
Journal of Software Engineering Research and Development, 2019, 7:10, doi: 10.5753/jserd.2019.470
 This work is licensed under a Creative Commons Attribution 4.0 International License.

The RoCS Framework to Support the Development of
Autonomous Robots
Leonardo Ramos [Universidade Estadual de Campinas | leo.o.rms@gmail.com]
Gabriel L. Guimarães Divino [Universidade Estadual de Campinas | gabriel.lg.divino@gmail.com]
Guilherme Cano Lopes [Universidade Estadual de Campinas | gui.c.lopes@gmail.com]
Breno Bernard Nicolau de França [Universidade Estadual de Campinas | breno@ic.unicamp.br]
Leonardo Montecchi [Universidade Estadual de Campinas | leonardo@ic.unicamp.br]
Esther Luna Colombini [Universidade Estadual de Campinas | esther@ic.unicamp.br]

AbstractWith the expansion of autonomous robotics and its applications (e.g. medical, competition, military), the
biggest hurdle in developing mobile robots lies in endowing them with the ability to interact with the environ-
ment and to make correct decisions so that their tasks can be executed successfully. However, as the complexity of
robotic systems grows, the need to organize and modularize software for their correct functioning also becomes a
challenge, making the development of software for controlling robots a complex and intricate task. In the robotics
domain, there is a lack of reference software architectures and, although most robot architectures available in the
literature facilitate the creation process with their modularity, existing solutions do not provide development guid-
ance on reusing existing modules. Based on the well-known IBM Autonomic Computing reference architecture
(known as MAPE-K), this work defines a refined architecture following the Robotics perspective. To explore the
capabilities of the proposed refinement, we implemented the RoCS (Robotics and Cognitive Systems) framework
for autonomous robots. We successfully tested the framework under simulated robotics scenarios that mimic typical
robotics tasks and highlight the framework reuse capability. Finally, we understand the proposed framework needs
further experimental evaluation, particularly, assessments on real-world scenarios.

Keywords: Robotics, Software Architecture, Autonomous Computing.

1 Introduction
With the expansion of autonomous robotics and its applica-
tions (e.g. medical, competition, military), the biggest hurdle
in developing mobile robots lies in endowing them with the
ability to interact with the environment and to make correct
decisions so that their tasks can be executed successfully.
Typically operating in the real world — of continuous,

unknown, and often unpredictable nature — it is expected
that robots act through their perception, reasoning, planning,
and the decision-making process to accomplish their goals.
With the expansion of cooperative, distributed, and assistive
robotics and the widespread utilization of bipedal, aerial, and
aquatic robots, other challenges were incorporated, such as
multiple robot coordination, human-robot interaction, and
three-dimensional control and navigation. These new scenar-
ios demand more complex algorithms and the interaction of
various AI (Artificial Intelligence) techniques.
As the complexity of robotic systems grows, the need to

organize and modularize software for their correct function-
ing also becomes a challenge, as information to be processed
becomes distributed in space and time. The most desirable
qualities for robotics software are modularity, portability, ro-
bustness, and reusability for different kinds of robotics appli-
cations.
Several architectures and frameworks oriented to robotic

systems are available in the literature, e.g., see (Simmons and
Mitchell, 1989; Rauch et al., 2012; Jeong and Kim, 2008;
Albus et al., 1989; Makarenko et al., 2007; Choulsoo et al.,
2010; Malek et al., 2010; Kim et al., 2006; Collett and Mac-
donald, 2005; Quigley et al., 2009). Nevertheless, when con-

sidering heterogeneous robot architectures and applications,
it is still an arduous and costly job to reuse existing software,
either in partial or complete form, as most with ad-hoc so-
lutions. Furthermore, it is almost impossible to perform fair
comparisons of specialized algorithms (e.g., navigation, vi-
sion) in a real scenario, when a modular architecture is not
available.
In this work, we define RoCS, a development framework

to support the current state of autonomous robotics, targeting
easier reuse and portability of modules. The framework’s ar-
chitecture instantiates the Autonomic Computing Architec-
ture defined by IBM (2005), known as MAPE-K, under a
robotics perspective.
This paper is a revised, extended version of Ramos et al.

(2019b). The content has been modified in different ways
with respect to the initial version. In particular, we provide
the following additional contributions: i) we expand the anal-
ysis of the state of the art, discussing the limitations of related
work, and justifying our choice of the MAPE-K architecture;
ii) we improve the description of the Knowledge component,
which was only briefly introduced in the conference version.
iii) we clarify the relationship of our proposal to the very pop-
ular ROS (Robotics Operating System) middleware, and iv)
we improve the evaluation by reporting on two new exper-
iments, involving robots with different physical structures
and applications with different tasks.
The rest of the document is organized as follows. Sec-

tion 2 presents the background and relevant concepts from
the robotics domain. Section 3 discusses related work. Sec-
tion 4 presents our instantiation of the MAPE-K reference
architecture. Section 5 presents the actual RoCS Framework

https://orcid.org/0000-0002-8450-7516
mailto:leo.o.rms@gmail.com
https://orcid.org/0000-0002-1077-8655
mailto:gabriel.lg.divino@gmail.com
https://orcid.org/0000-0001-7373-9373
mailto:gui.c.lopes@gmail.com
https://orcid.org/0000-0002-4531-1473
mailto:breno@ic.unicamp.br
https://orcid.org/0000-0002-7603-9695
mailto:leonardo@ic.unicamp.br
https://orcid.org/0000-0003-0467-3133
mailto:@ic.unicamp.br

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

for autonomous robots. Section 6 reports on the evaluation
of the framework, by applying it to three typical robotics sce-
narios. Section 7 discusses the relationship of our framework
with ROS. Finally, Section 8 presents the final remarks and
discusses possible future work.

2 Background

2.1 Service robotics

Robotics has migrated from industrial applications to service
robots, where robots help or replace humans in services IFR
(2018). In this new scenario, robots are usually autonomous
or semi-autonomous, and they have to interact with each
other and with humans in dynamic environments efficiently
and safely.
The increased complexity of these new applications re-

quires developing new robot platforms and coordinating sev-
eral modules to accomplish the target tasks, as well as mea-
suring the degree of success. Moreover, robots are often very
expensive, and their batteries have short autonomy: two fac-
tors that limit the feasibility of extensive physical testing.
Therefore, a high-fidelity simulation is commonly applied,
and approaches supporting a smooth transition from the sim-
ulated environment to the real robot are mandatory.
To foster advancements in service robots, the RoboCup

Federation (RoboCup, 2018) has proposed a set of challenges
for evaluating the success of developments in different do-
mains. From playing soccer to assisting in typical tasks at
home, these autonomous robots need to coordinate a variety
of elements to succeed.
RoboCup competitions standardize the tasks that will be

addressed, how they will be evaluated, and, in a few cases,
which robot platforms are allowed. Still, the job of defining
the software and hardware components of the robots is left
open.
A quick look at different domains (RoboCup, 2018), such

as the playing soccer task, where robots can vary from hu-
manoids and wheeled to those with a standard platform, or
the assistive robots in home tasks, show the variety of so-
lutions that are applied in the software domain to solve the
problems.
Because teams that engage in RoboCup challenges partic-

ipate in various editions, and because the code is necessarily
shared among groups after the competition, solutions from
some teams become widely used, such as the B-Human (B-
Human, 2018) framework. However, the reuse of this frame-
workmostly happens due to the quality of specific algorithms
that it implements for solving certain problems, rather than
the flexibility and organization of the code itself. We aim,
instead, at defining a framework that can guide the user in
structuring and reusing its code.

