Using Metamodels to Improve Model-Based Testing
of Service Orchestrations

Lucas Leal
University of Campinas
Campinas, Brazil
ral63140@students.ic.unicamp.br

Campinas, Brazil

Abstract—Online model-based testing is one of the most
suitable techniques to assess the proper behavior of service
orchestrations. However, the diverse panorama in terms of
modeling languages and test case generation tools is a limita-
tion to widespread adoption. We advocate that the application
of Model-Driven Engineering principles as meta-modeling and
model transformation can cope with this problem, improving the
interoperability of artifacts in the test case generation process,
thus bringing benefits in case of agile development processes,
where system and technology evolution is frequent. In this
paper, we present our contribution to this idea, introducing
i) a reference metamodel, which stores the business process
behavior and the information to generate input models for test-
ing tools, and ii) transformations from orchestration languages
towards testing tools. The proposed approach is implemented
in a testing framework and evaluated on a case study where
multiple orchestrations are expressed in two languages. Also, the
paper presents how test cases are appropriately generated and
successfully executed, starting from an orchestration model as a
consequence of successful transformations.

Index Terms—Model-Driven Engineering,
modeling, Model-Based Testing.

SOA, Meta-

I. INTRODUCTION

The Service-Oriented Architecture (SOA, [1f]) paradigm
was designed to permit loose coupling interactions among
independent computational entities, called services, which are
usually controlled by different owners and hosted in different
locations [2f|. Like microservices, SOA and its derivatives are
the chosen solution to implement many of the systems that
society depends on. These services support applications on
the internet of things (IoT), cyber-physical systems (CPS), and
Systems of Systems (SoS) [3], [4].

The SOA paradigm has two main composition patterns:
Choreography and Orchestration [5]. Their difference is the
presence of a component responsible for managing the inter-
action of the other components of the system. Orchestrations
rely on the “orchestrator”, which is usually controlled by
the SOA composition owner, and it is responsible for the
coordination of the service providers (proprietary and third-
party) that contribute to the system objectives. Choreographies

This work has received funding from the European Union’s Horizon 2020
research and innovation program under the Marie Sklodowska-Curie grant
agreement No 823788 “ADVANCE”. This work has received funding from
the Sdo Paulo Research Foundation (FAPESP) with grant #2017/21773-9.
This study was financed in part by the Coordenacdo de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.

Leonardo Montecchi
University of Campinas

leonardo @ic.unicamp.br

Eliane Martins
University of Campinas

Campinas, Brazil
eliane @ic.unicamp.br

Andrea Ceccarelli
University of Florence
Florence, Italy
andrea.ceccarelli @unifi.it

are protocols (or contracts) among service providers that
contribute to the system’s goals [5]. This paper focuses on
service orchestrations, although concepts are extensible to
other forms of SOA compositions.

In orchestrations, services are integrated blindly to their role
in the compositions, which makes their replacement easier.
However, orchestrations depend on the proper behavior of
its constituent services: behavior changes and unexpected
evolution in services may jeopardize the whole composition
operation. These factors, combined with the dynamic binding
of components, which postpones the composition’s behavior
evaluation, forces the validation process to be performed at
the integration and runtime phases [6].

The popularization of continuous integration and testing
caused by the adoption of agile software development pro-
cesses and DevOps practices helped reducing the time be-
tween system releases [[7]]. The trend is that software testing
now occurs parallel to software development and integration.
However, the use of test scripts and automated test suites does
not solve all the problems regarding system validation. There
is a need for methods to perform efficient full life cycle testing
and validation of the end-to-end business process, integrating
capabilities, and different system components [8] [9].

In order to overcome some of the challenges regarding
the validation process, the software industry invested in test
automation techniques, and especially we consider in this
paper Model-Based Testing (MBT, [10]). Runtime Model-
based testing can ensure that the services, interfaces, messages,
and business processes are behaving as expected [6]. Never-
theless, when considering services and SOA applications, i)
the different MBT tools used to automate the testing process,
ii) the service diversity and their descriptions, iii) the frequent
need for system tests, iv) requirement changes, and v) the
unpredictable evolution and availability of services, make the
testing process not efficient and troublesome to be maintained
[10].

In this paper, we advocate that the introduction of Model-
Driven Engineering (MDE, [11]) techniques of model trans-
formation and artifact generation can be applied to overcome
the first and second identified challenges regarding SOA
testing. Such approach facilitates the creation and execution
of test suites for SOA applications, even when multiple testing
tools or different SOA descriptions and service languages are

considered.

This paper’s main contribution is to discuss the possible
applications of MDE for the improvement of the runtime
MBT process on SOA applications, taking into consideration
the current software development paradigm. The paper also
presents two metamodels, three transformations to guarantee
interoperability with different orchestration languages and test-
ing tools, and a running implementation based in an existing
framework [12]]. The proposed approach was evaluated on
a case study with orchestrations expressed in two different
languages, which evaluated the model transformations and if
the reference metamodel is capable of bridging different SOA
descriptions and MBT techniques.

This paper is structured as follows. introduces
the basics. explains the research questions and
the methodology to devise the proposed solution. Sections
and [V] contain the technical details of the proposed solution,
presenting the metamodel and the transformations to generate
artifacts from it. discusses the experimental results.
discusses related works. Finally, [Section VIII
concludes the paper, including a discussion of our future
works.

II. FUNDAMENTALS

A. Model-Driven Engineering

Model-Driven Engineering (MDE, [13]]) relies on model
abstractions, which represent information about a specific
domain. The MDE paradigm is explained by dividing it by
conceptualization levels and organizing it in implementation
levels. Conceptualization levels are organized in application-
level (M 1), application-domain (M2), and meta-level (M3). We
illustrate the division and organization of the MDE paradigm
through which is also useful to explain the transfor-
mation methodology that we will use in the rest of the paper.
The figure presents an example of a model transformation
process between system X and system Y, divided into con-
ceptualizations levels from bottom-up, and application from
left to right [[14].

