
An Eclipse-Based Editor for SAN Templates ?

Leonardo Montecchi1, Paolo Lollini2,3, Federico Moncini3, and Kenneth Keefe4

1 Universidade Estadual de Campinas, Campinas, SP, Brazil
leonardo@ic.unicamp.br

2 Consorzio Interuniversitario Nazionale per l’Informatica (CINI), Firenze, Italy
3 University of Firenze, Firenze, Italy

lollini@unifi.it, federico.moncini@stud.unifi.it
4 University of Illinois at Urbana Champaign, Urbana, Illinois, USA

kjkeefe@illinois.edu

Abstract. Mathematical models are an effective tool for studying the
properties of complex systems. Constructing such models is a challeng-
ing task that often uses repeated patterns or templates. The Template
Models Description Language (TMDL) has been developed to clearly
define model templates that are used to generate model instances from
the template specification. This paper describes the tool support that is
being developed for applying the TDML approach with Stochastic Activ-
ity Networks (SANs) models. In particular, this paper details a graphical
editor for SAN templates, which assists users in creating template-level
models based on SANs. From these specifications, it will be possible to
generate by model-transformation the subsequent instance-level models,
which can be studied by simulation or analytical tools.

Keywords: stochastic activity networks · templates · Sirius · metamodel · graph-
ical editor.

1 Introduction

Model-based evaluation [1] has been extensively used to estimate performance
and reliability metrics of computer systems. Constructing and maintaining mod-
els for large-scale, evolving systems is a challenging task. In our recent work [2],
we defined an approach for reusing the specification of performability models,
in particular, Stochastic Petri Net (SPN) models [3]. The approach is based
on the concept of model templates, which use well-defined interfaces to interact
with connected segments of the model. The interfaces and composition rules
are specified using our novel, domain-specific language, Template Models De-
scription Language (TMDL). A model template is essentially a parameterized
abstracted version of a model in a specific formalism. From a template, concrete
instances can be automatically derived by specifying values for its parameters.

? This work has received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Sklodowska-Curie grant agreement No
823788. This work has received funding from the São Paulo Research Foundation
(FAPESP) with grant #2019/02144-6.



In [2] we defined the overall idea of the framework, formalized its definition,
and introduced the TMDL language. The framework was designed to be inde-
pendent of a specific formalism, and it assumes the existence of 1) a template-
level formalism 2) an instance-level formalism, and 3) a concretize function,
to generate an instance-level model from a template-level model. Then, in [4]
we completed the formalization by defining Stochastic Activity Network Tem-
plates (SAN-T), a template-level formalism based on Stochastic Activity Net-
works (SANs) [5]. In the same document we also defined the associated concretize
function, thus enabling the application of the TMDL approach using SANs as
instance-level formalism.

However, to be of practical use, appropriate tool support must be developed.
In this paper, we introduce an Eclipse-based graphical editor for SAN-T mod-
els, the template-level models in the TMDL framework. Using SAN-T models,
instance-level SAN models can be generated efficiently and accurately. The gen-
erated SAN models can be studied by modeling and simulation tools, such as
Möbius [6]. The rest of the paper is organized as follows. In Section 2 we recall
in more details the TMDL framework and the SAN-T formalism. In Section 3
we discuss the architecture of the overall tool, and detail the two main compo-
nents of the editor. In Section 4 we show a simple example of application, and in
Section 5 we conclude the paper with an overview on the planned future work.

2 Background

Before focusing on the new tool architecture, an overview of the TMDL frame-
work and the SAN-T formalism is provided.

2.1 The TMDL Framework

Figure 1 provides an overview of the three major steps utilized by the TMDL
framework. In Step #1, a library of reusable model templates is created by an
expert. In Step #2, the different system configurations that should be analyzed

 Model Templates Library

Scenario #1 

Automated
Composition

Algorithm
Scenario #2

Scenario #N

Target System
(1)

(2) (3)

Templates
Implementations

Model of 
Scenario #1

Model of 
Scenario #2

Model of 
Scenario #N

Templates
Specifications

Fig. 1. Workflow of the TMDL framework for the automated composition of template
performability models. Figure adapted from [2].



are defined in terms of “scenarios.” Scenarios are composed of model variants,
that is, a selection of model templates with their parameter value assignment.
In Step #3, the model instances are automatically created and assembled, thus
generating the complete system model for each scenario. What makes the model
templates reusable is that they have well-defined interfaces and parameters. In-
terfaces specify how they can be connected to other templates, while parameters
make it possible to derive different concrete models from the same template.

