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Abstract—CHESS is an open source methodology and 

toolset for the development of safety-critical systems. More 

specifically, CHESS is a model-based methodology, which 

supports the design, dependability analysis, and code 

generation for critical systems. Despite its rather mature 

level in terms of technology readiness, systematic guidance 

needs to be developed to promote its usage for certification 

purposes. In this paper, we present a systematic process to 

guide designers and analysts in the usage of the CHESS 

toolset for model-based dependability analysis of safety-

critical systems in compliance with ISO 26262 Parts 3 and 
4, SAE ARP 4754A safety process, and DO-331 model-

based development principles. We also have applied our 

process to a real world automotive hybrid braking system. 

The proposed process can be used to guide analysts in 

using CHESS methodology to support both system design 

and dependability analysis. Finally, we draw our 

conclusion and sketch future work. 

Keywords—Dependability analysis, model-based development, 

process, certification, CHESS, safety standards. 

I.  INTRODUCTION 

Model-based development (MBD) has been contributing 
to raising the level of abstraction in software specification and 
to increasing automation in software development. Industry 
and safety certification standards from different domains, e.g., 
DO-178C and its MBD supplement DO-331 [23], and SAE 
ARP 4754A [11] for avionics, and ISO 26262 [15] for 
automotive, have recognized the maturity of model-based 
techniques, which are being increasingly adopted by the 
industry to provide semi-automated support for both system 
design and dependability analysis. 

Qualitative and quantitative compositional model-based 
techniques for system design and dependability analysis exist 
in the literature [1][4][7][27]. However, safety-critical systems 
require the integrated application of different techniques, and 
an incremental modeling approach that can follow the 
evolution of the system. CHESS is an open source, integrated 
and multifaceted model-based methodology and toolset for the 
development of safety critical systems, which supports system 
design, dependability analysis, and code generation [16]. The 
CHESS methodology supports system architects to interpret 
human, organizational, and technological entities in terms of 
components, and modeling their behavior with respect to 
safety/dependability, i.e., erroneous and fault-tolerance 
behaviors [17]. CHESS supports the interplay among different 

dependability analysis techniques, namely failure propagation 
logic, and state-based stochastic analysis. 

Despite its rather mature level in terms of technology 
readiness, its usage in real-life systems has been limited to 
industrial partners of the CHESS [2] and CONCERTO [3] 
projects. Systematic guidance to support the proper usage of 
the framework for certification purposes is missing. Actually, 
an aspect that was highlighted by CHESS project evaluation, 
by submitting questionnaire to experts [8], was a moderate 
belief that the provided analysis techniques could support 
engineers in the safety certification process. This is due to the 
lack of guidance for external users adopting the CHESS 
methodology for producing certification evidence in 
compliance with existing safety standards.  

State of the practice in the assessment of critical systems 
adopting model-based techniques comprises proposals of 
MBD toolsets [6][10] to address system design, automatic 
code and documentation generation, verification and 
validation, and model/requirements traceability  in compliance 
with the aforementioned standards. However, such MBD 
toolsets do not provide support for integrated system design 
and dependability analysis, not addressing ISO 26262 Part 3 – 
Concept Phase and Part 4 – Product development at the 

system level, and SAE ARP 4754A development and safety 
processes, which is required to produce certification evidence. 
We propose to fill this gap by augmenting the CHESS 
methodology with a systematic process that supports users at 
producing safety-related certifiable evidence in compliance 
with standards, thus, bridging the gap between standards, 
industrial practices, and academia, guiding analysts in the 
properly usage of the CHESS to generate certifiable evidence.  

The main contributions of this paper are: i) a systematic 
process to guide analysts in using CHESS model-based 
methodology in dependability analysis of safety-critical 
systems to obtain certifiable evidence in compliance with ISO 
26262, SAE ARP 4754A, and DO-331 MBD principles, ii) the 
application of the process in a real world automotive hybrid 
braking system case study, and iii) contextualization of the 
proposed process with respect to the ISO 26262 safety 
certification processes.  