Relevant core concepts are the concepts of model, meta-
model, and meta-metamodel. A model is an abstraction of
a system, and it may represent an existing system or just a
possible design (e.g., the UML description of a software).
A metamodel is also a model, and it defines structures and
rules to which models based on it should conform (e.g.,
the UML metamodel [13]])). A meta-metamodel defines the
modeling-language that is used to describe metamodels [[14]]
(e.g., the Meta-Object Facility [13[], which is used to define
the UML metamodel, among others). As exhibited in
the M1 layer focuses on model definitions, transformation
mechanisms, script and code generation. M2 focuses on the
definitions of the modeling languages (metamodels) and their
transformation rules. M3 declares the meta-metamodel, to
which the metamodels, models, and transformations should
conform [[14].

System X MDE System Y
Meta-metamodel
M3
C
I
Format X ‘ ‘ Metamodel
X
M2 4
¢ 3 ‘ Metamodel ‘ Format Y ’
Y
A
Inut file x |«—P—pt] Model x C C
M1 T
L Modely [wP-»|Input filey

C - Conformance relationship
P - Projection (text-to-model and model-to-text)
T - Model-to-Model transformation

Fig. 1. Conceptualization levels in MDE.

B. Model-Based Testing

Model-based testing (MBT) relies on models that reflect
the behavior of the system under test (SUT) and of the
environment, to automate the test-case generation processes.
It is a variant of black-box testing; therefore, the test cases
are generated without knowledge of the SUT source code. The
tests target the SUT interface, asserting outputs accordingly to
given inputs. Generated test cases are then utilized to evaluate
the SUT [15]].

The typical MBT process consists in i) generation of
abstract test cases from the SUT behavior model, ii) imple-
mentation of concrete test cases from the abstract ones, and
iii) execution of the test cases on the SUT. Customizing this
process depends on the testers’ requirements, such as the need
to test individual features of the SUT (partial system models),
stress one specific SUT behavior (test case selection criteria),
or perform test case generation before or during test execution.
This last aspect discriminates between offline or online model-
based testing [32].

In this paper, since we are addressing the issues of testing
dynamic SOA applications at runtime, online MBT has an
advantage over offline MBT. Online MBT can cope with
most of SOA’s short deployment cycles and the unpredictable
evolution/behavior of its components without storing pre-
generated test cases.

C. The SAMBA Framework

SAMBA (Self-Adaptive Model-Based online testing for
dynamic SOAs, [12]) is an online testing framework designed
to perform regression tests on SOA orchestrations. It uses
the information available in orchestration files to extract the
business process of the orchestration and to generate a model,
which is then used in the test case generation process.

SAMBA realizes the following functionalities:

1) updates the files describing the monitored orchestrations
when requested or when changes in the orchestrations
are detected;

2) extracts testing-oriented models from the orchestration’s
description files;

3) generates test cases from the testing-oriented models;

4) executes tests based on the generated test cases;

5) generates test reports.

presents the SAMBA components and their or-
ganization. SAMBA is composed of four main components:

Service Assemble Monitor (SAM), Model Generator (MG),
Model-based Online Test case generator (MOT), and Test
Service (TS). The components are organized as MAPE-K [16]
stages and have distinct functions. SAM is responsible for
monitoring the evolution of the target SOA application, and it
informs the MG which orchestration changed. MG analyzes
the evolution of the target SOA application and generates
updated models. MOT plans the test cases and updates the
test report, and TS executes the runtime tests [[12].

SAMBA Framework £]
Analyze £] Plan]
Model ExecuteTest Model-based
> Online Test Case
Generators G
enerator
™mG) r = (MOT)
UpdateModel ExeTestInstruction
Y
Monitor £] | Execute]
Service -
Assembly Test Service
Monitor (TS)
(SAM)
CheckData ;‘

(5 SAMBA interface
Fig. 2. SAMBA components and MAPE-K control loop [12]].

The most noteworthy for the scope of this paper are the
MG and the MOT. The MG generates the models of the mon-
itored orchestrations. It manages copies of the orchestration
description files and decides if model updates are necessary.
The description files are used as a source of information for
the model generation process.

The model generation is triggered whenever an application
description file update is detected. When this happens, the
orchestration description file is parsed, the information about
the orchestration business process is extracted, and it is con-
verted to a model format accepted by the model-based test
case generation component.

Then, the MG requests to the MOT a test on the target
application using the updated model. The MOT controls the
test case generation process and the test report generation.
It interacts with the MBT tool to generate test cases and
with the TS to execute them. It verifies if all the necessary

components are available, loads the updated model, sets initial
parameters, defines stop conditions, and starts the test loop.
While executing the test loop, the test instructions and the
obtained test results are registered in a test report.

The current implementation of SAMBA has been developed
ad hoc for orchestrations described with the Business Process
Execution Language (BPEL, [[17]), and it is compatible with
only one specific MBT test case generation tool, namely
GraphWalker [18]]. In other words, the current model genera-
tion process in SAMBA restricts i) the language to describe
SOA orchestrations, ii) the model-based testing tool used to
generate test cases, and iii) their operational parameters.

III. OBJECTIVE AND APPROACH
A. Problem Definition

This research aims to investigate the benefits of applying
the concepts of meta-modeling and model transformation from
MDE to improve MBT processes, specifically in the context of
runtime testing of service orchestrations. Testing at runtime is
necessary whenever the system can not be fully tested before
deployment, e.g., incremental development applied in agile
development processes [19].

Generally, each MBT approach relies on specific modeling
standards, syntax, test case generation, and test execution,
often leading to incompatibilities between approaches [15].
MDE has many applications, among them improving inter-
operability through the use of platform-neutral abstractions
(models) that must conform to a metamodel. Relying on
a common, well-defined metamodel enables the generation
of platform-specific artifacts according to requirements, thus
improving the interoperability between tools/systems.