A model template has a specification and an implementation. The specifica-
tion of a template is provided with TMDL. The implementation of an atomic
template is given using a template-level formalism, that is, a modeling formalism
that defines partially specified models in the concrete formalism of choice. By
“partially specified”, we mean that some aspects of the structure and behavior
of the model are controlled by parameters, e.g., the number of cases of an activ-
ity. Conversely, the instance-level formalism is the modeling formalism actually
used for the analysis (e.g., SANs). The models generated in Step #3 conform to
the instance-level formalism.

In [4] we provided the definition of a template-level formalism based on SANs,
that we call Stochastic Activity Network Templates (SAN-T).

2.2 Stochastic Activity Network Templates

Stochastic Activity Networks (SANs) are formal models that represent stochastic
behavior, in general, of a complex system [5]. A SAN is defined as a tuple:
SAN = (P,A, I,O, γ, τ, ι, o, µ0, C, F,G), where P is a finite set of places; A is
a finite set of activities; I is a finite set of input gates; and O is a finite set of
output gates. The function γ : A → N+ specifies the number of cases for each
activity, that is, the number of possible choices upon execution of that activity.
τ specifies the type of each activity; ι maps input gates to activities and o maps
output gates to cases of activities. Places can hold tokens; the number of tokens
in each place gives the state of the network, called its marking.

The behavior of a SAN is determined by input gates and output gates. An
input gate contains a predicate on the marking of connected places (input pred-
icate), and an input function that alters the marking. An input gate holds in a
certain marking if its input predicate holds. An output gate contains only the
output function, which alters the marking of the connected places. Input arcs
and output arcs are special cases of input and output gates that add/remove one
token to the connected place. When an activity is enabled it can fire (instanta-
neous activities have priority); when an activity fires, one of its cases is selected.
The new marking is obtained by computing the functions of all the input and
output gates connected to the activity. The stochastic behavior is given by three
functions that are associated to each activity a: function Ca ∈ C specifies the
probability distribution of its cases; Fa ∈ F specifies the probability distribution
of the firing delay; and Ga ∈ G describes its reactivation markings [5].

In [4] we introduced the new SAN-T formalism, as a template-level formal-
ism [2] based on SANs. The idea is to leave some elements of the SAN model
unspecified, and to make them depend on parameter values. This is different



from what is done for example in the Möbius tool [6], where global variables
can be used to set initial marking values and distribution parameters. In SAN-T
models, parameters can also affect some aspects of the model structure, like the
number of cases of a transition or the number of places in the model.

Formally, a Stochastic Activity Network Template (SAN-T) is also a tuple:

SAN -T = (∆, P̃ , Ã, Ĩ, Õ, γ̃, τ̃ , ι̃, õ, µ̃0, C̃, F̃ , G̃), (1)

where ∆ is a set of parameters, and elements marked with a tilde accent, ·̃,
are modified versions of SANs elements, reformulated to take parameters into
account. The main differences are summarized in the following.

The set ∆ is the set of parameters of the template, which may have a type.
We denote with TERMt the set of all the possible terms of type t, that is, all
the possible combinations of parameters and operators that are of type t. For
example TERMInt is the set of all terms of integer type. P̃ is a finite set of place
templates. A place template is a pair (τ, k), where τ is the name of the place,
and k ∈ TERMSet{Int} is its multiplicity. When values are assigned to parameters
and the instance-level model is derived, the place template is expanded to a set
of SAN places. The concept of marking has also been extended. The idea is to
anticipate that the place template will be mapped to a set of places, and thus
allow the marking for each of them to be specified using an index. Given a set
of place templates S̃ ⊆ P̃ , a marking template of S̃ is a mapping µ̃ : S̃ ×N→ N.
For example, µ̃(p̃, 2) = 10 means that the place generated from p̃ having index
2 contains 10 tokens.

All the other elements of a SAN have been adapted to depend on parameters.
In particular, cases of activity templates also depend on parameters; function
γ̃ : Ã → TERMInt specifies the number of cases for each activity template. An
output gate template is connected directly to an activity template, as opposed to
normal output gates that are connected to activity cases. When a regular SAN
is generated from the template, the output gate template will be expanded to
multiple concrete output gates.

3 Tool Architecture

3.1 Overview

An overview of the tool that will implement the TMDL framework is presented in
Figure 2, showing its main components and their dependencies. Colors indicate
the role of each component with respect to the workflow of Figure 1. The whole
tool is based on the ecosystem provided by the Eclipse Modeling Framework
(EMF)5, and it is composed of a formalism-independent layer and a formalism-
specific layer. The project is available as a public GitHub repository [7].