2.2 Robotic Programming Paradigms

The development of control paradigms for robots in dynamic
environments has been the subject of research in the field
of robotics since the main challenge in the use of robots is

how to operate these complex machines and how to coordi-
nate the various elements involved in the operation. The ap-
proaches proposed in the literature are usually divided into
three paradigms: deliberative (Albus et al., 1989), reactive
(Brooks, 1991; Ranganathan and Koenig, 2003), and hybrid
(Bayouth et al., 1998; Chan and Yow, 2006).

In the deliberative paradigm, the robot uses the available
sensory information and its knowledge of the world to rea-
son about it and create a plan. A search is conducted on pos-
sible scenarios, to find the one that best fulfills the task. This
requires the robot to look ahead and to think about the con-
sequences of each action, which can take a long time. When
enough time is available, this approach allows the robot to act
accordingly. However, it may not be practical if the robot has
to react quickly to environmental changes.
The reactive paradigm tightly couples sensory inputs to ac-

tuation. It allows the robots to react almost instantaneously
to environmental changes and it expects that intelligence
emerges from the collective conjunction of very simple be-
haviors. Typically, the information acquired by sensors is
directly used for actuation and it is not retained as internal
memory. For this reason, the internal representation of the
environment is limited, which prevents long-term planning.
In the hybrid paradigm, which is what most of the current

architectures classify as, there is a combination of the respon-
siveness, robustness, and flexibility of reactive systems with
more traditional deliberative approaches where reasoning is
mandatory. The challenge in this kind of paradigm is solv-
ing conflicts between the two different natures, and defining
a proper organization of components.

3 Related Work
Several works suggest a structured approach to the control
of robots, includingmiddleware (Magyar et al., 2015), frame-
works, and architectures. In this section, we discuss those that
are most closely related to our proposal.
The Robot Operating System (ROS) (Quigley et al., 2009)

is a set of software libraries and tools for robot development,
which provides the functionality typical of an operating sys-
tem for a heterogeneous cluster of robots. ROS has gained
popularity because it abstracts the hardware devices, also
providing a low-level implementation of commonly used
features, message-passing between processes, and package
management. This way, it is compatible with multiple sim-
ulators and robot models (i.e., physical architectures includ-
ing its dimensions, sensors, and actuators). However, it pro-
vides the basic software components of a robot without nec-
essarily prescribing an architecture, and it is limited to Unix-
compatible platforms. Other frameworks that adopt a similar
approach are Player, (Collett and Macdonald, 2005), ORCA
(Makarenko et al., 2007) and OPRos (Choulsoo et al., 2010).
ROS is de-facto one of the most adopted frameworks for
robot development. We provide a deeper discussion of the re-
lationships between ROS and our proposal later in Section 7.
The Task Control Architecture (TCA) (Simmons and

Mitchell, 1989) consists of task-specific modules connected
to a central control module. The task modules perform all
the required processing and communicate with the control

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

module via messages. The control module routes these mes-
sages to their destination and it maintains task control infor-
mation. The architecture defines control constructs to sup-
port both deliberative and reactive behaviors. TCA provides
a set of commonly needed mechanisms, such as task decom-
position, resource management, execution monitoring, and
error/failure recovery. Although the TCA facilitates the mod-
ular and incremental design of complex robot systems, the
centralized control makes this component a single point of
failure, compromising the robot reliability. Additionally, it
turns into a potential performance bottleneck as the robot
complexity and functions scale, not being able to handle all
the incoming messages at the desired rate. Therefore, a more
decentralized architecture is needed.
To dilute the centralization problem, layered architectures

were proposed (Rauch et al., 2012; Jeong and Kim, 2008).
Their main goal is to further modularize and increase flexi-
bility by organizing the system into layers with related func-
tionality. Each layer should address only specific subsystems,
hardware platforms, environment, or the robot’s end goals,
maintaining its contents non-accessible to the other layers,
except through message passing. In this sense, lower layers
provide core services to the higher tiers, while upper layers
perform global analysis and determine the actions to be per-
formed by lower layers. Three to four layers are typically
used, depending on the implementation. In practice, layers
are organized differently, based on the kind of robot and
tasks, which leads to a large variety in architectures and pre-
vents reuse. Also, crosscutting concerns like the robot and
world models may be scattered throughout the layers, ham-
pering their maintenance and evolution.
The 4D/RCS reference architecture provides a theoretical

foundation for engineering software for unmanned vehicle
systems (Albus et al., 1989). The architecture consists of a
multi-layered hierarchy of computational nodes, each hav-
ing the capability of observing the world, self-orientation,
decision-making, and autonomous action. These capabilities
are organized in a decision cycle known as the OODA-loop:
observe, orient, decide and act. It is realized by five elements
for each node:

• Sensory Processing: a set of processes by which sen-
sory data interacts with a priori knowledge to detect or
recognize useful information about the world;

• World Modeling: builds, maintains, and uses a world
model to support behavior generation and sensory pro-
cessing;

• Value Judgment: computes cost, risk, and benefit of
actions and plans, estimates the importance and value of
objects, events, and situations, assesses the reliability of
the information, calculates the rewarding or punishing
effects of perceived states and events;

• Behavior Generation: plans and controls actions de-
signed to achieve behavioral goals;

• Knowledge Database: data structures and the informa-
tion content that collectively form the intelligent sys-
tem’s world model.

The behavior generation module of a node is connected to
those of the adjacent nodes, creating a command tree. Also,

the knowledge database is shared between all the world mod-
eling elements within the same sub-tree and layer. The lower
levels of the hierarchy, responsible for fast planning, gener-
ate goal-seeking reactive behavior. At higher levels, respon-
sible for the long-term plan, nodes enable the goal-defining
deliberative behavior.
Overall, The 4D/RCS architecture focuses on the system-

level conceptual organization of cooperative robots, rather
than the software architecture itself. Besides, although highly
modular and flexible, it suffers from excessive fragmentation.
Thus, its complex hierarchy requires synchronization among
several nodes realizing the OODA-loops that, ideally, should
be implemented as an independent thread or process. Such
a complex hierarchy imposes performance issues due to the
synchronization overhead.
Similarly to our proposal, the authors of (Klös et al., 2015)

also propose an extension of the MAPE-K architecture; the
focus is however different. The work in (Klös et al., 2015)
focuses on self-adaptive systems, like the original MAPE-K
proposal, and proposes extensions to supporting the adapta-
tion of the adaptation algorithm itself. A proof of concept
based on the Communicating Sequential Processes (CSP)
process calculus is provided. In this work, we focus instead
on the domain of autonomous robots (which are not neces-
sarily self -adaptive), and we propose a general framework
to support the development of software for such platforms.
Specific algorithms for (self-)adaptation are out of the scope
of this paper.
The Object Management Group (OMG) is a consortium

that develops standards to promote interoperability, portabil-
ity, and reuse in complex systems. Among others, the OMG
is responsible for maintaining the specification of the well-
known Unified Modeling Language (UML). The OMG has
recently established a “Robotics Domain Task Force”, whose
objective is to develop such kind of standards for the robotics
domain.
Two of the standards released by OMG are closely related

to our proposal. The Robotic Interaction Service Framework
(RoIS) (Object Management Group, 2018) defines a frame-
work for the development of service robotics applications,
focusing on tasks related to the interactions with humans
(e.g., person detection, gesture recognition, etc.). It includes a
platform-independent model, specified with UML diagrams,
and a platform-specific realization specified in C++. The
RoIS proposal aims to standardize the data exchanged be-
tween robot components, for example, the kind and content
of messages. Conversely, our proposal addresses the soft-
ware architecture, and it is not application-specific.