Therefore, MDE can simplify the artifact generation and
compatibility for different MBT tools and frameworks. It
offers the possibility to use model generation scripts for any
MBT tool, at the single cost of defining transformation rules
(set only once for each metamodel). Consequently, the effort
for updates and extensions to the testing framework is reduced
(for example, including new MBT approaches and tools), thus
improving the testing process’s automation level.

We list below the research questions that guide our research,
and for which we will develop an answer in the rest of the
paper:

1) What is the typical information necessary to generate
an input model to a standard MBT tool that targets SOA
applications?

2) What are the challenges related to the transformation
Jrom different SOA description models to a generic
model?

B. Proposed Solution

We develop a reference metamodel for the testing of service
orchestrations. The metamodel objective is to comply with
the needs of MBT techniques. The metamodel stores the
information required to generate input models for MBT tools.
The metamodel’s information structure enables the use of
transformation rules, which allows the automation of the

model transformation from the system requirements and docu-
mentation. Therefore, the metamodel must be able to represent
business processes from different description notations.

The first requirements of the metamodel were extracted
from the target MBT tool. Then, by analyzing the charac-
teristics of the subjects of the case study and their description
models, it was possible to define the common elements in
both notations that could be used as source information for the
end goal. To exercise the metamodel, we create the following
transformations:

i from the reference orchestration and business process
languages, namely the BPEL [20] and the Business
Process Modelling Notation (BPMN, [21]]), towards the
metamodel; and

ii from the metamodel towards the MBT tool Graphwalker.

The results of the transformations were applied to the
SAMBA framework [12]], which can perform runtime testing
of orchestrations. Since SAMBA is an MBT framework, the
model generation process is fundamental for the framework to
achieve its objective.

Two components of the SAMBA framework were substi-
tuted: MG and MOT. The transformations in i) will replace
the MG, and the transformations in ii) will replace the MOT.

This approach would end the need to generate a model
generation script from each description model to each MBT
tool, reducing the effort required during framework updates.
The adoption of MDE techniques would also help to fulfill
the requirements of MBT tools used in dynamic environments,
improving the automation of the testing process, thus making
it more suitable for agile development processes.

IV. A METAMODEL FOR MBT OF SOA ORCHESTRATIONS

In this section, the metamodel used to perform model-based
testing in SOA orchestrations is presented; from now on, it
will be mentioned as SOA Testing Metamodel (STM). The
metamodel can be downloaded from [22] and it is depicted in

As defined by Utting et al. [[15]], model specification in MBT
is organized in three dimensions: model scope, model char-
acteristic, and model paradigm. Based on this, we comment
on STM characteristics and paradigm (the scope should be
clear from the discussion above). The STM has the following
model characteristics: 1) it specifies the expected input-output
behavior of the SUT; ii) it does not address the timing issues
of the orchestration components; iii) it is deterministic since
it is based on business processes; iv) it is discrete since it
models the orchestration events and operations, v) it uses a
transition-based notation as a modeling paradigm.

The metamodel is designed to represent SOA orchestra-
tions, which are a type of SOA composition. Usually, the
components of an SOA composition have their behavior well
defined, are designed to be stateless, and are accessed by
SOAP or REST communication protocols; these characteristics
are represented in the metamodel.

For what concerns the model paradigm, the STM is based on
Ecore, which is an implementation of the Meta-Object Facility

(MOF, [24])). Ecore models can be designed using the well-
known Eclipse Modeling Framework (EMF, [25]]), a modeling
framework capable of code generation from structured data
models, with runtime support for models and a reflective API
for their manipulation.

We finally discuss in detail which presents the
STM in the Ecore notation. The Model class is the root class
as the classes of the STM can be divided into behavioral
and requirement classes. The model class is responsible for
holding both behavioral and requirement objects. The behav-
ioral classes are: Step, StepOperation, OperationComposition,
AtomicStepOperation, ParallelStepOperation, SequenceStep-
Operation. All the remaining classes are requirements for
the MBT process: Generator, Service, Operation, Arguments,
Oracle, OperationOracle, AssertionOracle, Parameters.

The most important behavior class is the Step. The idea
is to represent all the actions performed inside the business
process as an atomic action. The structural information of the
application is stored in the model steps relationship. This way,
a model is a collection of steps that reference each other. The
property nextStep of the Class Step, can have zero or many
references to Step objects. A step has a unique ID attribute
and is composed of one StepOperation.

The StepOperation is a supertype for the AtomicStepOp-
eration and OperationComposition. The AtomicStepOperation
may reference an actual service operation, which is convenient
since different kinds of service providers, other than web-
services, might perform actions inside the business process.

The OperationComposition is also a supertype for both Par-
allelStepOperation and SequenceStepOperation classes. These
abstractions were made to allow the representation of concur-
rent and nested StepOperations, respectively. The STM can
also describe concurrent StepOperations, which is useful only
if the MBT test case generation tool can generate tests with
concurrent operations.

The Service class holds the information of a service
provider. Service objects have a unique ID, name, address, and
communication port. Each service is composed of a collection
of one or more Operations. Each Operation object has a name,
a set of Arguments and Outputs, and can reference any number
of Oracles. The Service and Operation classes are responsible
for the interface between the STM’s structural and behavioral
classes.

