modification.

As expected, the greatest gain (50% action reduction) is ob-
tained when modifying existing scenarios, whereas the differ-
ence is smaller when creating new scenarios from scratch. We
note that this comparison is very conservative, as actions for the
“TMDL” approach are typically performed much faster. Infact,
they simply consist in changing some words in a textual specifi-
cation. Referring to Fig. 7, just modifying the text highlighted in
the listing counts as 11 actions (2 Variant, 6 Assignment,
and 3 BlockRealization elements need to be added or
modified).

On the other hand, a single action in the “manual” approach
typically consists of several subtasks. For example, “modify a
shared state variable in the Rep/Join model” consists at least of
the following.

1) Selecting the node in the Rep/Join model.
2) Selecting the variable to be modified.
3) Modifying the variable.
4) Clicking on a confirmation button.
It seems, thus, reasonable to expect that the time saved in

using the proposed approach will be much higher. Concerning
performance, the execution time needed by the automated com-
position algorithm is of the order of magnitude of seconds. It
is, thus, negligible with respect to the time required to actually
simulate such kind of models, typically hours or days.

Finally, it should be noted that many correctness checks are
performed by default by the Ecore framework [49], which pre-
vents users from specifying incorrect compositions. In particu-
lar, it warns the user if the model under specification (library
or scenario) does not conform to the TMDL metamodel (see
Fig. 3). Ecore has also a validation framework, which can be
used to check additional constraints. For example, requiring that
the value assigned to a parameter is compatible with its type or
that only state variables of the same type are connected together.

VII. CONCLUSION

In this paper, we proposed an approach for the automatic as-
sembly of complex state-based models, based on the concepts of
model templates libraries and composition rules. We formally
defined all the concepts involved in the framework, and pro-
vided a DSL that can be used to concretely specify them. This
language, called TMDL, allowed libraries of template models to
be precisely defined, and then applied to specify different system
configurations and compose the concrete analysis model.

This paper introduced the formalization of the proposed
framework. In its concrete application, users will be supported
by editors and tools in all the phases; we, thus, believe that im-
provements over manual practice will be much greater. Tools
under development include the following means to:

1) edit template implementations using graphical
abstractions;

2) write textual TMDL specifications;
3) write TMDL specifications using graphical abstractions;
4) define commonly used metrics using predefined reward

variables.

308 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 1, MARCH 2020

A current limitation of the proposed approach is that it does
not provide specific countermeasures to the state-space explo-
sion problem, as it focuses on the specification aspect only.
As such, generated models would be most likely needed to be
solved by discrete-event simulation. However, many techniques
for the exact evaluation of complex performability models exist
in the literature, e.g., [1], [19]. Future work will investigate the
possibility to integrate some of these techniques directly in the
model composition algorithm, based on the characteristics of the
involved model templates.

Another possible improvement consists in providing better
mechanisms for the specification of metrics. Solution to be ex-
plored consist in the definition of metrics using probabilistic
temporal logics (see, e.g., [50]), or the adoption of observation
patterns as in [28] as specific kinds of model templates. In the
context of MDE, techniques like code generation and model
weaving [51] are also promising: they can be exploited to gen-
erate TMDL specifications from system descriptions in other
forms, e.g., UML models or structured textual files.

ACKNOWLEDGMENT

This work is related to the activities of the H2020 MSCA-
RISE-2018 Project ADVANCE “Addressing Verification and
Validation Challenges in Future Cyber-Physical Systems.”

REFERENCES

[1] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based evaluation:
From dependability to security,” IEEE Trans. Depend. Sec. Comput., vol. 1,
no. 1, pp. 48–65, Jan./Mar. 2004.

[2] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans. Depend.
Sec. Comput., vol. 1, no. 1, pp. 11–33, Jan./Mar. 2004.

[3] J. Meyer, “On evaluating the performability of degradable comput-
ing systems,” IEEE Trans. Comput., vol. C-29, no. 8, pp. 720–731,
Aug. 1980.

[4] C. McLean, Y. T. Lee, S. Jain, and C. Hutchings, “Modeling and simulation
of critical infrastructure systems for homeland security applications,” U.S.
Nat. Inst. Standard Technol., Gaithersburg, MD, USA, Tech. Rep. NISTIR
7785, Sep. 2011.