The Hardware Abstraction Layer for Robotic Technology
(HAL4RT) ObjectManagement Group (2016) defines an Ap-
plication Programming Interface (API) for the development
of robotics applications and control software systems. At the
time of writing, HAL4RT is still in version 1.0/Beta (Object
Management Group, 2016). HAL4RT has some similarities
with our work; for example, it also defines an example inter-
face for sensors and actuators, and it provides examples of
recommended flows of execution. However, it does not ad-
dress the analyze and plan aspects, and it does not provide
guidelines for the implementation of deliberative and reac-
tive behaviors. In this perspective, HAL4RT is closer to the

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

Figure 1. Autonomic Manager in the MAPE-K Architecture [adapted from
(IBM, 2005)].

purpose of ROS, i.e., to act as middleware and abstract from
the hardware devices.

4 Framework Architecture

The lack of reference software architectures for autonomous
robots led us to base our work on the more general Auto-
nomic Computing reference architecture, known as MAPE-
K (IBM, 2005), which is summarized in Section 4.1. Then,
Section 4.2 discusses the details of our architecture and the
choices that we made in its definition. Finally, Section 4.3
discusses how the proposed architecture supports the hybrid
robotics paradigm.

4.1 The MAPE-K Reference Architecture

Autonomic, or self-adaptive, systems are intended to contin-
uously adjust its operation in response to changes perceived
in themselves or in the environment, with minimal outside
intervention. To achieve this, in the MAPE-K architecture,
systems are composed of autonomic managers and the asso-
ciated managed resources (Figure 1).
According to the MAPE-K architecture (IBM, 2005), the

autonomic manager should be composed of five basic build-
ing blocks (Figure 1): Monitor, Analyze, Plan, Execute, and
Knowledge. Besides them, the Sensor and Actuator (Effec-
tor) touch-points work as supporting components for sens-
ing (data collection) and acting upon the managed resources,
respectively.
This reference architecture was designed to deal mostly

with IT systems, like business information systems, dis-
tributed services, and web applications. Later, MAPE-K ex-
tensions for adaptive systems such as FORMS (Weyns et al.,
2010) and ActivFORMS (De La Iglesia and Weyns, 2015;
Qasim and Kazmi, 2016) have been proposed. However, al-
though the authors of these works use robotics scenarios,
their proposal advocates an extension that allows the agent to
adapt itself to a changing environment, rather than address-
ing the typical problems of autonomous service robotics pre-
sented in Section 1. Accordingly, there is a gap when apply-
ing MAPE-K concepts to robotic systems.

4.2 Detailed RoCS Architecture

In this section, we present the instantiation from the MAPE-
K reference architecture (Section 4.1) building blocks con-
sidering the robotic perspective.
TheMonitor block (Figure 2c) gathers and interprets raw

data incoming from Sensors. One or more SensorDriver
interact directly with physical sensing devices through the
monitor port. The information and configuration of the re-
quired sensor(s) are obtained from a model (i.e., description)
of the physical robot, which is stored in the knowledge source
and it is accessed through the acessKnowledge port. The ac-
tual reference to the needed implementation of the driver is
also retrieved in the same way. The RawDataInterpreter
translates raw data into final values, e.g., voltage readings
from a temperature sensor into the actual temperature value.
Finally, the MonitorPublisher module is the one responsi-
ble for publishing the interpreted data through the publish
port.
Observed data from Sensors can be of diverse types, struc-

tures, and dynamics. The sensors can be either real or simu-
lated, and their communication protocol and data nature (e.g.
analogical vs. digital) may vary enormously. Regardless of
sensors’ characteristics, a Monitor block must rapidly orga-
nize, interpret, and forward the data for being analyzed.
The Analyze block (Figure 2a) filters, processes, and ag-

gregates the data received from the Monitor block to deter-
mine if a change in the world has happened. It is where com-
plex algorithms like time-series forecasting, queuing models,
and advanced filtering can be executed to analyze the moni-
tored data.
The MonitorSubscriber block receives data from the

subscribe port. The DataProcessor module runs data
processing algorithms to search for alterations with respect
to the known world state; afterward, the DataAggregator
module translates the results to application-level concepts,
possibly fusing the results of multiple data processing algo-
rithms. Both these blocks can access and store information
into the knowledge, through the accessKnowledge port. Fi-
nally, if a relevant change in the world is perceived, the
AnalyzePublisher module notifies this information to the
next block, which can elaborate a response accordingly.
The Plan block (Figure 2b) creates and selects the behav-

iors to be executed, and forwards them to the Execute block.
Specific changes trigger the generation of new behavior. The
realization of this block may range from simple Finite State
Automata to complex Cognitive Systems (software architec-
tures inspired in the human brain that mimics, in some ways,
human intelligence capabilities) fine-tuned for specific tasks.
First, the block receives the changes detected by the

Analyze block, via its subscribe port, which is delegated
to the AnalyzeSubscriber module. The received change
is sent to the Planner module, which is the module that
decides which behaviors the robot should execute based on
the tasks at hand and occurred changes. The definition of
the new plan may also involve accessing the knowledge
(accessKnowledge port), for example, to assess whether a
known plan that has successfully solved the same problem in
the past exists. The new planned behavior is specified as a se-
quence of one or more actions, e.g., head movement or team

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

«Component»
Analyze

 : MonitorSubscriber [1]

 : DataProcessor [1]

 : DataAggregator [1]

 : AnalyzePublisher [1]

 subscribe

 publish

 accessKnowledge

dispatch

aggregationPipe

processingPipeprocessingPipe

aggregationPipe

dispatch

(a)

«Component»
Plan

 : AnalyzeSubscriber [1]

 : Planner [1]

 : ActionDispatcher [1]

 subscribe

 submitAction

 accessKnowledge
activation

inputAction

activation

inputAction

(b)

«Component»
Monitor

 : RawDataInterpreter [1]

 : MonitorPublisher [1]

 : SensorDriver [1..*]

 monitor

 publish

 accessKnowledge

interpretPipe

dispatchdispatch

interpretPipe

(c)

«Component»
Knowledge

 : WorldModel [1]

 : RobotModel [1]

 : StrategyModel [1]

 : ReactiveModel [1]

accessKnowledge

(d)

«Component»
Execute

 : BehaviorPipeline [1]

 : ActionDecomposer [1]

 : AtomicActionExecutor [1]

 : ActuatorDriver [1..*]

 receiveAction

 act

 accessKnowledge

execution

breakplan

decompose

breakplan

decompose

execution

(e)
Figure 2. Representation of the internal structures of the Monitor (c), Analyze (a), Plan (b), Execute (e), and Knowledge (d) components.

communication. These actions are enqueued to a pipeline
maintained in the Execute block (submitAction port).
In the Execute block (Figure 2e) the planned actions are

retrieved from the pipeline actually executed and, if needed,
they are transformed into lower-level actions. In fact, the
execution of a high-level action may require the execution
of multiple, smaller, actions to concretely change the world
state and thus realize the intended behavior.
The actions received from the Plan block are

maintained in the BehaviorPipeline module. The
ActionDecomposer retrieves the next action and, if needed,
decomposes it into a sequence of atomic actions. Then, each
of these actions is executed by the AtomicActionExecutor,
which is in charge of sending the correct message to the
specific actuator drivers. One or more ActuatorDriver
modules then directly communicate with the physical actu-
ators. This is repeated until no atomic actions are left, after
which the next behavior is extracted from the pipeline. This
block is also responsible for any outgoing communication
to other robots, via TCP, UDP, or other protocols. Similarly
to the SensorDriver, the information, and configuration of
the actuator, as well the actual reference to the needed imple-
mentation of the driver, are retrieved from the knowledge,
through the accessKnowledge port.
The Knowledge (Figure 2d) source is a grouping of data

structures designed with the sole purpose of providing access
to the world information to all the building blocks. These
data structures can be registries, dictionaries, databases, or
any other type with designed syntax and semantics. As men-
tioned above, all the other four MAPE components have ac-
cess to it, through the accessKnowledge port. Information
in the Knowledge block is organized into four structures.
The WorldModel represents any data that the robot can

perceive from the world, such as the temperature, a map of
the robot’s surroundings, or the position of other robots. The
RobotModel deals with information about the robot struc-
ture and its internal configuration, such as the parameters of
its actuators, kinematics, and inverse kinematics Mathworks
(2018). The StrategyModel is a mapping of pre-defined
strategies from which the robot can choose for executing its
tasks and behaviors if they exist. For example, the “defender”
or “attacker” roles in case of football competition. Finally,
the ReactiveModel is responsible for storing the rules that
should trigger a reactive action of the Execute block.
In robot swarms or other cooperative scenarios, agents

would share this Knowledge source, or part of it, among
all of them. Each robot would be responsible for sending
any newly acquired world information to the other robots it
knows until all robots share a common database.