The rest of this paper is organized as follows. Section II 
presents an overview of the CHESS framework. Section III 
presents the proposed systematic process. Section IV presents 
a case study illustrating the application of the proposed 
process in an automotive Hybrid Braking System (HBS), 
while in Section V we discuss the mapping with the 
ISO 26262 standard. Section VI discusses the related work. 
Finally, conclusions are drawn in Section VII. 
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II. THE CHESS FRAMEWORK 

CHESS is a model-driven, component-based, methodology 
and toolset for the development of high-integrity systems for 
different domains. The methodology has a strong focus on the 
specification and analysis of non-functional properties, 
especially predictability and dependability, and the generation 
of code preserving such properties. The CHESS methodology 
consists of a UML-based modeling language, named 
CHESS-ML [16], and a set of plugins to support code 
generation, constraints checking, and different kinds of 
analyses. 

In the CHESS methodology, functional and extra-
functional properties are addressed using dedicated views, 
which each view have different fixed privileges on model 
entities and properties that can be manipulated. The CHESS 
methodology uses an incremental and iterative process where 
components can be defined in an incremental way using 
repositories of components or via composability. Results of 
different analyses are back-annotated into the model, allowing 
engineers to perform an iterative development process. 

Modeling is organized in a set of separated views. Each 
design view applies specific constraints on UML diagrams and 
entities that can be created, displayed or edited in that view 
[16]. The requirement view is used to model requirements by 
using the standard requirement diagram from SysML. The 
system and component views are respectively used to model 
system-level entities and software components with SysML 
[16]. The component view comprises two sub-views, the 
functional view and the extra-functional view. The 
deployment view is used to describe the hardware platform 
where the software runs (i.e. CPUs, buses), and software to 
hardware allocation. Finally, the analysis view is used to 
provide information to the different analysis techniques, also 
called analysis context. CHESS supports analysis techniques 
for real-time and dependability properties. In this paper, we 
solely focus on dependability analysis. 

The CHESS methodology provides two plugins to perform 
dependability/safety analysis, namely CHESS-FLA and 
CHESS-SBA. CHESS-FLA [13] allows users, i.e., system 
architects and engineers, to decorate component-based 
architectural models, specified using CHESS-ML, with 
dependability information, execute Failure Logic Analysis 
(FLA), and get the results back-propagated onto the original 
system model. The CHESS State-Based Analysis (CHESS-
SBA) plugin [18] allows users to perform quantitative 
dependability analysis on system models, specified using 
CHESS-ML, by enriching them with quantitative (i.e., 
probabilistic) dependability information, including failure and 
repair distribution of components, propagations delays and 
probabilities, and fault-tolerance and maintenance concepts. 

The CHESS methodology is implemented by the CHESS 
framework, a collection of Eclipse plugins, released as open 
source under the PolarSys initiative [22]. The latest version of 
the CHESS framework allows both CHESS-FLA and CHESS-
SBA plugins to operate together on a consistent set of UML 
stereotypes and share some pieces of information [17]. Still, to 
the best of our knowledge, the combined application of 

CHESS-FLA and CHESS-SBA techniques on a real use-case 
have not been experimented on real-life systems. One of the 
reasons, as highlighted by questionnaires submitted to experts 
[8], appears to be that the role of CHESS with respect to 
certification is not completely clear to the external community. 

In the following, we present an integrated process for the 
application of dependability analysis using the CHESS to 
support the production of standard-compliant certification 
evidence and its application in a realist automotive braking 
system (Section IV), and contextualize the proposed process 
with respect to some recent safety standards. We believe this 
contribution can help in the diffusion of the CHESS, and 
possibly its extension with the definition of a systematic 
process, being it an open source toolset. 

III. THE PROPOSED PROCESS 

The proposed process was defined in compliance with the DO- 

331 MBD fundamentals/principles [23]: i) “identifying the 

safe-subset use of MBD technology and suitable graphical 
engineering methods to be used in safety-related applications” 
which is addressed by CHESS-ML constraints, by the fact that 
we can only use a specific subset of UML, and by CHESS 
having a separate dependability analysis view (failure logic 
and state-based analyses steps in Figs. 1b and 1c); ii) “clear 

distinction between design and specification models”: it can be 
addressed since both the proposed process and CHESS 
comprise the specification of a high level system model (in a 
SysML Block Definition Diagram), and a detailed CHESS-
ML design model (Fig. 1a), and by the integration between 
system design/dependability analysis via system and 
dependability views; iii) “determining which artefacts will be 
in a model to drive the determination of applicable objectives 

and activities”: in CHESS, detailed architecture, data and 
control flow and implementation form the content of a SysML 

Internal Block diagram, which corresponds to the Software 

Design Document. Thus, the proposed process and CHESS 
can address this fundamental by supporting model traceability 
and verification; iv) “MBD data items to be expected in a 

program-model planning, model standards, and model 

element libraries”: this fundamental can be addressed in 
CHESS via system design activities supported by CHESS-ML 
language for system specification, design, and dependability 
analysis; and finally v) “MBD data items to be expected in a 

program-model coverage and model simulation” fundamental 
can be addressed by the proposed process due CHESS 
methodology enabling support for back failure propagation 
analysis via failure logic and state-based analyses. 