[5] G. Ciardo, R. German, and C. Lindemann, “A characterization of the
stochastic process underlying a stochastic Petri net,” IEEE Trans. Softw.
Eng., vol. 20, no. 7, pp. 506–515, Jul. 1994.

[6] M. Jamshidi, Systems of Systems Engineering – Innovations for the 21st
Century. Hoboken, NJ, USA: Wiley, 2009.

[7] A. Bondavalli, S. Bouchenak, and H. Kopetz, Cyber-Physical Systems of
Systems – Foundations – A Conceptual Model and Some Derivations: The
AMADEOS Legacy, vol. 10099 (Programming and Software Engineering).
New York, NY, USA: Springer, 2016.

[8] L. Montecchi, P. Lollini, and A. Bondavalli, “A DSL-supported workflow
for the automated assembly of large performability models,” in Proc. 10th
Eur. Depend. Comput. Conf., Newcastle upon Tyne, U.K., May 13–16,
2014, pp. 82–93.

[9] J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity net-
works: Structure, behavior, and application,” in Proc. Int. Workshop Timed
Petri Nets, Turin, Italy, Jul. 1–3, 1985, pp. 106–115.

[10] W. Sanders and J. Meyer, “Stochastic activity networks: Formal definitions
and concepts,” in Lectures on Formal Methods and Performance Analy-
sis, vol. 2090 (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 2002, pp. 315–343.

[11] N. R. Veeraragavan, L. Montecchi, N. Nostro, R. Vitenberg, H. Meling, and
A. Bondavalli, “Modeling QoE in dependable tele-immersive applications:
A case study of world opera,” IEEE Trans. Parallel Distrib. Syst., vol. 27,
no. 9, pp. 2667–2681, Sep. 2016.

[12] T. Courtney, S. Gaonkar, K. Keefe, E. W. D. Rozier, and W. H. Sanders,
“Möbius 2.3: An extensible tool for dependability, security, and perfor-
mance evaluation of large and complex system models,” in Proc. 39th
IEEE/IFIP Int. Conf. Depend. Syst. Netw., Estoril, Portugal, 2009, pp. 353–
358.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Reading, MA, USA: Addison-Wesley, 1995.

[14] H. Kopetz and N. Suri, “Compositional design of RT systems: A conceptual
basis for specification of linking interfaces,” in Proc. 6th IEEE Int. Symp.
Object-Oriented Real-Time Distrib. Comput., Hokkaido, Japan, May 16,
2003, pp. 51–60.

[15] S. Bliudze and J. Sifakis, “The algebra of connectors – Structuring in-
teraction in BIP,” IEEE Trans. Comput., vol. 57, no. 10, pp. 1315–1330,
Oct. 2008.

[16] W. H. Sanders and J. F. Meyer, “Reduced base model construction methods
for stochastic activity networks,” IEEE J. Sel. Areas Commun., vol. 9, no. 1,
pp. 25–36, Jan. 1991.

[17] B. Plateau and K. Atif, “Stochastic automata network for modeling par-
allel systems,” IEEE Trans. Softw. Eng., vol. 17, no. 10, pp. 1093–1108,
Oct. 1991.

[18] G. Ciardo and K. S. Trivedi, “A decomposition approach for stochas-
tic reward net models,” Perform. Eval., vol. 18, no. 1, pp. 37–59,
1993.

[19] P. Lollini, A. Bondavalli, and F. Di Giandomenico, “A decomposition-
based modeling framework for complex systems,” IEEE Trans. Rel.,
vol. 58, no. 1, pp. 20–33, Mar. 2009.

[20] G. Ciardo, Y. Zhao, and X. Jin, “Ten years of saturation: A Petri net per-
spective,” in Transactions on Petri Nets and Other Models of Concur-
rency V, vol. 6900 (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 2012, pp. 51–95.

[21] K. Kanoun, M. Borrel, T. Morteveille, and A. Peytavin, “Availability of
CAUTRA, a subset of the French air traffic control system,” IEEE Trans.
Comput., vol. 48, no. 5, pp. 528–535, May 1999.

[22] K. Kanoun and M. Ortalo-Borrel, “Fault-tolerant system dependability-
explicit modeling of hardware and software component-interactions,”
IEEE Trans. Rel., vol. 49, no. 4, pp. 363–376, Dec. 2000.