The Oracle class holds the input-output information of the
service operations consumed by the SOA orchestration. In
the context of testing, oracles are artifacts for determining
whether a test has passed or failed [26]]. The Oracle class
is a supertype for the AssertionOracle and OperationOracle
classes. The AssertionOracle stores a logical operator, a set
of input parameters, and an assertion value used to evaluate
an operation. The OperationOracle holds two sets of input
and output parameters for a given operation. The parameter
class is designed to store the values used by the oracles to
perform an operation execution and validation process, and
it also references the argument to which it is bound. The
Argument class, instead, has just the name and a data type

E Model

3 name : EString

[0..*] oracles

£ Oracle

3 id: String

[0.*] nextStep

o i
Msting © id: String

&, setproviousstons s Sten [0.*) services | = " "0

£ address : String

[1.*] steps

= port : Int

[1..*] operations

[1..1] stepOperation [0..1] generator

E Generator

3 algorithm : EString

(% StepOperation

5 name : EString

— 3 stopCondition : EString

E Service

£ Operation

El OperationOracle

[0.*] inputParametersg

[0..*] oracles £ AssertionOracle

3 operator : String

[0.*] putputParameters

r

[1.*] stepQperations [0..1] operation

] OperationComposition ‘ £ AtomicStepOperation

o process ElementName : EString

‘ B ParaIIeIStepOperation| ‘EI SequenceStepOperation

[0..*] arguments

[0.*]inputParameters

E Parameter

© data : String

[1..1] assertion

E Argument

[1..1] argument

3 name : EString

[0..*] outputs

3 dataType : EJavaObject

Fig. 3. SOA Testing Metamodel (STM) classes and relationships.

as attributes and it is strictly bound to an operation object.

V. TRANSFORMATIONS

In this section we describe the metamodels, tools, and
artifacts required and used by the transformations. First,
presents two metamodels, their classes, and
relationships used in the transformation process. Second,
describes the required model-to-model (M2M) and
model-to-text (M2T) transformation and the tools required
to realize them. Third, in the scripts for such
M2M and M2T transformations are explained, jointly with
their limitations. All transformations are available at [23]].

A. Input metamodels: BPMN & LiteBPEL

We selected two starting metamodels, BPMN and BPEL.
We used the implementation of the BPMN metamodel for
Eclipse EMF available at [25].

The BPMN metamodel has an abstract superclass called
FlowElements for all the subclasses used to describe a process
flow (BPMN business process). The FlowElements are Flown-
odes (Activities, Choreography Activities, Gateways, Events),
Data Objects, Data Associations, and Sequence Flow [21]].
These classes are the main target of the transformation script

that will be explained in A simplified version of

the class diagram of the BPMN FlowElements subclasses is
presented in

Concerning BPEL, the BPEL Ecore model available in the
Eclipse Foundation repository was not stable. For this reason,
we developed the LiteBPEL metamodel. LiteBPEL is a smaller

DataStoreObject FlowNode

i ConditionExpressionI

DataObject FlowElement SequenceFlow
— |
2
FlowNode
TargetReflincoming
SourceRefloutcoming
Activity Gateway Event

Fig. 4. BPMN FlowElements subclasses.

implementation of the BPEL metamodel and it conforms to
the BPEL documentation [16]. The model holds only the
information necessary for the subsequent transformation to
the STM, which are: i) the sequence of the BPEL activities
inside the process, ii) the variables consumed and shared
in the process and activities, iii) the service providers that
are consumed by the orchestration, and iv) their respective
operations. Like the BPEL metamodel, LiteBPEL also has an
abstract superclass representing the elements used to describe

[1..1] partnerlink

E partnerLink

[0..*] partnerlinks

[1..1] partnerlink

g invoke

H variable

[0..4] partnerlinks [1-1] partnerlink

[0..¥] variables E receive

E process

0..*] variables

B activity

£ name : Estring

[0..*] activities [[
E scope ‘ | ‘ E sequence |

Fig. 5. The LiteBPEL metamodel.

a process (BPEL business process): the Activity class. Some
of the Activity subclasses are: Scope, Flow, Sequence, Invoke,
Receive, and Reply. The class PartnerLink holds information
about the service providers used by the composition. The
Variable class is a reference to a variable shared and used
inside a process [27].

Just like original BPEL models, LiteBPEL models group
activities under the classes Scope, Flow, and Sequence. The
order of the objects describes the business process, which is
the only information on the model that indicates the activities
execution sequence. The Scope class indicates the use of
a separate execution environment for the Activities that are
inside it. The Flow class indicates that the Activities inside
of it are executed in parallel. The Sequence object lists the

activities inside on their proper execution order.
shows the LiteBPEL metamodel.

B. The transformation workflow

The transformation workflow comprises two parts: a Model-
to-Model (M2M) transformation and a Model-to-Text (M2T)
transformation. The whole transformation process has been
implemented and exercised in the case study, following the
MDE approach, as displayed in From left to right,
there are: two M2M transformations generating STM versions
of the BPMN and BPEL orchestrations, and one M2T trans-
formation generating Graphwalker input models. These are
discussed in what follows.

1) M2M transformations: BPEL2STM and BPMN2STM:
The two M2M transformations are from BPEL to STM and
from BPMN to STM. presents information about the
two transformation codes produced for the case study. In
both cases, the transformation process comprises the following
steps.

o Description files of the orchestration according to a

certain metamodel are retrieved, i.e., BPEL and BPMN
orchestrations in the case study.

TABLE I
SUMMARY OF M2M TRANSFORMATIONS

Transformation | Rules | Lazy rules | Helpers | Lines of code
BPEL2STM 1 10 6 186
BPMN2STM 1 8 12 246

o The description files are projected into their equivalent
models. In practice, this means that the XMI file rep-
resenting the BPEL or BPMN orchestration has to be
interpreted as a model.

o The models can be validated according to their respective
metamodels. In fact, the description files must conform
to their metamodel. This is an obvious requirement for
the correctness of the model.

e Then, the models (BPMN and LiteBPEL models) are
converted into new models that conform to the target
metamodel (STM).

A set of rules performs model transformations. The transfor-
mation rules were implemented using the Atlas Transformation
Language (ATL [28]). ATL is a project supported by the
Eclipse Foundation. It is a model transformation language
also designed to be an MDE toolkit, which provides M2M
transformation solutions.