4.3 Design for the Hybrid Paradigm

For the architecture to be consistent with robotics practices,
it has to obey one of the Robotics Programming Paradigms
(Section 2.2). We designed our architecture to support the hy-
brid paradigm, as it represents the current state of the art, and
it is the most flexible solution. In the following, we discuss
how our architecture supports both the deliberative and the
reactive routes.
Deliberative Route. To implement a deliberative system,

an agent has to go through the following phases: sensory
input acquisition, task generation and behavior filtering, ac-
tion selection, and action execution De Silva and Ekanayake
(2008). In the proposed architecture, the first step is per-
formed by the Monitor and the Analyze blocks.Meanwhile,
the Plan block is responsible for generating the task plan,

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

filtering the robot’s behavior, and selecting the actions to be
performed. Finally, the Execute block executes them. There-
fore, the full MAPE-K classical cycle (solid arrows in Fig-
ure 1) works as a Deliberative System.
Reactive Route. A reactive robot system tightly couples

perception to action without the use of intervening abstract
representations or history (Arkin, 1998). The selection of the
reaction to the sensory input is done in an inhibitory way, in
which a hierarchy of behaviors is defined and then enacted
by actuators, bypassing the planned actions from deliberative
behaviors.
Such a mechanism can be defined in our architecture, al-

though a different abstraction is needed. There are two ways
of implementing a reactive system within the MAPE-K ar-
chitecture: i) implementing a high-priority reactive layer in
the Plan block or ii) capturing a low-level view of the world
in the Knowledge, based on which a reactive action can be
triggered immediately.
Biologically, a reactive action, like the reflex arc, is pro-

cessed by a neural pathway that can act on an impulsewithout
the assistance of the brain. That is, the response to specific
stimuli does not need conscious thought. From the computa-
tional point of view, the deliberative planning and the reac-
tive behavior will run independently, at different frequencies,
and based on different data.
Therefore, the first abstraction (high-priority module in

the Plan) could not be interpreted as biologically correct, as
the sensory input would reach the Plan block, which can be
thought as the robot’s conscious brain. The second abstrac-
tion, instead, considers the Knowledge Source as that neural
pathway, connecting the receptors (the Monitor block), to
the effectors (the Execute block). The Execute block thus
triggers pre-defined reflexes in case specific changes in the
Knowledge Source occur (dashed arrows in Figure 1).

5 The RoCS Framework
Based on the software architecture described in Section 4,
we designed and implemented the RoCS Framework, a con-
crete framework to guide robot developers in structuring
their code. The framework has been implemented in C++,
which is one of the most popular languages in the robotics
domain, and its source code is available on the GitHub plat-
form (Ramos et al., 2019a). The structure of the framework
is shown in the Class Diagram in Figure 3 and it is described
in the following.

5.1 Framework Structure
The core of the framework consists of one class for each of
the five main blocks of the architecture: Monitor, Analyze,
Plan, Execute, and Knowledge, depicted in Figure 3 with
their respective colors as used in Section 4.
While in general there may exist multiple independent in-

stances of the Monitor and Analyze blocks, this is not the
case for Plan, Execute, and Knowledge. For this reason,
these latter classes apply the Singleton pattern. In fact, it is
reasonable to constrain the user of the framework to have i)
a single consistent knowledge base (Knowledge), ii) a single

place where robot reasoning is performed, to avoid the pro-
duction of conflicting plans (Plan), and iii) a single engine
responsible for executing the planned actions (Execute).
The Monitor, Analyze, and Plan classes communicate

using a publisher-subscriber messaging pattern. As such,
each of them extends the Publisher and/or Observer ab-
stract classes, which realize communication channel. How-
ever, it should be noted that the attach operation, which is
needed to register an observer in the list of recipients of a pub-
lisher, is not present in the Publisher class itself. Instead,
the more specific attach(Analyze) and attach(Plan)
methods are added to the Monitor and Analyze classes, re-
spectively. This choice constrains the user of the framework
to follow the proposed architecture, preventing him from con-
necting blocks in an arbitrary way. Otherwise, with a generic
attach(Observer) it would be possible to make the Plan
observe the Analyze, or even an Analyze to observe itself.
Communication between the Plan and the Execute oc-

curs through a queue, implemented by the Pipeline class.
This queue contains a list of actions that are meant to be ex-
ecuted, as objects of type Action. Because the possible ac-
tions depend on the kind of robot and scenario at hand, the
Action class is abstract and is meant to be extended by users
of the framework. The queue is actually a priority queue, to
allow the reactive behavior to override the decisions taken
by the Plan block (deliberative behavior), by submitting ac-
tions with a higher priority. The priority is assigned to actions
when they are inserted in the queue. Two levels of priority
are supported: high and normal. The action that is selected
for execution is thus the first action with high priority in the
queue or, if no high priority actions exist, the first action with
normal priority. When the reactive action route is active, the
pipeline is cleared and then re-plan. The Execute class owns
the Pipeline, which is also a Singleton.
The Knowledge class maintains a knowledge base that is

shared among all the other blocks. It is composed of four
main parts. The WorldModel class contains a representation
of the world as known to the robot. It is also a Singleton, to
avoid inconsistencies. We just provide an abstract class to be
extended by the user, since this is application-specific. The
StrategyModel class is meant to contain pre-defined strate-
gies, if they exist, to be accessed by the Plan block. Its usage
is optional and it also widely dependent on the target appli-
cation. As such, we provide an abstract class to be extended
by the user.
The RobotModel class contains a description of the phys-

ical structure and status of the robot, in terms of its position

Figure 3. Class Diagram of the RoCS Framework.

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

(coordinates), orientation, as well as the available sensors
and actuators. The information about available sensors and
actuators is maintained by aggregation with objects of type
Sensor or Actuator. These two classes are also abstract.
The Sensor class has a getData(Value) method, which

is used to read the data from the sensor. Sensor is a C++
template class, parameterized with the Value type, in order
to support sensors returning different kinds of data. Imple-
mentation of the getData method is however specific for
each kind of sensor. A Monitor block may monitor the value
of one or more sensors (e.g., a group of sensors of the same
type), as represented by the association between the Monitor
and Sensor classes. In general, the opposite is also true: the
value of a sensor can be used for multiple different purposes
requiring different processing paths.
The ReactiveModel class represents a portion of reactive

behavior, that is, a known deterministic mapping between in-
put observed at sensor and actions to be executed by the robot.
In general, the Knowledgemay contain multiple instances of
ReactiveModel, each one addressing a specific aspect of
the robot’s behavior, e.g., a reactive model to avoid falling,
and another one to avoid obstacles. The ReactiveModel
class accesses sensors via the Knowledge class and, when
specific thresholds are exceeded, it issues actions directly to
the Pipeline.