The proposed process, given in SPEM 2.0 and illustrated in 
Fig. 1, provides systematic guidance to produce standard 
compliant certification evidence using the CHESS 
methodology. This process prescribes a set of steps to guide 
engineers at performing system design using CHESS-ML 
Block Definition Diagram and Internal Block Diagram, 
component instance generation (Fig. 1a), and dependability 
analysis using CHESS-FLA (Fig. 1b) and CHESS-SBA (Fig. 
1c). CHESS-FLA supports engineers at specifying qualitative 
behaviors of individual components in terms of component 
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failures and their causes, and partially automates FTA and 
FMEA synthesis back-propagated onto the original system 
model. CHESS-SBA allows engineers at specifying more 
expressive and detailed fault behavior of individual 
components and supports quantitative dependability analysis. 
Execute failure logic analysis and execute state-based analysis 

are fully automated tasks supported by CHESS toolset. 
The proposed process, illustrated in Fig. 1, was built upon 

DO-331 principles [23], avionics SAE ARP 4754A [11] and 
automotive ISO 26262 [15] development and safety processes. 
A detailed mapping with ISO 26262 concepts and work 
products is provided in Section V. In the following, the 
individual steps of the process are illustrated in details, by 
applying them to a realistic automotive Hybrid Braking 
System (HBS) case study. 

IV. THE HYBRID BRAKE SYSTEM (HBS) CASE STUDY 

HBS is a real world automotive braking system originally 
designed in MATLAB/Simulink. HBS is meant for integration 
in electrical vehicles, in particular for propulsion architectures 
that integrate one electrical motor per wheel [9]. The term 
hybrid comes from the fact that braking is achieved 
throughout the combined action of the electrical In-Wheel 

Motors (IWMs), and the frictional Electromechanical Brakes 
(EMBs). One of the most important features of this system is 
that the integration of IWM in the braking process allows an 
increase in the vehicle’s range. Thus, while braking, IWMs 
work as generators and transform the vehicle kinetic energy 
into electrical energy that is fed into the Powertrain Battery. 
HBS should not raise omission of braking torque or incorrect 
value of braking torque failures in the wheel’s while braking, 
since the occurrence of such hazardous events can lead to 
catastrophic consequences for the driver. 

A. System Design/Modeling 

 The system modeling workflow, illustrated in Figure 1a, 
consists in the system definition which comprises the 
specification of subsystems, components and their 
connections, using SysML Block Definition Diagram, and the 
detailed description of each constituent subsystem, using 

SysML Internal Block Diagram. 

1) System Definition. After creating a new CHESS 
project, and a Papyrus UML model, a new Block Definition 

Diagram should be created in the «SystemView» for 
specifying the system architecture. In this view, the system, its 
subsystems and components, their input, output ports, and 
connections can be specified, each one as a distinct SysML 
«Block» element. This constitutes the “inventory” of 
component types available for the modeling process. 
 The automotive HBS system, discussed through this paper 
comprises ten components/subsystems: four Brake Unit 
subsystems (i.e., one per wheel); one Mechanical Pedal, 
which is a hardware device aimed at capturing driver presses; 
one Electronic Pedal device that senses and processes the 
actions triggered by the Mechanical Pedal; two 
communication buses (Bus1 and Bus2) that send wheel 
braking forces to the wheel Brake Units; one Auxiliary Battery 

device responsible for feeding the electromechanical brakes 
while braking; and a Powertrain Battery, a device that 
receives the electrical energy produced by the In-Wheel 

Motors.  Fig. 2 illustrates an excerpt of the HBS block 

definition diagram. The HBS block represents the braking 
system which comprises four wheel brake units, mechanical 
and electronic pedals, two communication buses, one auxiliary 
battery, and one powertrain battery. 

2) Subsystem Definition. Once the system and its sub 
components have been specified in a block definition diagram, 
for each composite system/subsystem, a new Internal Block 

Diagram should be created. Each of those diagrams defines 
the internal implementation of a subsystem, in terms of 
instances of components defined in the previous step.  