The formalism-independent layer implements the part of the framework that
is not tied to a specific instance-level formalism. This is basically the TMDL

5 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/


EMF

SAN
Metamodel

TMDL
Metamodel

TMDL
Composition

Algorithm

ATL Acceleo

SAN-T
Metamodel

Möbius Input
Generator

SAN-T Editor
SAN-T to SAN

Transformation
(concretize)

Sirius

This Paper

Formalism-Independent

Formalism-Specific

Fig. 2. Main components of the TMDL Framework for SANs, and their dependencies.
An arrow from A to B means that component A uses component B. Dependencies
between Eclipse components are not shown.

metamodel and the associated composition algorithm introduced in [2]. The
formalism-specific layer includes the components that support a specific instance-
level formalism, in this case SANs. The core of this layer are the metamodels of
the instance-level and template-level formalisms. As shown in Figure 2, they de-
pend on the TMDL metamodel; this dependence is limited to the root elements
(i.e., the SAN and SANT metaclasses), which need to extend specific classes to
connect to the framework.

The focus of this paper are the components in the dashed region (in yellow),
which includes the two metamodels and the graphical editor for SAN-T mod-
els. The other components are based on these two metamodels: the concretize
function that transforms SAN-T models into SAN models will be realized as a
model-to-model transformation; instead, a model-to-text transformation will be
developed to generate the concrete input for the Möbius analysis tool, which
uses an XML-based format.

3.2 SAN and SAN-T Metamodels

To the best of our knowledge there was no EMF-based metamodel that supports
all the concepts of the SAN formalism, and we thus developed one as part of
this project. We based on the formal definition of SANs [5], but also on their
practical implementation provided by Möbius [6]. In fact, Möbius includes some
variations to the original definition; for example, it supports extended places,
which may hold values of other datatypes, instead of natural numbers only. The
complete SAN metamodel contains 57 metaclasses and 4 packages: Core, Types,
Expressions, and Distributions.

The SAN-T metamodel is organized in 4 packages: Core, Places, Cases, and
Gates, and it also reuses some elements from the SAN metamodel. Figure 3
depicts the Core package, which defines the main elements of a SAN-T model.
Figure 4 depicts the Places package, which defines elements used in place tem-
plates to specify their multiplicity and initial marking. A PlaceTemplate contains



SANT

name : EString

 globalVariables : GlobalVariable

 customType : CustomTypeDefinition

ArcTemplate

PlaceTemplate

 multiplicity : Multiplicity

 marking : MarkingTemplate

ActivityTemplate

 casesTemplate : CasesSpecification

GateTemplate

 function : Expression

 places : Place

Place

/isExtended : EBoolean = false

 type : Type

 marking : Marking

InstantaneousActivityTemplate

TimedActivityTemplate

 timeDistribution : Distribution

 activation : Expression

 reactivation : Expression

Parameter

name : EString

ParameterArray

ParameterSimple

[0..*] templatePlaces
name

[0..*] arcs

[0..*] activityTemplates

name

[0..*] gates

[1..*] placeTemplate

[0..*] places

[0..*] parameters

name

Fig. 3. SAN-T metamodel — Core.

PlaceTemplate MarkingTemplate

idPlace : EInt

MarkingTemplateGlobalVariable

 variable : GlobalVariable

MarkingTemplateSimple

value : EShortMultiplicityRangeOperator

min : EInt

max : EInt

step : EInt

Multiplicity

MultiplicityArray

values : EInt

MultiplicityParametric

 parameter : Parameter

MultiplicityValue

value : EInt

[0..*] marking

[1..1] multiplicity

Fig. 4. SAN-T metamodel — Places.

a MarkingTemplate and a Multiplicity. The metamodel contains classes to spec-
ify the multiplicity in different ways: as a constant value (MultiplicityValue), as
a parameter (MultiplicityParametric), as an array (MultiplicityArray), and as a
range of values (MultiplicityRangeOperator). The complete SAN-T metamodel
contains 22 metaclasses, in addition to those reused from the SAN metamodel.

3.3 Graphical Editor

Based on the metamodels introduced above, we used the Sirius tool to create
a graphical editor for SAN-T models. Sirius is an Eclipse project that permits
to easily create customized graphical editors. It adopts a declarative approach,
in which the developer specifies which element of a certain metamodel should
be represented and how, and the framework takes care of the actual realization
of the feature and of its integration within Eclipse. Thanks to these facilities,
our editor supports most of the features expected from a graphical editor: a
tool palette, a property page, synchronization between model and its graphical
representation, copy and paste, rearrangement of connections, etc. (Figure 5).