[23] M. Rabah and K. Kanoun, “Performability evaluation of multipurpose
multiprocessor systems: The “separation of concerns” approach,” IEEE
Trans. Comput., vol. 52, no. 2, pp. 223–236, Feb. 2003.

[24] A. Bondavalli, P. Lollini, and L. Montecchi, “QoS perceived by users
of ubiquitous UMTS: Compositional models and thorough analysis,”
J. Softw., vol. 4, no. 7, pp. 675–685, 2009.

[25] E. Battista, V. Casola, N. Mazzocca, R. Nardone, and S. Marrone, “A com-
positional modelling approach for large sensor networks design,” in Proc.
8th Int. Conf. P2P, Parallel, Grid, Cloud Internet Comput., Compiegne,
France, Oct. 28–30, 2013, pp. 422–429.

[26] S. Chiaradonna, F. D. Giandomenico, and G. Masetti, “A stochastic mod-
elling framework to analyze smart grids control strategies,” in Proc.
IEEE Smart Energy Grid Eng., Oshawa, ON, Canada, Aug. 21–24, 2016,
pp. 123–130.

[27] G. Nencioni, B. E. Helvik, and P. E. Heegaard, “Including failure cor-
relation in availability modeling of a software-defined backbone net-
work,” IEEE Trans. Netw. Service Manage., vol. 14, no. 4, pp. 1032–1045,
Dec. 2017.

[28] N. Ge, M. Pantel, and S. D. Zilio, “Formal verification of user-level real-
time property patterns,” in Proc. 11th Int. Symp. Theor. Aspects Softw.
Eng., Sophia Antipolis, France, Sep. 13–15, 2017, pp. 1–8.

[29] E. Best, R. Devillers, and M. Koutny, “The box algebra — A model of nets
and process expressions,” in Proc. Appl. Theory Petri Nets, Williamsburg,
VA, USA, Jun. 21–25, 1999, pp. 344–363.

[30] K. Jensen and L. Kristensen, Coloured Petri Nets — Modelling
and Validation of Concurrent Systems. Berlin, Germany: Springer,
2009.

[31] J. K. Muppala, G. Ciardo, and K. S. Trivedi, “Stochastic reward nets for
reliability prediction,” in Commun. Rel., Maintainability Serviceability,
vol. 1, no. 2, pp. 9–20, 1994.

[32] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, 2006.

[33] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability modeling and
analysis of software systems specified with UML,” ACM Comput. Surv.,
vol. 45, no. 1, 2012, Art. no. 2.

[34] M. Cinque, D. Cotroneo, and C. Di Martino, “Automated generation of
performance and dependability models for the assessment of wireless sen-
sor networks,” IEEE Trans. Comput., vol. 61, no. 6, pp. 870–884, Jun.
2012.

MONTECCHI et al.: TEMPLATE-BASED METHODOLOGY FOR SPECIFICATION AND AUTOMATED COMPOSITION 309

[35] L. Montecchi, P. Lollini, and A. Bondavalli, “Towards a MDE transforma-
tion workflow for dependability analysis,” in Proc. 16th IEEE Int. Conf.
Eng. Complex Comput. Syst., Las Vegas, NV, USA, 2011, pp. 157–166.

[36] S. Bernardi, S. Marrone, J. Merseguer, R. Nardone, and V. Vit-
torini, “Towards a model-driven engineering approach for the as-
sessment of non-functional properties using multiformalism,” Softw.
Syst. Model., pp. 1–24, 2018, [Online]. Available: https://link.
springer.com/article/10.1007/s10270-018-0663-8

[37] G. Masetti, S. Chiaradonna, and F. D. Giandomenico, “A stochastic mod-
eling approach for an efficient dependability evaluation of large systems
with nonanonymous interconnected components,” in Proc. IEEE 28th Int.
Symp. Softw. Rel. Eng., Toulouse, France, Oct. 23–26, 2017, pp. 46–55.

[38] C. Atkinson and T. Kühne, “Model-driven development: A metamodeling
foundation,” IEEE Softw., vol. 20, no. 5, pp. 36–41, Sep./Oct. 2003.

[39] A. Zimmermann, Stochastic Discrete Event Systems — Modeling, Evalu-
ation, Applications. Berlin, Germany: Springer, 2008.