 
Fig. 1. The proposed CHESS model-based design and dependability analysis process. 

 
Fig. 2. Excerpt of the HBS block definition diagram in CHESS-ML. 
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 The internal implementation is defined by creating new 
instances of the previously declared components, which, 
following the UML terminology, become a «part» of the 
container, and connecting their ports in an Internal Block 

Diagram. Since HBS comprises four wheel braking 
subsystems, an internal block diagram should be created for 
each wheel brake unit. 
 As illustrated in Fig. 3, each wheel Brake Unit comprises: a 
Wheel Node Controller component, which calculates the 
amount of braking torque to be produced by each wheel 
braking actuator, and it sends commands to Electromechanical 

Braking (EMB) and In-Wheel Motors (IWM) power converters 
that control EMB and IWM braking actuators. The In-Wheel 

Motor (IWM) actuator decreases the vehicle kinetic energy 
converting it into electrical energy. IWMs have, however, 
braking torque availability limitations at high wheel speeds or 
when the Powertrain Battery is close to full state of charge. 
Thus, the Electromechanical Braking (EMB) actuator is used 
dynamically with IWMs to provide the required braking 
torque to address the total braking demand. While braking, the 
electric power flows from the Auxiliary Battery to EMB via 
EMB Power Converter; and IWM acts as a power generator 
providing energy for the Powertrain Battery via IWM Power 

Converter. Finally, the Add component outputs the braking 
torque, and the generated power while braking. Thus, HBS 
architecture comprises 4 subsystems, 24 subsystem 
components, 6 components, and 69 connections among 
subsystems and components. 

B. Failure Logic Analysis 
1) Annotation.  In order to perform failure logic analysis 

(Fig. 1b), all system components and subcomponents should 
be annotated with «fLABehavior» stereotype. To obtain the 
necessary information to perform such annotation, each 
component should be analyzed to: 

• Identify output deviations: failures on component 
output ports that can contribute to system failures. 
So, FPTC expressions can be written as illustrated in 
Fig. 4a. An output deviation is specified by pointing 
out which output port is affected followed by a 
failure mode, e.g., out1.omission. Fig 4a. illustrates 
“omission” and “value subtle” output deviations for 
the IWMPowerConverter braking system component 
out1 port; 

● Identify contributing input deviations to output 
deviations: contributing input deviations should be 
specified for each output deviation, as illustrated by 

FPTC expressions for the IWMPowerConverter (Fig. 
4a). The first FPTC expression shows that the 
occurrence of an omission failure in in1 input port 
implies an omission failure on the out1 port. The 
second expression shows that a subtle incorrect value 
through the in1 input port may lead to producing an 
incorrect  value in out1 output port; and 

● Annotate incoming errors from root input ports: 
if the system and/or subsystems stated in the block 

definition diagram have any root input ports, those 
should be annotated with a failure mode. So when the 
analysis is executed, such failure mode is propagated 
throughout the system following the FPTC logic 
defined to each one of the system subcomponents. 
Fig. 4b illustrates Brake Unit1 component root input 
ports annotated with omission failure modes. 

After identifying how failures in input and output ports of 
different components may contribute to system failures, 
CHESS-FLA can be executed. Once the analysis is executed 
all output ports of each one of the stated HBS components, 
subsystems and sub-components will be annotated with failure 
modes resulting from the analysis. 

2) Analysis and results. Two scenarios were considered 
in performing failure logic analysis for the BrakeUnit1 
subsystem from the HBS case study. In each scenario, 
different incoming input deviations were defined. In the first 
scenario, omission failure modes coming from brake unit input 
ports can cause omission of braking torque. In the second 
scenario, omission and value subtle failure modes propagated 
from brake unit input ports can cause a wrong braking torque. 
Details are shown in Fig. 5; note that, besides those on the 
input ports, «FTPCSpecification» annotations are 
automatically added by the CHESS-FLA analysis plugin. In 
the scenario illustrated in Fig. 5, omission failures in brake 
unit's input ports propagate throughout the Wheel Node 

 
Fig. 3. Internal Block Diagram of wheel Brake Unit subsystem. 