2) M2T Transformations: STM2Graphwalker: The
SAMBA Framework relies on GraphWalker, an online MBT
test case generation tool [18]. GraphWalker has built-in
REST APIs with methods to load models, fetch data from the
generated test case, restart, or abort the test case generation,
get and set data from/to a model. GraphWalker requires
a finite state machine (FSM) as an input model and a set
of configurations for test case generation. The model can
be described in JSON, while the configuration consists of
the path generator (it determines the strategy to use when
generating a path through a model) and a stop condition (it
specifies when the path generation should stop).

The current implementation of the SAMBA framework is
set to operate only with models described in JSON format. The
GraphWalker JSON model format does not have an explicit
metamodel, but on Graphwalker’s wiki there is a textual
description of how the models should be written [18].

The M2T transformations are performed to generate JSON
files starting from the model in STM. A model in STM is
used as an input file for an Acceleo [29] script developed
for the case study. Acceleo is a model-based technology that
includes design tools to aid in the code/text generation process;
it automates the generation process from any data sources
that conform to an available Eclipse Modeling Framework
(EMF) metamodel. presents more information about
the generate script and its support scripts.

C. Details on the Transformation Algorithms

1) From LiteBPEL to STM Model: The first step in the
transformation process is to generate STM Services from the
BPMN Partnerlinks. Then STM steps are generated from the
BPMN Activities. Each Activity is converted to an equiva-
lent STM StepOperation subclass (ParallelStepOperation, Se-

TABLE 11
SUMMARY OF THE STM2GRAPHWALKER TRANSFORMATION
File Imports | Templates | Queries Lines
of code

generate 3 2 0 30
edgeGeneratorModule 1 6 0 60
generateHeaderModule 0 1 0 14
vertexGeneratorModule 1 1 0 13
GraphHelper 0 0 13 110

quenceStepOperation, AtomicStepOperation). Activities sub-
classes like Invoke, Receive and Reply are transformed into
STM AtomicStepOperations. Invoke Activities with informa-
tion about operations are converted to STM Operation objects
and associated with its respective STM Service. The order of
the Process’ Activities is stored and later used to update the
STM Step’s nextStep property, linking them according to their
original execution sequence.

2) From BPMN to STM Model: First, BPMN Interfaces
are converted into STM Services. Then all the Flownodes
and Sequence Flows are extracted from the main BPMN
Process. Flownode Gateways are listed, and their information
is stored. All the FlowNodes that are not Gateways or Events
are converted to STM Steps. Finally, all the information from
the Sequence Flows and Gateways is used to update the STM
Step’s nextStep attribute, reestablishing the original execution
sequence. illustrates the result of the transformation
of an example BPMN model to an STM model.

[BPMN Example l

delete_op update_op
(Service A) (Service B)
Start End

event
¥ |4 platform:/resource/TesteSambaMM/Example.sambametamodel
¥ < Model Example
v 4 Step 0
<% Atomic Step Operation delete_op
¥ 4 Step 1
& Atomic Step Operation update_op
¥ 4 Service Service_A
4 Operation delete_op
¥ < Service Service_B
4 Operation update_op

Fig. 6. BPMN to STM transformation example.

3) From STM Model to JSON: The STM has a collection
of Steps. This class holds the information required to recon-
struct the SOA business process. It is necessary to convert
the business process information available in the STM to
a simplification of a UML state machine to generate the
Graphwalker JSON input file. We realize a graph where
edges hold the information required to perform test operations:
each edge’s name refers to a service operation used in the
orchestration, with the syntax operation name@service. The
edges, which represent all the operations required to achieve

e_init

v 0 I:

e_ExploreFolksonomy@ext

Y

getFolksonomyContent@picasa v il

get@key_registry
A

| v 2 | | v 4 |

getFolksonomyContent@flickr
shuffle@helpe Y

5]

shuffle@helper
Y

EENpree,
merge@helper

e]

truncate@helper

e_loop

v e_ExploreFolksonomy@ext

v 7 v._8

Fig. 7. Graphical representation of a sample transformation step.

the SOA business process, are generated from the information
available in the class Operation. Vertices are created when
necessary. Vertices link the edges and are required to represent
the original business process properly.

In practice, the transformation begins with the creation of
the first vertex and the first edge of the model. Next, STM
steps are converted to clusters of edges and vertices, depend-
ing on the complexity of the structure defined by the Step
Object. Steps generated from LiteBPEL models are usually
more complex than Steps generated from BPMN models. The
information of each STM AtomicStepOperation defines the
name of the edge, which is used by the SAMBA Framework
to trigger test executions. The STM Step’s nextStep parameters
are used to connect the edges and vertices clusters.

A sample representation of model elements and their re-
lations are graphically presented in for the orches-
tration model ImageScraper from [30] also used in the case
study.

VI. CASE STUDIES WITH BPEL AND BPMN
A. Input Model and Tests Definition

The objective is to understand the relationship between
the STM and the transformation scripts (M2M and M2T)
to answer the research questions. The case study evaluates
the M2M transformations designed to transform i) from or-
chestrations descriptions to the STM, and ii) from STM to a
GraphWalker JSON model, which is the SAMBA Framework
input model. The case study is composed of two groups of
subjects: BPEL orchestrations from the jSeduite SOA [30]] and
BPMN?2 business processes from jJBPM examples [20].

jSeduite is an SOA application that organizes the infor-
mation broadcast inside academic institutions. jSeduite is

composed of different BPEL orchestrations and it consumes
services from thirty-one service providers. Three BPEL or-
chestrations were selected to test the transformation process:
ImageScraper, HyperTimeTable, and FeedReader [30].

ImageScraper relies on six different operations and four
WSs, which invoke additional WSs, including external services
as Flickr and Picasa. HyperTimeTable relies on four different
operations and two services (which invoke additional services
that manage an online calendar). Finally, FeedReader uses two
different operations and two services that, amongst the various
things, invoke external services for feed reading.