[40] O. Hauge et al., “Common variability language (CVL),” OMG Revised
Submission, OMG document: ad/2012-08-05, Aug. 2012.

[41] ISO/IEC 15909-2:2011, “Systems and software engineering – High-level
Petri nets – Part 2: Transfer format,” International Organization for
Standardization, Geneva, Switzerland, Feb. 2011.

[42] Object Management Group (OMG), “XML metadata interchange (XMI)
specification,” formal/2014-04-14, version 2.4.2, Apr. 2014.

[43] Object Management Group (OMG), “OMG meta object facility (MOF)
core specification,” formal/2016-11-01, version 2.5.1, Nov. 2016.

[44] U. Aßmann, Invasive Software Composition. Berlin, Germany: Springer,
2003.

[45] ISO/IEC 15909-1:2004, “Systems and software engineering – High-level
Petri nets – Part 1: Concepts, definitions and graphical notation,” Int. Org.
Standardization, Geneva, Switzerland, Dec. 2004.

[46] L. Montecchi, P. Lollini, and A. Bondavalli, “Stochastic activity networks
templates,” Resilient Comput. Lab, Tech. Rep. RCL180401, v1.0, April
2018. [Online]. Available: http://rcl.dsi.unifi.it/publication/show/849

[47] W. H. Sanders and J. F. Meyer, “A unified approach for specifying mea-
sures of performance, dependability, and performability,” in Dependable
Computing for Critical Applications, vol. 4. Vienna, Austria: Springer,
1991, pp. 215–237.

[48] M. Voelter, DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. Scotts Valley, CA, USA: CreateSpace Ind.
Publishing Platform, Jan. 2013.

[49] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed. Reading, MA, USA: Addison-Wesley,
2009.

[50] S. Donatelli, S. Haddad, and J. Sproston, “Model checking timed and
stochastic properties with CSLTA,” IEEE Trans. Softw. Eng., vol. 35,
no. 2, pp. 224–240, Mar./Apr. 2009.

[51] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly, “Weaving an
assurance case from design: A model-based approach,” in Proc. IEEE 16th
Int. Symp. High Assurance Syst. Eng., Daytona Beach Shores, FL, USA,
Jan. 8–10, 2015, pp. 110–117.

Leonardo Montecchi received the master’s degree
in computer science and the Ph.D. degree in com-
puter science, systems, and telecommunications from
the University of Firenze, Florence, Italy, in 2010 and
2014, respectively.

He was a Postdoc Researcher with the Reslient
Computing Lab Research Group, University of
Firenze. Since 2017, he has been an Assistant Pro-
fessor of Computer Science with the University of
Campinas, Campinas, Brazil. He regularly serves as
a Reviewer for international journals and conferences

in the areas of dependability and systems engineering. His main research inter-
ests focus on performability evaluation of complex systems, and the application
of model-driven engineering techniques to critical systems. His research often
expands to related topics, including security and software engineering.

Paolo Lollini received the master’s degree in com-
puter science and the Ph.D. degree in computer sci-
ence and applications from the University of Firenze,
Florence, Italy, in 2001 and 2006, respectively.

He was a Temporary Researcher in Computer Sci-
ence from 2006 to 2012, and he is currently an As-
sistant Professor at the Mathematics and Computer
Science Department with the University of Firenze.
He has been continuously participating in European
funded projects since 2002 and is currently the Sci-
entific Project Coordinator of the project H2020-

MSCA-RISE-2018 ADVANCE. His research interests include the modeling and
evaluation of performability and resiliency attributes of large-scale critical in-
frastructures and systems of systems.

Prof. Lollini is a member of the Program Committee of about 30 international
conferences and workshops and a Program Chair of 2018 European Dependable
Computing Conference.

Andrea Bondavalli (M’15) is currently a Full Pro-
fessor of Computer Science with the University of
Firenze, Florence, Italy. His scientific activities origi-
nated more than 220 papers appeared in international
journals and conferences. He led various national and
European projects and has been chairing the program
committee in several international conferences. His
current research focuses on the assessment of the re-
siliency of critical cyberphysical systems.

Prof. Bondavalli is a member of the IFIP W.G.
10.4 Working Group on “Dependable Computing and

Fault-Tolerance.”

https://link.springer.com/article/10.1007/s10270-018-0663-8
http://rcl.dsi.unifi.it/publication/show/849

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