 
Fig. 4. (a) IWM power converter FLA, (b) Brake Unit input ports 
with failure annotations.  
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Controller input ports which further propagate throughout 
input ports from EMB Power Converter, IWM Power 

Converter, EMB and IWM components. In the end, the Add 
component receives an omission failure on both of its input 
ports, omitting the data that have not been propagated 
throughout its pw output port, meaning that the BrakeUnit1 
component won't send any power to the Powertrain Battery in 
the occurrence of omission failures on both of its input ports. 

To summarize, the output of this analysis which is a failure 
mode such as an omission can actually be propagated as an 
output to the pw port of a BrakeUnit. In the following, using 
CHESS-SBA, we estimate their probability of occurrence, 
which will make it possible to determine the exposure to the 
related hazard. 

C. State-Based Analysis 

1) Annotation.  
In order to perform state-based analysis, preliminary 
information or assumptions on the system architecture are 
used as input. System components that are mechanical or are 
going to be implemented in hardware should be annotated 
with «simpleStochasticBehavior» stereotype, since hardware 
failures are traditionally described using a probabilistic 
behavior. Repositories or handbooks like MIL-HDBK-217F 
[25] can be used to set failure rates. For software components, 
two options are possible. They can be annotated with the 

«errorModelBehavior» stereotype when a detailed failure 
model, e.g., containing errors, internal failures and repair 
rates, is needed. Otherwise, the same annotations used for 
failure logic analysis, «fLABehavior», can be (re-) used. It is 
important to highlight that, when detailed information is 
available, the error model («errorModelBehavior») can be 
applied to hardware components as well. Thus, the following 
three kinds of annotations are possible for CHESS-SBA: 

«simpleStochasticBehavior». In this case, dependability 
properties of the given hardware component should be 
specified: the time to the occurrence of a failure (as a 
probability distribution), possible failure modes and their 
relative probabilities of occurrence (optional), and the time 
required to repair the component after the occurrence of a 
failure (optional), which is also specified as a probability 
distribution (Fig. 1c). 

In the hybrid braking system, Auxiliary Battery, 

Powertrain Battery, Electronic Pedal, and Mechanical Pedal 
hardware components were annotated with the 
«simpleStochasticBehavior» stereotype. As illustrated in Fig. 
6, the time to failure of the Mechanical Pedal follow an 
exponential distribution with rate of 1.0e-6 per hour of 
operation. Once a failure occurs, only two possible failure 
modes can be propagated throughout its output ports: there is 
90% of probability of propagation of an “omission” failure, 
and 10% of probability of propagation of a “value subtle” 
failure mode; 

«errorModelBehavior». In this case, a finite state 
machine or a set of finite state machines, containing 
information such as component internal fault occurrence and 
repair rates, relevant external faults (received on input ports), 
and possible failure modes (affecting output ports) must be 
defined, i.e., the activity “Define Error States” in Fig. 1c must 
be performed. This also implies that transitions among 
erroneous states should be created, and that the error model 
state machine must be linked to the component. In the HBS 
system, all software components, except Add components 
within wheel Brake Units were annotated with 
«errorModelBehavior» stereotype. 

Multiple error models can be defined for the same 
component, addressing different perspectives. For example, 
the Electronic Pedal in the HBS, has two error models: one 
for modeling internal fault occurrence and propagations of 
internal faults (Fig. 7a), and another for modeling the effect of 
external faults (Fig. 7b); 

«flABehavior».In this case, the steps Identify Output 
Deviations and Identify Contributing Input Deviations to the 

 
Fig. 7. Electronic Pedal component error models. 

 
Fig. 6. Mechanical pedal component stochastic behavior. 

Fig. 5. Failure logic analysis results. 
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output deviations defined in the Failure Logic Analysis 
workflow (Fig. 1b) must be performed again in order to model 
the component failure behavior. In the HBS, the components 
annotated with «fLABehavior» stereotype were Add sub-
components from Brake Unit subsystems. The reason for this 
choice is the Add sub-components being very simple 
comparators, thus, we assume no internal faults, but only 
propagation of errors received as input which can be specified 
via FPTC expressions as illustrated in Fig. 8. 

2) Analysis and results. In order to actually Execute 
State-Based Analysis (see Fig. 1c), the targeted system, in this 
case HBS, should be annotated with the 
«CHGaResoursePlatform» stereotype. This is part of the 
CHESS development methodology, which is capable of 
building a tree of instances (UML InstanceSpecification 
elements), out of multiple hierarchical UML Composite 

Structure or SysML internal block diagrams. After that, a 
“ComponentName_instSpec” package is automatically 
generated by CHESS for each composite component/block, 
containing all the component instances specified in the 
diagram. 