5.2 Control Flow
In the initialization phase, the setup of the robot configu-
ration is performed. This involves creating instances of the
required blocks, that is, the Knowledge (and consequently
its parts), the Execute, the Plan, and a certain number of
Sensor, Actuator, Analyze, and Plan instances, accord-
ing to the physical structure of the robot and to the target
application.
Then, the required associations are established, which

means: i) associating each Monitor with the Sensors it
will monitor, ii) subscribing each Analyze to the publishing
channel of one or more Monitor, and subscribing the Plan
to the publishing channel of one or more Analyze.
The execution is multi-threaded, that is, there is a thread

running for each instance of the main blocks of the architec-
ture: Monitor, Analyze, Plan, and Execute. All of these
threads may access the Knowledge to read or write informa-
tion from/to the knowledge base, typically the WorldModel
or the RobotModel. A separate thread is also running for
each existing ReactiveBehavior.
A Monitor thread cyclically runs the interpret abstract

method, in which it is supposed to read the sensors to which
it is connected, and to return the value to be published to its
observers. The implementation of this function is, of course,
dependent on the application and should be implemented by
the user. The publishing part is instead handled by the frame-
work, transparently to the user.

An Analyze thread cyclically runs the process abstract
method. In this method, the data values received from the
Monitor instances should be merged and processed to return
high-level information, which is then published towards the
Analyze. Also, in this case, the publishing part is handled
by the framework.

The Plan thread cyclically runs the run abstract method,
which is meant to be implemented by the user of the frame-
work. In this method, the actual planning is performed, based
on data received from the various Analyze instances. The re-
sults of planning are one or more Action objects, which are
enqueued to the Pipeline. An Action can be atomic, when
its behavior is entirely defined in its class, or can be com-
posed of a sequence of other simpler actions (macro-action).
The Execute thread cyclically runs the run method. In

this case, the concrete implementation of this method is pro-
vided by the framework, and Execute is a concrete class.
The behavior is simple: at each iteration, it gets the next
Action in the pipeline and executes it, by calling the act
method. This method is abstract and its implementation de-
pends on the concrete kind of action. A macro-action would
typically call the act operation on its children according to a
specific sequence, possibly complementing it with additional
behavior.
Finally, threads corresponding to ReactiveModel in-

stances also run periodically, executing the run operation. At
each iteration the reactive model reads the value of the sen-
sors of its interest (e.g., a gyroscope to avoid falling) and, in
case specific conditions are met, it issues a new high-priority
Action that is added to the Pipeline. Such conditions are
again application-dependent.

5.3 Extension Points
The user of the framework may extend the provided classes
to implement the behavior of a specific robot. We organize
the extension points of our framework in four categories:
mandatory, deliberative, reactive, and optional.
Mandatory. The user must extend the Sensor and

Actuator abstract classes, implementing concrete classes
based on the specific scenario. It must provide an implemen-
tation of the getData method in Sensor, and a method to
control the Actuator. The user must also extend the Action
abstract class with concrete classes, based on the kinds of ac-
tions that are possible in the considered scenario, and provide
an implementation of the act method for each of them.
Deliberative.These are extension points that must be used

when the robot should implement a deliberative behavior. In
this case, the user must extend the Monitor and Analyze
classes and implement the intepret and process meth-
ods, respectively. The user may create a hierarchy of classes,
in case different data should be monitored or analyzed sep-
arately. To implement deliberative behavior, the user must
also extend the Plan class and implement the run method.
Reactive. These are extension points that must be used

when the robot should implement a reactive behavior. In this
case, the user must extend the ReactiveModel class and im-
plement the run method. The user may create a hierarchy of
classes extending ReactiveModel, in case different kinds
of reactive behaviors should be executing concurrently.
Optional. If needed: i) the RobotModel class can be ex-

tended to contain further properties that reflect the current sta-
tus of the robot; ii) the WorldModel class can be extended to
contain properties that reflect the current status of the world
as known to the robot; and iii) the StrategyModel abstract
class can be extended to contain predefined strategies to be

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

Figure 4. The three robots involved in the experiments, in the V-REP sim-
ulated environment. From left to right: R1) the Pioneer P3DX running a
simple on-board/hard-coded script, R2) the Pioneer P3DX running RoCS,
and R3) the Robotnik robot (running RoCS).

accessed by the Plan. Whether these extensions are needed
or not depends on the application.

6 Evaluation
To assess the flexibility of the framework, and evaluate its
applicability in typical robotics tasks, we conducted three dif-
ferent experiments involving two different robot models, the
Pioneer P3DX and the Robotnik SUMMIT-XL.

6.1 Robot Configurations
Experiments were run in the V-REP (Rohmer et al., 2013)
simulator, which simulates the interaction with the real world
(i.e., sensors and actuators). The actual robot code was im-
plemented using the RoCS Framework. Along with the two
robots running RoCS, which are the targets of the experi-
ments, the scenarios include a third robot that is used as a
distractor, to add more complexity to the system dynamics.
The three robots that are used in the experiments are depicted
in Figure 4, and their architectures used in the simulations are
briefly introduced in the following.

Pioneer P3DX. The robot uses 16 range sensors (sonars),
distributed around the robot circumference (yellow dots in
the figure). For simplicity, we add 1 position and 1 orien-
tation simulated sensors, which are aware of the real posi-
tion (x, y, z) and orientation (θ) of the robot. These special
kinds of sensors are provided by the simulator; in a real de-
ployment, they would be replaced by a localization algorithm
running in the Analyze. As actuators, the robot uses two ro-
tation motors that are responsible for driving the differential
robot across the scene.

Robotnik. The robot uses three frontal range sensors, one
position, and one orientation sensor, one robot sensor (to see
other robots). The Robotnik is also a wheeled robot and it
is moved by rotation motors. Differently from the Pioneer
P3DX however, it uses four motors.

6.2 Experiments Planning
The objective of the experiments is to evaluate the flexibil-
ity of the framework according to a different perspective, in
particular, we want to answer the following questions:

Q1. Is the framework able to support the hybrid approach
(i.e., deliberative and reactive)?

Q2. What is the effort needed to reuse existing code writ-
ten in RoCS for a different robot model (i.e., different
physical architecture)?

Q3. What is the effort needed to reuse existing code written
in RoCS for a different application (i.e., different tasks)?

To evaluate the capability of the framework of supporting
a hybrid approach (Q1), we defined tasks where both the de-
liberative and reactive routes get activated. For instance, if
the robot task is to “reach a specific position in the environ-
ment while avoiding collisions”, the robot will have to com-
mute between the two routes to successfully accomplish the
task.
In fact, in the planned scenario the robot is not aware of

the existence of obstacles while it computes its plan to reach
the goal (deliberative route). Therefore, actions to avoid ob-
stacles will not be included in the plan, and they will be ex-
ecuted in a reactive fashion. Similarly, when there are other
moving robots in the scene, the robot cannot anticipate their
behavior.
To evaluate the effort needed to reuse the code for different

robot models (Q2) we run the same experiment first using the
Pioneer P3DX, and then using the Robotnik. This involves
adapting the code to different numbers and kinds of sensors
and actuators.
To evaluate the effort needed to reuse the code for differ-

ent applications (Q3) we run experiments where the robots
have different objectives. This involves adapting the code to
different analysis and planning algorithms, as well as to dif-
ferent actions.
We thus planned three experiments, each one targeting one

of the above questions. The configuration of such experi-
ments is reported in the following, and it is summarized in
Table 1.

• EXP1: Robot R2 (Pioneer P3DX) is running the RoCS
Framework, with the objective to reach a specific posi-
tion and avoid collisions. At the same time, R1 (Pioneer
P3DX) acts as a disturbing element, running a simple
script that implements random movement. This experi-
ment aims to answer Q1.

• EXP2: Robot R3 (Robotnik) is running the RoCS
Framework, with the goal to reach a specific position
while avoiding collisions. R1 acts as a disturbing ele-
ment like in EXP1. The process of implementing EXP2
by trying to reuse code from EXP1 aims to answer Q2.