Instead, jJBPM enables users to automate business processes.
The jBPM servers are extensible workflow engines written
in Java that execute business processes using the BPMN 2.0
specification. Therefore, it can be used to host both SOA
orchestrations and SOA choreographies since BPMN 2.0 is
capable of describing such compositions [20]. The jBPM
examples selected for the case study are Customers and Hiring
processes, which are available on the jBPM 7.3 release and
are composed respectively of 5 and 2 activities (atomic actions
inside de business process).

The transformation scripts will be tested during the case
study, and the resulting models will be checked for behav-
ioral conformance with their source model. Also, to show
that BPEL and BPMN transformation rules generate equiv-
alent models, the BPEL ImageScraper was re-implemented in
BPMN and was used to check the differences between BPMN
and BPEL transformations.

B. Results

All orchestrations were successfully transformed into STM
models. The models were then loaded in an editor, which is
available in the EMF suite. The model editor has a model val-
idation option, which confirmed that all the models conformed
to the STM.

Next, the model steps, the name and number of services,
the orchestration’s operations, and their execution order were
checked and compared to their source model. The results
indicated that the transformation algorithms managed to gen-
erate STM models according to the original information and
respecting the original operation sequence. Both transforma-
tion algorithms have the same computational complexity O(n).
Both algorithms require computational time equivalent to the
number of operations consumed by the SOA orchestration.

By comparing the transformation results of the Image-
Scraper Orchestration, from both LiteBPEL and BPMN, the
transformation results are different. The number of steps and
their model complexity is different, which can be verified by
the number of lines on the resulting STM models (82 lines
from LiteBPEL, 71 lines from BPMN). Both models represent
the same operation sequence, which generates similar test
cases. However, the difference between the original models
was transferred to the generated STM models.

The JSON files were successfully generated from the M2T
transformations. The transformations respected the original
operation sequence of the original models. The JSON files

TABLE III
OVERVIEW OF CASE STUDY RESULTS

Orchestration Description Ofil;iisalo f cg%\/l N{Zg-el gﬁi
ImageScraper LiteBPEL 314 82 yes yes
HyperTimeTable LiteBPEL 179 65 yes yes
FeedReader LiteBPEL 83 33 yes yes
ImageScraper BPMN 513 71 yes yes
Customers BPMN 516 39 yes yes
HiringProcess BPMN 130 30 yes yes

were used as input for the test case generation on the SAMBA
framework; all of them were used successfully in the test
case generation. presents the overview of the results
obtained in the case study.

All the artifacts generated and the transformations used in
this case study are available in [22f], while the SOA metamodel
is available in a separate git repository [23].

C. Research Answers

We now discuss answers to the research questions from
[Section 111l

What is the typical information necessary to generate
an input model to a standard MBT tool that targets SOA
applications?

Comparing the related works, we identified some of the
differences between MBT tools and model specifications.
According to Utting et al., the model specification is divided
into three dimensions: Scope, Characteristics, and Paradigms
[15]. We decided to focus on the model specification because
the other dimensions of the MBT approaches do not directly
influence the information required from the SUT.

What are the challenges related to the transformation
from different SOA description models to a generic model?

The two notations used in the case study, BPMN and
BPEL, have entirely different approaches to describe business
processes. BPMN describes the sequence of operation by a
simple parameter, which indicates the next FlowNode to be
computed. The BPEL notation defines clusters with Flow and
Sequence Activities, which indicate how the operations should
be executed (parallel or sequence).

The challenges of realizing the transformation code for
each SOA description are specific to each notation. The
transformation complexity varies according to the differences
between model paradigms of the source and target format.
The BPEL notation was designed to describe SOA orchestra-
tions. However, BPMN can describe both orchestrations and
choreographies. In the current implementation of the STM, the
application architectural paradigm is abstracted. It is possible
to perform a similar experiment for SOA choreographies using
the same transformations developed for this case study.

D. Threats to Validity

The first threat is that STM was designed to attend the
subjects’ requirements in the case study, because of that, we
consider only two SOA metamodels (BPEL and BPMN). We
decided to keep this small group of notations to reduce the
number transformations required by the case study.

Many related works perform the case study with SOA appli-
cations described in UML and rely on MBT tools compatible
with the UML notations. The case study on this work only
used one MBT tool, and its not UML compatible. This is the
second threat to the validity of this work since we can not
correctly evaluate the challenges related to the transformation
from the STM to different input models.

VII. RELATED WORKS

There are many works in the literature that present MBT
approaches [32]]. In order to filter papers, we defined search
topics based on the main features of our work. Obligatory
inclusion criteria for the selected papers are: i) exploits MDE
techniques for MBT; ii) relies on a metamodel; iii) performs
automated generation of test cases; iv) exercises the technique
on a case study.

presents the identified works according to the
defined selection criteria. Despite the fact that these topics are
met in various related works, to the best of our knowledge, no
works are exploiting MDE to enable interoperability of model-
based testing (of orchestration), such that incompatibilities
due to different orchestration languages and test models are
overcome, which is the main contribution of this paper.

The work from S. R. Dalal et al. [33]] presented an MBT
approach that uses a data model to generate test cases. The
approach automatically generates tests that comply with the
test requirements. The data model is easy to be updated,
which grants agility on the test case generation in response to
changes. However, the approach requires an oracle and skilled
testers.

Krenn et al. [34] proposed a model-based mutation testing
(MBMT) approach. The system model is based on UML
statecharts, class diagrams, and instance diagrams as input
for the test case generation. The mutants of the modeled
system are generated, then a black-box test case generation
tool, specialized in fault-based test case generation, tries to
kill the mutants.

Pérez et al. [35] introduce an MBT tool that generates
abstract test cases from conceptual models of a system. It uses
the UML class diagram and the state transition diagram to
represents the structure and behavior of the SUT. Main results
showed that the approach required knowledge in the diagram
specification, but it was capable of generating large numbers
of functional tests automatically.

The “Model and Inference Driven Automated testing of
Services architectures (MIDAS) — Testing as a Service” [36]
platform performs MBT on SOA orchestrations. The approach
relies on the MIDAS Domain Specific Language (DSL), a
selection of concepts from UML and the UML Testing Profile
(UTP).