Once instances are generated, a new Class Diagram is 
created in the CHESS DependabilityAnalysisView. In this 
diagram, a new Component annotated with 
«stateBasedAnalysis» stereotype is created for each metric to 
be analyzed. The details of the metric to be analyzed are set 
using attributes of such stereotype (see Fig. 9). The platform 
points to the package of instances under analysis; measure 
specifies the kind of measure, while targetDepComponent, 
targetPort, and targetFailureMode are used to identify the 
specific component(s), and possibly ports and failure modes of 
interest. Analysis results calculated by the CHESS-SBA tool 
are written in the measureEvaluationResult parameter of the 
component annotated with «stateBasedAnalysis» stereotype, 
in a process known as back-annotation. 

In the HBS case study, the objective of the state-based 
analysis we want to evaluate, quantitatively, is the probability 
of occurrence of the omission failure mode highlighted by the 
execution of CHESS-FLA, and its impact on the system-level 
wheel brake functionality. Accordingly, we create a 
component, annotated with the «StateBasedAnalysis» 
stereotype (Fig. 9). In the created component, the 
targetDepComponent references the four brake units, and 
targetPort the four respective pw ports. The measure is 
defined as Reliability {instantOfTime = 8760}, meaning 
instant of time reliability at time 8760 (hours), and the 
targetFailureMode is omission. The interpretation of this 

specification is: “what is the probability that, after 8760 hours 

(1 year), none of the four brake units have failed on their port 

pw with failure mode omission?”. This probability is given by 
the “measureEvaluationResult” value shown in the 
component. 

 
Fig. 9. State-based analysis results for one scenario. 

This information should be used to mark the related 
hazards (“no brakes”) as actually possible, and further actions 
should be taken when designing the hardware and software 
architectures. Thus, the proposed process has supported safety 
analysts in complying with ISO 26262 3-7 Hazard Analysis 

and Risk Assessment and 3-8 Functional safety concept as 
illustrated in TABLE I. 

V. THE PROPOSED PROCESS AND ISO 26262 

System and subsystem definition modeling process 
activities defined in Fig. 1a cover ISO 26262 2.5.2.2, and 3-5 

Item definition (TABLE II), producing a high-level description 
of the item (system) in a block definition diagram, and a low-
level description of the items in internal block diagrams. 
CHESS-SBA process activities (Fig. 1c), support safety 
analysts in creating a detailed error for an existing item 
(component) in case of modification in the item or in its 
environment, supporting ISO 26262 3-6.4.1 Determination of 

development category (TABLE II). This is useful for the reuse 
of an existing item in other similar projects, since new failures 
modes can be raised when the item/environment is changed.  

CHESS-FLA and SBA activities, and the execution of 
FLA model simulations support analysts in identifying the 
potential threats to the overall system safety, by producing 
information, e.g., component deviations and error models, that 
supports the analysis of failure propagation and identification 
of emergent hazardous behaviors in both hardware and 
software items, addressing ISO 26262 3-7. Additionally, the 
execution of SBA model simulation process task produce the 
calculus of the level of exposure to each identified hazard, 
thus, supporting analysts in hazard classification, addressing 
ISO 26262 3-7. The results of the execution of CHESS-
FLA/SBA model simulations process activities support 
analysts in the derivation of Automotive Safety Integrity Level 
(ASIL) to be allocated to mitigate hazards and hazardous 

 
Fig. 8. Add component FPTC expressions for state-based analysis. 

TABLE I.  HBS HAZARD ANALISYS, RISK ASSESSMENT, AND 

ALLOCATED SAFETY REQUIREMENTS. 

Hazard Hazard Causes Prob. of 

Occurence 

ASIL 

No braking 
four wheels 

Omission-BU1.out1 OR Omission-
BU2.out1 OR Omission-BU3.out1 OR 
Omission-BU4.out1 

 
9.933000e-01 

 
D 

Value 
braking 

Value-BU1.out1 OR Value-BU2.out1 
OR Value-BU3.out1 OR Value-
BU4.out1 

 
9.843000e-01 

 
D 
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items, and allocation of functional safety requirements through 
the system architecture. Thus, addressing ISO 26262-3-8: 
Functional Safety Concept and 4-6.4.2: Safety Mechanisms. 
The results of CHESS-FLA/SBA simulations also support the 
analysis of the impact of item failures in the overall system 
safety and determining measures to control random item 
failures, thus, respectively addressing ISO 26262 4-7.4.3.1 and 
4-7.4.4. Finally, the execution of FLA/SBA simulations 
process activities support analysts in verifying whether or not 
the developed system architecture addresses the safety 
requirements, as stated in ISO 26262 4-7.4.8: Verification of 

system design (TABLE III). The relation of the proposed 
process and CHESS methodology with ISO 26262 activities 
and work products are summarized in Table II and Table III. 