• EXP3: Robot R2 (Pioneer P3DX) is running the RoCS
Framework, with the objective to reach a specific posi-
tion and avoid collisions. Robot R3 (Robotnik) is run-
ning the RoCS Framework, with the goal to follow R2
and avoid collisions. As in the other experiments, R1
is acting as a disturbing element. The process of imple-
menting EXP3 by trying to reuse code from EXP1 and
EXP2 aims to answer Q3.

The execution of the experiments and their results are dis-
cussed in the following sections. Only EXP1 was already
present in the conference version of the paper (Ramos et al.,
2019b).

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

Table 1. Summary of the configurations of the three experiments.

Robot R1 R2 R3

Hardware Pioneer P3DX Pioneer P3DX Robotnik SUMMIT-XL

Software Code Behavior Code Behavior Code Behavior

EXP1 Script Random RoCS Go to position —Avoid collisions

EXP2 Script Random — RoCS Go to position
Avoid collisions

EXP3 Script Random RoCS Go to position RoCS Follow R2
Avoid collisions Avoid collisions

Table 2. Actions included in the experiment and their decomposi-
tion.

Action Decomposition

SetWheelSpeed atomic
TurnAngle atomic

AvoidCollision TurnAngle; SetWheeelSpeed
GoToOrigin TurnToPosition; SetWheeelSpeed
TurnToOrigin TurnAngle

6.3 EXP1
R2 (Pioneer P3DX) is running the RoCS Frame-
work, with the objective to reach a specific position
and avoid collisions. At the same time, R1 (Pioneer
P3DX) acts as a disturbing element, running a sim-
ple script that implements random movement.

To implement the behavior of R2, we consider two atomic
actions and three macro-actions (see Table 2).
Figure 5a presents the simulated environment. In this

scene, the robot starts at the top of the environment, close to
the walls and to the box, and it should reach the origin of the
system, defined as a point with coordinates (0, 0). Figure 5b
depicts the resulting trajectory performed by the robot and
themacro-actions enqueued in the Pipeline. Each small dot
represents an action, while the squares indicate a change in
the executing paradigm (deliberative or reactive). Since the
pipeline is cleared once the reactive action route is active,
the robot has to re-plan based on the information on its new
position.
To accomplish the task described in Section 6, several

extension points (see Section 5.3) were implemented. The
classes constituting the implementation of the experiment are
depicted the diagram of Figure 6, and described in the follow-
ing.
Each sensor in the Pioneer P3DX robot model was

implemented through the extension of either Sensor
or one of its heirs, like Range. The same applies to
WheelVREP, which implements the motion of robot wheels
and it is the concrete implementation of an Actuator
in our scenario. Three Monitors were created, one for
watching each type of Sensor, and three corresponding
Analyzers: PassOrientation, PassPosition and
PassRange. The GoToOriginPlanner is responsible
for defining which actions should be sent to the queue,
whereas AvoidObstacle, GoToOrigin, SetWheelSpeed,
TurnAngle and TurnToOrigin represent the actual

actions that will be performed and transformed into
actuators commands. Finally, AvoidObstacleModel
and PioneerP3DXModel are the extensions of the
ReactiveModel and of the RobotModel, respectively.
It is important to remember that one of the requirements of

the framework is to facilitate the transfer from the simulated
robot to the real one. In this case, we would only have to
change the concrete Sensor and Actuator classes, which
facilitates enormously such a task.

6.4 EXP2
R3 (Robotnik) is running the RoCS Framework,
with the goal to reach a specific position while
avoiding collisions. At the same time, R1 (Pioneer
P3DX) acts as a disturbing element, running a sim-
ple script that implements random movement.

In the second experiment, we aim at showing the effort re-
quired when changing the robot model without changing the
application task. For this purpose, we replaced the RoCS Pi-
oneer P3DX robot of EXP1 (R2) with the Robotnik robot
(R3). As discussed earlier, the two robots differ mainly in
the number and kind of adopted sensors and actuators.
The goal of the robot is the same, so no modifications

are required to the planning algorithms. Few elements of the
implementation required additions or modifications, as de-
scribed in the following.
Because the robot contains an additional kind of sensor (a

special sensor to detect another robot), a new class that ex-
tends Sensor was required. The other Sensors were just in-
stantiated with different values for their properties, but it was
not needed to implement a new class. The same happened for
the Actuator classes, that is, the same classes used in EXP1
were instantiated with different parameters. An additional
Monitor was incorporated to deal with the new Sensor, as
well as a corresponding Analyzer, which is implemented by
the class P3dxPositonAnalyze.
The class GoToOriginPlanner (specialization

of Planner), and the actions AvoidObstacle and
GoToOrigin have been reused as they are, because they
employ lower level actions such as SetWheelSpeed,
TurnAngle and TurnToOrigin that represent the actual
actions that will be transformed into actuators commands.
These lower level actions were modified, because the
commands to drive a 4-wheeled robot are differenet from
those to drive the 2-wheeled robot used in EXP1.

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

(a) (b)
Figure 5. Simulated environment for EXP1 (a) with the two robots R1 and R2 deployed. The robot at the bottom is R1, the disturbing element that is not
running the framework. The plot (b) depicts the resulting trajectory and the corresponding active paradigm for the robot that implements the framework. The
black dots represent the trajectory for the R1 (disturbing robot). The red/blue trajectory is the R2 trajectory. A video with the resulting simulation can be
found at https://youtu.be/fbZCgmZIjqg.

Range

RangeVREP

RangeVREPMonitor PositionVREPMonitor OrientationVREPMonitor

Sensor

+getData(Value)

OrientationVREPSensorPositionVREPSensor

PassOrientation
PassPositionPassRange

GoToOriginPlanner

Action

+act()

AvoidObstacleGoToOrigin TurnToOriginTurnAngle

WheelWheelVREP Actuator

PionerP3DXModel RobotModel

Monitor

+interpret()
+attatch(Analyze)

«Singleton»
Execute

+run()«Singleton»
Plan

+run()

Analyze

+process()
+attatch(Plan)

AvoidObstacleModel

ReactiveModel

+run()

SetWheelSpeed

Pipeline

«Singleton»
Knowledge

PioneerKnowledge

Figure 6. Implementation using the RoCS framework for the Pioneer P3DX. Associations that can be inferred from Figure 3 have been omitted for simplicity.

Finally, AvoidObstacleModel and RobotnikModel
are the extensions of the ReactiveModel and of the
RobotModel, respectively. These models were adapted to
support the new configuration of the robot model.
Figure 7 depicts the scene for running EXP2 with the two

robots R1 and R3 deployed. The robot at the bottom is R1,
the disturbing element that is not running the framework. The
plot (b) depicts the resulting trajectory and the corresponding
active paradigm for the robot that implements the framework.
The red/blue trajectory is the R3 trajectory. It is important
to mention that once the R3 robot reaches its goal position
(around x(1.2) and y(1.2)), it tries to remain there, only react-
ing when the disturbing robot R1 gets too close.

6.5 EXP3
R2 (Pioneer P3DX) is running the RoCS Frame-
work, with the objective to reach a specific position
and avoid collisions. Robot R3 (Robotnik) is run-
ning the RoCS Framework, with the goal to follow

R2 and avoid collisions. At the same time, R1 (Pio-
neer P3DX) acts as a disturbing element, running
a simple script that implements random movement.

The third experiment aims at showing the impact of chang-
ing the robot task (possibly while maintaining its physical
model), when using RoCS. In this last experiment, R2 main-
tains the same objective as in EXP1, while R3 (Robotnik)
is assigned a different task with respect to the previous ex-
periment. In this experiment it should follow the RoCS Pi-
oneer P3DX robot (R2), maintaining a safe distance, and at
the same time avoiding obstacles.
Compared to EXP2, the only change required in

the Robotnik robot implementation was related to the
GoToOriginPlanner. Now, instead of directing the robot to
a fixed position, it uses the P3dxPositonAnalyze analyzer
to compute how far and how misaligned it is from the robot
that it should follow. Everything else in the implementation
deployed on R3 remains the same as in EXP2, although the
behavior of the robot has changed drastically.

https://youtu.be/fbZCgmZIjqg

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

(a) (b)
Figure 7. Simulated environment for EXP2 (a) with the two robots R1 and R3 deployed. The robot at the bottom is R1, the disturbing element that is not
running the framework. The plot (b) depicts the resulting trajectory and the corresponding active paradigm for the robot that implements the framework. The
red/blue trajectory is the R3 trajectory. A video with the resulting simulation can be found at https://youtu.be/2tkBhFGNOJo.