Hernandez et al. [37] present an MBT case generation
technique to validate web applications. The paper relies on the
use of model-driven software development (an MDE branch)
to generate test scripts for testing tools. The work presents a
platform-independent metamodel, based on a UML 2.0 profile,
designed to represents user interfaces of a web application.

TABLE IV
SELECTED RELATED WORKS ACCORDING TO THE INCLUSION CRITERIA.
Approach i] i | i | iv ‘d‘fv‘.le end-to-end
S. R. Dalal et al. [[18] X X X
Krenn et al. [[19] X X X
Pérez et al. [20] X | X X
MIDAS [21] X | x X X X X
Hernandez et al. [22] X | X X
Bentakouk et al. [23] X | x X X X
Meryem et al. [24] X | X X X X X

The metamodel provides abstractions for the visual elements
of HTML pages that are relevant to the test script generation.

Bentakouk et al. [38]] present an automatic testing approach
for BPEL orchestrations. The proposed formal framework
relies on the manual translation of the orchestration specifica-
tions into a formal model, named Symbolic Transition System
(STS). The STS is then used to generate a Symbolic Execution
Tree (SET). The approach was automated by prototypes writ-
ten in Java and Python, serving as proof of concept. A BPEL
orchestration (described in XML) was converted to a UML
Profile (STS), then the UML2CSP tool converted the STS to
communicating sequential process (CSP) model that is used to
generate the SET. Authors advocate that transformation rules
can be defined from other languages with workflow features
(UML, BPMN) and accordingly provide the software architect
with a richer specification environment.

Meryem et al. [39]] proposed an MBT approach within the
Scrum agile process to generate test cases. The approach
implements two cartridges for the AndroMDA framework:
a model-to-model (M2M) and a model-to-text (M2T) trans-
formation. The M2M transformation generates a test model
from a design model. First, a user story is chosen, then
it is transformed into a platform-independent design model,
described by a sequence diagram, and finally into a platform-
independent test model, described in the UML2 Test profile.
The M2T transformation generates test case codes for a tool
called TestNG, which is a Java unit testing framework.

Overall, UML is the most popular language among all the
MBT approaches [40], and it is also the most popular choice
among the related works. Nonetheless, some approaches relied
on other metamodels [33]], [38]. In general, the model can
imply restrictions on the test case generation technology, and
test execution methods. This is the main limitation that we aim
to overcome with our approach, by improving the capacity of
the testing framework to operate seamless with different model
languages or MBT tools.

VIII. CONCLUSIONS

In the context of services orchestration, this paper discusses
the application of Model-Driven Engineering (MDE) princi-
ples as meta-modeling and model transformation to improve
the interoperability of model-based testing (MBT) tool. The
research produced the SOA Testing Metamodel (STM), which
stores the business process behavior and the information
required to generate input models for a MBT framework.

The proposed approach is implemented and evaluated on
a case study where multiple orchestrations are expressed in
the BPEL and BPMN languages, showing how intermediate
artifacts are properly produced and that GraphWalker test cases
are appropriately generated and executed.

Given the positive results achieved in this work, the next
steps will focus on broadening the scope of the STM from
SOA orchestration. First, we plan to adapt STM to include
choreographies and real-time systems. The goal is to enrich the
pool of transformations available, in order to evaluate different
kinds of distributed systems at runtime, like cyber-physical
systems.

With respect to services, the most obvious difference is
that cyber-physical systems include physical interfaces, and
the possible interactions are less structured than in orches-
trations, although proposals for solid and relied-upon cyber
and physical interfaces exist [41]. We believe that a revised
STM and an different MBT framework able to operate with
simulated environments as digital twins [42]], can bring a
relevant contribution to the testing of cyber-physical systems
as well.

REFERENCES

[11 Erl, Thomas. Service-oriented architecture. Vol. 8. New York: Prentice
hall, 2005.

[2] He, Wu, and Li Da Xu. “Integration of distributed enterprise appli-
cations: A survey.” IEEE Transactions on industrial informatics 10.1
(2012): 35-42.

[3] Butzin, Bjorn, Frank Golatowski, and Dirk Timmermann. “Microser-
vices approach for the internet of things.” 2016 IEEE ETFA. 2016.

[4] Varga, Pal, et al. “Making system of systems interoperable-The core
components of the arrowhead framework.” Journal of Network and
Computer Applications 81 (2017): 85-95.

[5] Peltz, Chris. “Web services orchestration and choreography.” IEEE
Computer 36.10 (2003): 46-52.

[6] Bozkurt, Mustafa, Mark Harman, and Youssef Hassoun. “Testing and
verification in service-oriented architecture: a survey.” Software Testing,
Verification and Reliability 23.4 (2013): 261-313.

[7] Marijan, Dusica, and Sagar Sen. “DevOps Enhancement with Continu-
ous Test Optimization.” SEKE. 2018.

[8] Demeyer, Serge, et al. “Evaluating the efficiency of continuous testing
during test-driven development.” 2018 IEEE Workshop on Validation,
Analysis and Evolution of Software Tests (VST). IEEE, 2018.

[9] Walgude, A., and Natarajan, S. “World quality report 2019-20.” Tech-

nical report, Capgemini, Sogeti and HPE, 2020.

Belli, Fevzi, et al. “A holistic approach to model-based testing of Web

service compositions.” Software: Practice and Experience 44.2 (2014):

201-234.

Topgu, Okan, et al. “Distributed Simulation - A Model Driven Engi-

neering Approach”. Springer, 2016.

Leal, Lucas, Andrea Ceccarelli, and Eliane Martins. “The SAMBA

approach for Self-Adaptive Model-BAsed online testing of services

orchestrations.” 2019 IEEE 43rd Annual Computer Software and Ap-

plications Conference (COMPSAC). 2019.