VI.  RELATED WORK 

In the literature, the necessity of modeling and analyzing 
non-functional properties at the architectural level is a 
research area that has flourished in recent years. Various 
architecture description languages (ADLs) with support for 

non-functional properties have been introduced. Given the 
wide adoption of UML, many of the proposed languages have 
been implemented as UML profiles. EAST-ADL2 [7], for 
instance, is a modeling language for electronic systems 
engineering within the automotive domain, which extends 
UML and SysML with various concerns, including safety 
analysis. Due to its nature, EAST-ADL2 is very tied to the 
automotive domain and to the AUTOSAR platform.  

Across the years, OMG has released different profiles 
addressing non-functional properties. The most successful is 
the MARTE profile [20], which targets real-time properties 
and provides some stereotypes to specify the hardware 
architecture with richer details. The OMG “Dependability 
Assurance Framework for Safety-Sensitive Consumer 
Devices” [28] proposes a language for assurance for consumer 
devices. However, the specification explicitly excludes critical 
systems such as avionics or railways [28]. 

The work in [4] defines the Dependability Analysis 
Modeling (DAM) profile, which extends MARTE with the 
possibility to specify dependability properties. From the 
methodology viewpoint, DAM does not impose constraints to 
the modeler, allowing him/her to introduce inconsistencies, as 
the same information may be entered in multiple ways. From 
the practical viewpoint, we are not aware of tools actually 
implementing the DAM profile, or frameworks based on it. 

Outside of the UML world, the most complete proposal is 
AADL, defined by the SAE “Architecture Analysis and 
Design Language” standard; the AADL Error Model Annex 
[24] is of particular relevance, since it allows users to add 
dependability-related information to AADL architecture 
models. Tool support is provided by the OSATE suite [5], 
which also includes some plugins to perform dependability 
and safety analysis. The CHESS Framework, being based on 
UML profiles and separated design views, provides better 
support of multiple concerns and greater extensibility. 

HiP-HOPS [1] is a well-known methodology and tool to 
perform semi-automated safety analysis at the software/system 
architecture level, using failure logic analysis. The HiP-HOPS 
toolset is however commercial software. Furthermore, it does 
not address some of the concerns addressed by the CHESS 
Framework, e.g., schedulability analysis and code generation. 

To the best of our knowledge, at the time of writing 
PolarSys CHESS [22] is the only open source toolset for the 
development of embedded systems which simultaneously 
provides: i) a UML-based language for the specification of 
non-functional properties, ii) a customized editor with 
enforcement of modeling constraints, iii) qualitative 
dependability analysis, iv) quantitative dependability analysis, 
vi) schedulability analysis, vii) back-annotation of analysis 
results, and viii) code generation. 

Recently, since standards like ISO 262626 [15] and 
DO-331 [23] have started addressing model-based 
development; works on how to apply existing MDE 
techniques in a way that is compliant with standards have 
started to appear. The work in [6], discusses an artifact-centric 
compliance demonstration approach for software developed 
using with code generation. The work only addresses software 
certification, that is, Part 6 of ISO 26262. The work in [10] 
addresses qualification of code generation tools with respect to 

TABLE II. PROCESS/CHESS METHODOLOGY, AND ISO 26262. 

ISO 26262 Activities The Proposed 

Process Activities 

The Proposed Process Work 

Products 

 
3-5: Item definition 

System Definition: 
1.1 – Create a Block 
Def. Diagram 

1-System Model in a Block 

Definition Diagram 

Subsystem 
definition: 1.2 – 
Create an Internal 
Block Diagram 

1-Subsystem  internal block 

diagrams 

3-6: Initiation of the 
safety lifecycle 

3 - CHESS-SBA 
activities 

3-Detailed component error models 

 
 
 
 
3-7: Hazard analysis 
and risk assessment 

2-CHESS-FLA and 
3-SBA activities 

2-Contrib. component deviations 

3-Component error models 

 
2.5 - Execute failure 
logic analysis 

2-System, subsystem, components 
annotated with failure propagation 
information. 