Figure 8 and Figure 9 depict the scene where the ex-
periment was evaluated, and the trajectory followed by the
robots, respectively.
Figure 9a presents the trajectories (x, y) performed by R3

(Robotnik) and R2 (Pioneer P3DX) with the RoCS imple-
mentation. The goal of R2 is to go to a specific plane coor-
dinate in the scene while avoiding collisions. We have spec-
ified the four corners of the scene as targets, and the goal
changes once the robot reaches a target, requiring it to re-plan.
In EXP1 and EXP2, only one point in the scene was defined
as the goal. R3, on the other hand, has the objective to follow
R2, at a safe distance. However, as the figure shows, some-
times it has to change its course to avoid colliding with either
wall, the disturbing element R1, and the R2 itself (e.g., when
the latter stops to change direction). Such reactions to unex-
pected obstacles are handled by the reactive route. Figure 9b
and Figure 9c plot the trajectories of the two robots along the
x and y axis, respectively, with respect to time. From the plot,
it can be observed that the Robotnik (R3) is actually follow-
ing R2 during the whole experiment.
Finally, Figure 9d and Figure 9e show which behavior is

activated in R2 and R3, respectively. As in the correspond-
ing figure of EXP1 and EXP2, red points indicate that the de-
liberative behavior is active, while blue points indicate that
the reactive route is active, with squares indicating a change
of behavior. It is possible to notice that in this experiment,
as the scene is more complex than the previous experiments,
the robot changes behavior much more frequently.

6.6 Summary
The experiments conducted demonstrated that by using the
RoCS framework it was possible to, with minimum adapta-
tion: a) change from a robot architecture to another one with-
out changing the purpose of the robot (task to be performed)
and, b) change the goal of the robot while maintaining its
physical architecture. We also demonstrated the application
of the RoCS framework in increasingly complex scenarios.

Figure 8. V-REP scene for EXP3, showing the three deployed robots: R1
(red robot), R2 (red/black robot), and R3 (four-wheeled robot). A video
with a simulation of this experiment can be found at https://youtu.be/
qIeYfc5b1Yk.

7 Relationship with ROS

Since 2007, the numerous contributions to ROS led to a vast
set of libraries and tools that can be very helpful when de-
veloping robot applications. However, this middleware is
mostly focused on defining a message interface and con-
ventions that abstract from the hardware details. ROS also
contains several task-specific modules (ROS packages), pro-
vided by its contributors. RoCS, on the other hand, extends
theMAPE-K reference architecture to the context of robotics.
Therefore, RoCS can be used to appropriately structure an au-
tonomous robots system, while ROS offers a set of modules
(mostly drivers) that can also be exploited.

ROS provides an abstraction layer, conventions and sev-
eral modules that can easily be integrated into autonomous
robotics systems. However, it does not provide a general
pipeline for complex robotic systems. On the other hand,
RoCS focuses on structuring the software architecture and
can thus supply to this limitation, while being compatible
with ROS modules.

To better understand how the integration of ROS and
RoCS can be performed, some of the main ROS concepts
are detailed below.

https://youtu.be/2tkBhFGNOJo
https://youtu.be/qIeYfc5b1Yk
https://youtu.be/qIeYfc5b1Yk

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

(a) (x, y) trajectories performed by R2 (Pioneer P3DX) and R3 (Robotnik).

(b) R2 and R3 – x trajectories. (c) R2 and R3 – y trajectories.

(d) R2 – Activation of deliberative and
reactive routes.

(e) R3 – Activation of deliberative and
reactive routes.

Figure 9. EXP3 Results. a) Trajectories (x,y) performed by P3DX with RoCS and Robotnik. (b) X-trajectory performed by both robots. (c) Y-trajectory
performed by both robots. (d) P3DX with RoCS behavior execution showing deliberative and reactive routes and behavior switch (squares indicate a change
of behavior) (e) Robotnik with RoCS behavior execution showing deliberative and reactive routes and behavior switch (squares indicate a change of behavior).

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

Sensor

+getData(Value)

Monitor

+interpret()
+attatch(Analyze)

ReactiveModel

+run()
RobotModel

-Position
-Orientation

Analyze

+process()
+attatch(Plan)

«Singleton»
Plan

+run()

«Singleton»
Execute

+run()

Observer

+getValue(Value)
+update(Value)

Publisher

+attach(Observer)
+publish(Value)

«Singleton»
Pipeline

+push(Action)
+next(): Action

Action

+run()

1..*

*

1..*

«Singleton»
Knowledge

1..*

StrategyModel
«Singleton»
WorldModel

*

SensorNode

-rosSensorMsg: Value

-rosCallback(Msg)

ActuatorNode

-rosPublisher()
Actuator

Figure 10. Class Diagram of the RoCS Framework integrated with a ROS
environment. The nodes instantiate SensorNode and ActuatorNode ob-
jects, allowing RoCS to receive data from subscribed topics and to publish
messages, respectively.

Package. ROS packages are sets of related files, which may
include the execution files (nodes or components), and
other elements of a program. The organization in pack-
age aims to organize related programs into one location.

Message. This is how the middleware performs the commu-
nication of different types of data between nodes. Mes-
sages are defined by means of files having a .msg exten-
sion, which consists of simple data structures. A mes-
sage may contain exclusively a particular primitive type
such as an integer or a floating-point, but it can also be
defined as a set of primitive types.

Topic. Messages are organized into topics having a name.
Therefore, communication happens in a publisher-
subscriber fashion: nodes that transmit information
must post messages on a given topic, while a node that
needs to receive such information should subscribe to
the topic in question.

The RoCS Framework can be extended to work on top
of the ROS middleware. This is accomplished by accepting
ROS messages as inputs and outputs to the autonomous sys-
tem. In a certain sense, we consider the ROS middleware as
part of the world in which the robot must sense and actuate.
This solution is depicted in Figure 10 through the addition of
the SensorNode and ActuatorNode classes, which extend
the Sensor and Actuator classes of the RoCS Framework.

In practice, the SensorNode class instantiates a general
ROS::Subscriber class, i.e., an object of type SensorNode
starts a callback operation. In this context, a callback corre-
sponds to a function that “listens” to a ROS topic and that
executes whenever a ROS message is published through it.
The received message is accessed inside the callback, which
simply updates a class attribute (rosSensorMsg in Figure 10).
Therefore, any ROS message can be accessed through the
getData operation.
To send commands to actuators through ROS, it is neces-

sary to instantiate a slightly different implementation of the
Actuator class, defined as ActuatorNode. This class uses
a ROS::Publisher object to send messages to any ROS
node subscribing to a specific topic where this message is
published.
In this way, any external information (i.e., message) that

comes from ROS can be treated as sensory information from
the RoCS perspective, while commands to actuators that are
driven by ROS can be set by publishing data to their respec-
tive topics.