As a positive side effect of the fact that the SAN-T metamodel reuses ele-
ments of the SAN metamodel, our editor can also be used to specify regular (i.e.,
instance-level) SAN models. However, these models will be stored as XMI files,
and thus they cannot be directly used as input to Möbius at this time.



Fig. 5. Editing properties of a place using our editor.

4 Application Example

In this section we provide a simple example of application of our editor. We
use the editor to specify the same example that was introduced in [4]; more
specifically, in Figure 3(c) of that document. The context is that of a mobile
network, in which different services and different classes of users are available.
Different users have similar behavior, but may request different network services.
The variability is both in the amount of services they have access, and also on
which ones. Each service is identified by a number.

Figure 6 shows the User SAN-T model, specified with our editor. It includes
three normal places (Idle, Failed, and Dropped), and a place template (Req). It
also has two normal instantaneous activities (Fail and Drop), and one timed
activity template (Request). The part of the model that remains unspecified
(i.e., the “template” part) is the one determining which services are requested
by the user, and with which probability. This aspect of the model is determined
by parameter S and by parameter P . It should be noted that the connections
involving template elements are highlighted with a different color in the editor
(green), to facilitate their identification.

The semantic of the model is the following. The user is initially in idle state
(place Idle contains one token). After a certain amount of time, given by the
distribution associated with activity Request, the user requests a network service.

Failed

short

0

Fail

Dropped

short

0

Drop

Idle

short

1

IGRequest
Request

Uniform

P Req

Parameter S

OGRequest

Fig. 6. Example of a SAN-T model, specified with our editor. Request, OGRequest, and
Req are template-level entities, and thus highlighted in green.



The identifiers of the services he or she may request are given by the value(s)
of parameter S, which determines how many places named ReqX will appear in
the generated instance-level SAN model (MultiplicityParametric element). The
number of cases of the activity Request and their probabilities are given by
the P parameter (CaseSpecificationProbabilityArray). The output gate template
OGRequest determines that if case k is selected, then a token should be added to
place Reqk. When a token is added to place Failed or Dropped, the corresponding
activity fires, and the user goes back to the idle state.

5 Concluding Remarks

In this paper we have introduced a graphical editor for SAN-T models, developed
on top of the modeling facilities provided by Eclipse. The editor is part of a
bigger project that aims to provide concrete tool support for applying the TMDL
approach with SANs. As future work, we are working on completing the tool
support for an end-to-end application of the TMDL approach, implementing
the components highlighted in green in Figure 2. It should be noted that most
of them will rely on the SAN and SAN-T metamodels that we developed for
realizing this editor.

In particular, as the next immediate steps we plan to implement the model-
to-model transformation from SAN-Ts to SANs, and on the model-to-text trans-
formation to generate the input for the Möbius framework. These two compo-
nents will finally enable the evaluation of performability metrics based on SAN-T
models specified with our editor.

References

1. D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based evaluation: from de-
pendability to security,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 48–65, 2004.

2. L. Montecchi, P. Lollini, and A. Bondavalli, “A template-based methodology for the
specification and automated composition of performability models,” IEEE Trans-
actions on Reliability, vol. 69, pp. 293–309, 2020.

3. G. Ciardo, R. German, and C. Lindemann, “A characterization of the stochastic
process underlying a stochastic petri net,” IEEE Transactions on Software Engi-
neering, vol. 20, no. 7, pp. 506–515, 1994.

4. L. Montecchi, P. Lollini, and A. Bondavalli, “A Formal Definition of Stochastic Ac-
tivity Networks Templates,” arXiv:2006.09291, June 2020, https://arxiv.org/abs/
2006.09291.

5. W. Sanders and J. Meyer, “Stochastic activity networks: formal definitions and
concepts,” in Lectures on formal methods and performance analysis, ser. LNCS.
Springer, 2002, vol. 2090, pp. 315–343.

6. G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. Webster, “The Möbius modeling tool,” in Proc. of the 9th Int.
Workshop on Petri Nets and Perf. Models, Sept. 2001, pp. 241–250.

7. “TMDL Framework,” https://github.com/montex/TMDL-Framework, accessed:
Wednesday 8th July, 2020.

https://arxiv.org/abs/2006.09291
https://arxiv.org/abs/2006.09291
https://github.com/montex/TMDL-Framework

	An Eclipse-Based Editor for SAN Templates  