2-Identified hazards 

 
3.8 - Execute state-
based analysis 

3-Risk assessment and hazard 
classification: evaluation of the risk 
posed by each hazard 

3-8: Functional safety 
concept 

 
 
 
3.8 - Execute state-
based analysis 

3-Allocated functional  safety 
requirements to the architecture and 
safety integrity requirements to 
mitigate hazards 

 4-6.4.2: Safety 
mechanisms 

3-Allocated safety integrity 
requirements to address fault 
detection and fault mitigation 

4-7.4.3.1: Measures for 
avoidance of systematic 
failures 

2.5 - Execute failure 
logic analysis, 
 
3.8 - Execute state-
based analysis 

 
2-CHESS-FLA (Fig. 5.) and 3-SBA 
model simulations (Fig. 9) 

4-7.4.8: Verification of 
system design 

4-7.4.4: Measures for 
control random hard-
ware failures 

 
3.8 - Execute state-
based analysis 

3-CHESS-SBA simulation 
interpretation enables analysts to 
determine measures for detection, 
control, or mitigation of random 
hardware failures 

TABLE III. CHESS AND ISO 26262 WORK PRODUCTS. 

ISO 26262 Part ISO 26262 WP CHESS Methodology WP 

 
3-5: Item definition 

 
3-5.5 Item definition  
 

CHESS system and 
component models and their 
instances. 

3-6: Initiation of the 
safety lifecycle 

3-6.5.1 Impact analysis CHESS-FLA and SBA 

3-7: Hazard analysis 
and risk assessment 

3-7.5.1 HARA CHESS-FLA and SBA 

3-7.5.2 Safety goals CHESS SBA 

3-7.5.3 Verification review 
report of HARA and safety 
goals 

CHESS-FLA and SBA 
model simulations 

 
3-8: Functional safety 
concept 

3-8.5.1 Functional safety 
concept (FSC) 

Risk exposure calculus 
derived from CHESS-SBA 
results. 3-8.5.2 Verification report 

of the FSC 
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ISO 26262-6. Similarly, an approach for the qualification of 
model-based tools according to ISO 26262 is proposed in [14]. 
The work in [12] analyzes the adequacy of a model-based 
testing tool, Fail-SafeMBT, with respect to the DO-178C/DO-
331 standards. The authors define a process for using the tool 
in accordance with the work products expected by the 
standards. The authors of [21] performed a survey on model-
based approaches to support avionics software development 
and certification according to DO-178C, concluding that there 
is a lack of integrated approaches [21]. In this paper, we make 
a step forward in demonstrating the applicability of the 
integrated PolarSys CHESS methodology as a support for the 
standard-compliant certification of critical systems. 

VII. CONCLUSION 

This paper has presented a systematic process to support 
system designers and safety analysts in using the CHESS 
PolarSys methodology capabilities in the system design and 
dependability analysis and modeling. The proposed process 
prescribes a set of steps to perform system design, 
dependability analysis using failure logic analysis and state-
based stochastic analyses in compliance with DO-331  MBD 
principles and safety standards. The feasibility of the proposed 
process was verified by applying it for design and 
dependability analysis of a real world automotive hybrid 
braking system, originally designed in MATLAB/Simulink. 

This paper contributed with real life examples and 
walkthroughs to support the end user in working with the 
toolset of the CHESS methodology. The proposed process and 
case study are expected to stimulate system designers and 
safety analysts in incorporating the CHESS methodology and 
toolset in their safety-critical systems projects, and guide them 
at producing certifiable evidence in conformance with safety 
standards. Being the toolset released as open source [22], we 
also aim to stimulate the interest of researchers and engineers 
in improving and extending the capabilities of the CHESS. 

Further work intends to investigate the integration of 
variability management techniques and tools into CHESS 
methodology and toolset. In this way, we intend to present 
how CHESS can be combined with exiting Eclipse-based 
variability analysis and management techniques [26] to enable 
support for software product line engineering and systematic 
reuse of a CHESS-ML model. Thus, supporting the 
specification of different error models for the same component 
based on domain expertise, and support variability resolution 
based on the concrete application design. We also intend to 
investigate how dependability results can vary for a given 
system model when derived from a reusable CHESS model. 
Further work also intends to provide additional validation on 
in-depth scenarios with other types of failure modes such as 
timing and commission failures. 
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