8 Final Remarks
We presented an instantiation of the MAPE-K reference
architecture towards the Robotics perspective, in particu-
lar, focusing on service robot applications with heteroge-
neous physical platforms. Based on this, we developed
the RoCS Framework to support the development of au-
tonomous robots following a precise architecture.
We believe that this approach can assist students or

novices in robot development, and help experienced develop-
ers focus on their specific problems like machine learning al-
gorithms for computer vision, sensor fusion techniques, and
locomotion for robots using particular physical devices (e.g.,
wheels, legs, propulsion). Actually, various students are us-
ing RoCS for different problems in our laboratory, including
some without prior knowledge of the proposed framework.
Initially Ramos et al. (2019b), the RoCS Framework was

evaluated in a simple but usual scenario for service robots
as proof of concept. In this work, we performed two ad-
ditional experiments exploring the reuse capability of the
framework by changing robot models and their application
tasks. For future work, we envision the development of phys-
ical robots using the RoCS Framework for competitions such
as the RoboCup Humanoid Soccer Teen Size League and the
RoboCup Flying Robots Competition. A deeper experimen-
tal evaluation of the benefits of using the framework is also
part of our future work.

9 Declarations

9.1 Availability of data and material

The RoCS Framework implementation and all the configura-
tion to run the experiments are available in the GitHub repos-
itory at https://github.com/larocs/RoCS.

9.2 Competing interests

The authors declare that they have no competing interests.

9.3 Funding

This research was partially supported by FAEPEX (Fundo de
Apoio ao Ensino, à Pesquisa e à Extensão) of the UNICAMP
and PIBIC/CNPq.

9.4 Authors’ contributions

LR developed the source code of the RoCS framework and
the instances for the experiments. GLGD instantiated the
MAPE-K architecture and designed the first version of the
RoCS framework. BBNF and LM reviewed the design of the

https://github.com/larocs/RoCS

The RoCS Framework to Support the Development of Autonomous Robots Ramos et al. 2019

RoCS architecture and implementation, improved the com-
parison with related works, as well as defined the experi-
ments. ELC provided the conceptual basis on Robotics Sys-
tems, defined the requirements for the RoCS framework, and
supported the analysis of the results. GCL analyzed the RoCS
framework and its instantiation to compare it with the ROS
middleware.

9.5 Acknowledgements
The authors would like to thank the CIbSE 2019 reviewers
for their positive contributions to the improvement of this
work.

References
Albus, J. S., Lumia, R., Fialaa, J., and Wavering, A. (1989).
NASREM: The NASA/NBS Standard Reference Model
for Telerobot Control System Architecture. In Proceed-
ings of 20th Int. Symposium on Industrial Robots, pages
1412–1419.

Arkin, R. C. (1998). Behavior-Based Robotics. MIT Press.
B-Human (2018). B-human team homepage.
Bayouth, M., Nourbakhsh, I. R., and Thorpe, C. E. (1998).
A hybrid human-computer autonomous vehicle architec-
ture. In Third ECPD International Conference on Ad-
vanced Robotics, Intelligent Automation and Control.

Brooks, R. (1991). Intelligence without representation. Arti-
ficial Intelligence, 47:139–159.

Chan, Y. J. and Yow, K. C. (2006). A strategy-driven frame-
work for multi-robot cooperation system. In Control, Au-
tomation, Robotics and Vision, 2006. ICARCV’06. 9th In-
ternational Conference on, pages 1–6. IEEE.

Choulsoo, J. et al. (2010). OPRoS: A New Component-
Based Robot Software Platform. ETRI Journal,
32(5):646–656.

Collett, T. H. J. and Macdonald, B. A. (2005). Player 2.0:
Toward a practical robot programming framework. In in
Proc. of the Australasian Conference on Robotics and Au-
tomation (ACRA).

De La Iglesia, D. G. and Weyns, D. (2015). MAPE-K For-
mal Templates to Rigorously Design Behaviors for Self-
Adaptive Systems. ACM Transactions on Autonomous
and Adaptive Systems, 10(3):15:1–15:31.

De Silva, L. and Ekanayake, H. (2008). Behavior-based
robotics and the reactive paradigm a survey. In 2008 11th
International Conference on Computer and Information
Technology, pages 36–43.

IBM (2005). An architectural blueprint for autonomic com-
puting. Technical report, IBM.

IFR (2018). International federation of robotics.
Jeong, I. B. and Kim, J. H. (2008). Multi-layered architecture
of middleware for ubiquitous robot. In Systems, Man and
Cybernetics 2008, pages 3479–3484.

Kim, D. et al. (2006). SHAGE: A Framework for
Self-managed Robot Software. In Proceedings of the
2006 International Workshop on Self-adaptation and Self-
managing Systems (SEAMS’06), pages 79–85.

Klös, V., Göthel, T., and Glesner, S. (2015). Adaptive knowl-
edge bases in self-adaptive system design. In 41st Euromi-
cro Conference on Software Engineering and Advanced
Applications (SEAA 2015), pages 472–478, Funchal, Por-
tugal.

Magyar, G., Sinčák, P., and Krizsán, Z. (2015). Compari-
son study of robotic middleware for robotic applications.
In Emergent Trends in Robotics and Intelligent Systems,
pages 121–128. Springer.

Makarenko, A., Brooks, A., and Kaupp, T. (2007). On the
benefits of making robotic software frameworks thin. In
IROS Proceedings.

Malek, S. et al. (2010). An Architecture-driven Software
Mobility Framework. Journal of Systems and Software,
83(6):972–989.

Mathworks (2018). What is inverse kinematics.
Object Management Group (2016). Hardware Abstraction
Layer for Robotic Technology (HAL4RT). Version 1.0 –
Beta 1, dtc/2016-01-01.

Object Management Group (2018). Robotic Interaction Ser-
vice Framework (RoIS). Version 1.2, formal/2018-05-04.

Qasim, A. and Kazmi, S. A. R. (2016). MAPE-K Interfaces
for Formal Modeling of Real-Time Self-Adaptive Multi-
Agent Systems. IEEE Access, 4:4946–4958.

Quigley, M. et al. (2009). ROS: an open-source Robot Op-
erating System. In ICRA Workshop on Open Source Soft-
ware.

Ramos, L., Divino, G., de França, B. B. N., Montecchi, L.,
and Colombini, E. (2019a). RoCS GitHub Repository.
https://github.com/larocs/RoCS.

Ramos, L., Divino, G., de França, B. B. N., Montecchi, L.,
and Colombini, E. (2019b). The RoCS Framework to
Support the Development of Autonomous Robots. In
XXII Ibero-American Conference on Software Engineer-
ing (CIBSE 2019), La Habana, Cuba.

Ranganathan, A. and Koenig, S. (2003). A reactive robot ar-
chitecture with planning on demand. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003), pages 1462–1468.

Rauch, C. et al. (2012). A concept of a reliable three-layer be-
haviour control system for cooperative autonomous robots.
In 35th German Conference on Artificial Intelligence,
pages 24–27, Germany.

RoboCup (2018). The robocup federation.
Rohmer, E., Singh, S. P. N., and Freese, M. (2013). V-REP:
a Versatile and Scalable Robot Simulation Framework. In
IROS Proceedings.

Simmons, R. andMitchell, T. (1989). A task control architec-
ture for autonomous robots. In Proc. Third Annual Work-
shop on Space Oper. Auto. and Robotics.

Weyns, D., Malek, S., and Andersson, J. (2010). FORMS: A
Formal Reference Model for Self-adaptation. In Proceed-
ings of the 7th International Conference on Autonomic
Computing (ICAC’10), pages 205–214. ACM.

https://github.com/larocs/RoCS

	Introduction
	Background
	Service robotics
	Robotic Programming Paradigms

	Related Work
	Framework Architecture
	The MAPE-K Reference Architecture
	Detailed RoCS Architecture
	Design for the Hybrid Paradigm

	The RoCS Framework
	Framework Structure
	Control Flow
	Extension Points

	Evaluation
	Robot Configurations
	Experiments Planning
	EXP1
	EXP2
	EXP3
	Summary

	Relationship with ROS
	Final Remarks
	Declarations
	Availability of data and material
	Competing interests
	Funding
	Authors' contributions
	Acknowledgements