Schmidt, D. C. (2006). “Guest Editor’s Introduction: Model-Driven

Engineering.” IEEE Computer, 39(2), 25.

Da Silva, Alberto Rodrigues. “Model-driven engineering: A survey

supported by the unified conceptual model.” Computer Languages,

Systems & Structures 43 (2015): 139-155.

Utting, Mark, Alexander Pretschner, and Bruno Legeard. “A taxonomy

of model-based testing approaches.” Software testing, verification and

reliability 22.5 (2012): 297-312.

Kephart, J. O., & Chess, D. M. (2003). “The vision of autonomic

computing.” IEEE Computer, (1), 41-50.

Standard, O.A.S.I.S. (2007). “Web services business process execution

language version 2.0.”

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]
[21]
(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

(371

[38]

(391

[40]

[41]

[42]

Karl, Kristian. “Graphwalker.” www.graphwalker.org [accessed: 2020-
09-14] (2003).

Abrahamsson, Pekka, et al. “Agile software development methods:
Review and analysis.” arXiv preprint arXiv:1709.08439 (2017).
Cumberlidge, Matt. “Business process management with JBoss jBPM.”
Packt Publishing Ltd, 2007.

von Rosing, Mark, et al. “Business Process Model and Notation-BPMN.”
(2015): 429-453.

Leal, L. (2020). “SAMBA metamodel for MBT online testing.” https:
//github.com/LucasCLeal/SAMBAMM.git [accessed: 2020-09-02].
Leal, L. (2020). “SAMBA metamodel ATL and Acceleo Transfor-
mations.” https://github.com/LucasCLeal/SambaMM Transformations.git
[accessed: 2020-09-02].

Czarnecki, Krzysztof, and Simon Helsen. “Classification of model trans-
formation approaches.” Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Architecture.
Vol. 45. No. 3. 2003.

Steinberg, Dave, et al. “EMF: eclipse modeling framework.” Pearson
Education, 2008.

Barr, Earl T., et al. “The oracle problem in software testing: A survey.”
IEEE Transactions on Software Engineering 41.5 (2014): 507-525.
Jordan, Diane, et al. “Web services business process execution language
version 2.0.” OASIS standard 11.120 (2007): 5.

Allilaire, Freddy, et al. “ATL-eclipse support for model transformation.”
Proceedings of the Eclipse Technology eXchange workshop (eTX) at
ECOOP 2006, Nantes, France.

Musset, J., Aurelien Pupier Obeo, and Cedric Brun. “Acceleo.” http:
/Iwiki.eclipse.org/Acceleo (2012).

Delerce-Mauris, C., Palacin, L., Martarello, S., Mosser, S., & Blay-
Fornarino, M. (2009). “Plateforme JSEDUITE: une approche SOA de
la diffusion d’informations.” University of Nice, I3S CNRS, Sophia
Antipolis, France.

Abrahamsson, Pekka, et al. “Agile software development methods:
Review and analysis.” arXiv preprint arXiv:1709.08439 (2017).

Li, Wenbin, Franck Le Gall, and Naum Spaseski. “A survey on model-
based testing tools for test case generation.” International Conference
on Tools and Methods for Program Analysis. Springer, Cham, 2017.
Dalal, Siddhartha R., et al. “Model-based testing in practice.” Proceed-
ings of the 21st international conference on Software engineering. 1999.
Krenn, Willibald, et al. “Momut:: UML model-based mutation testing
for UML.” 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2015.

Pérez, Constanza, and Beatriz Marin. “Automatic generation of test cases
from UML models.” CLEI Electron. J. 21.1 (2018).

Herbold, Steffen, et al. “The MIDAS cloud platform for testing SOA
applications.” 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2015.

Hernandez, Yanelis, et al. “A Meta-model to Support Regression Testing
of Web Applications.” SEKE. 2008.

Bentakouk, Lina, Pascal Poizat, and Fatiha Zaidi. “A formal framework
for service orchestration testing based on symbolic transition systems.”
Testing of Software and Communication Systems. Springer, Berlin,
Heidelberg, 2009. 16-32.

Elallaoui, Meryem, Khalid Nafil, and Raja Touahni. “Introducing model-
driven testing in scrum process using U2TP and AndroMDA.” Interna-
tional Review on Computer and Software (IRECOS) 12.1 (2017): 30-39.
Neto, Arilo Dias, et al. “Improving evidence about software technolo-
gies: A look at model-based testing.” IEEE Software 25.3 (2008): 10-13.
Ceccarelli, A., Bondavalli, A., Froemel, B., Hoeftberger, O., and Kopetz,
“Basic concepts on systems of systems.” In Cyber-Physical Systems of
Systems (pp. 1-39). Springer, 2016.

Gabor, Thomas, et al. “A simulation-based architecture for smart cyber-
physical systems.” IEEE International Conference on Autonomic Com-
puting (ICAC). IEEE, 2016.

www.graphwalker.org
https://github.com/LucasCLeal/SAMBAMM.git
https://github.com/LucasCLeal/SAMBAMM.git
https://github.com/LucasCLeal/SambaMMTransformations.git
http://wiki.eclipse.org/Acceleo
http://wiki.eclipse.org/Acceleo

	Introduction
	Fundamentals
	Model-Driven Engineering
	Model-Based Testing
	The SAMBA Framework

	Objective and Approach
	Problem Definition
	Proposed Solution

	A Metamodel for MBT of SOA Orchestrations
	Transformations
	Input metamodels: BPMN & LiteBPEL
	The transformation workflow
	M2M transformations: BPEL2STM and BPMN2STM
	M2T Transformations: STM2Graphwalker

	Details on the Transformation Algorithms
	From LiteBPEL to STM Model
	From BPMN to STM Model
	From STM Model to JSON

	Case Studies with BPEL and BPMN
	Input Model and Tests Definition
	Results
	Research Answers
	Threats to Validity

	Related Works
	Conclusions
	References

