
1

A Systematic Process for Applying the CHESS
Methodology in the Creation of Certifiable Evidence
Lucas Bressan, André L. de Oliveira

Federal University of Juiz de Fora, Brazil
{lucasbressan, andre.oliveira}@ice.ufjf.br

Leonardo Montecchi
University of Campinas, Brazil

leonardo@ic.unicamp.br

Barbara Gallina
Mälardalen University, Sweden

barbara.gallina@mdh.se

Abstract—CHESS is an open source methodology and

toolset for the development of safety-critical systems. More

specifically, CHESS is a model-based methodology, which

supports the design, dependability analysis, and code

generation for critical systems. Despite its rather mature

level in terms of technology readiness, systematic guidance

needs to be developed to promote its usage for certification

purposes. In this paper, we present a systematic process to

guide designers and analysts in the usage of the CHESS

toolset for model-based dependability analysis of safety-

critical systems in compliance with ISO 26262 Parts 3 and
4, SAE ARP 4754A safety process, and DO-331 model-

based development principles. We also have applied our

process to a real world automotive hybrid braking system.

The proposed process can be used to guide analysts in

using CHESS methodology to support both system design

and dependability analysis. Finally, we draw our

conclusion and sketch future work.

Keywords—Dependability analysis, model-based development,

process, certification, CHESS, safety standards.

I. INTRODUCTION

Model-based development (MBD) has been contributing
to raising the level of abstraction in software specification and
to increasing automation in software development. Industry
and safety certification standards from different domains, e.g.,
DO-178C and its MBD supplement DO-331 [23], and SAE
ARP 4754A [11] for avionics, and ISO 26262 [15] for
automotive, have recognized the maturity of model-based
techniques, which are being increasingly adopted by the
industry to provide semi-automated support for both system
design and dependability analysis.

Qualitative and quantitative compositional model-based
techniques for system design and dependability analysis exist
in the literature [1][4][7][27]. However, safety-critical systems
require the integrated application of different techniques, and
an incremental modeling approach that can follow the
evolution of the system. CHESS is an open source, integrated
and multifaceted model-based methodology and toolset for the
development of safety critical systems, which supports system
design, dependability analysis, and code generation [16]. The
CHESS methodology supports system architects to interpret
human, organizational, and technological entities in terms of
components, and modeling their behavior with respect to
safety/dependability, i.e., erroneous and fault-tolerance
behaviors [17]. CHESS supports the interplay among different

dependability analysis techniques, namely failure propagation
logic, and state-based stochastic analysis.

Despite its rather mature level in terms of technology
readiness, its usage in real-life systems has been limited to
industrial partners of the CHESS [2] and CONCERTO [3]
projects. Systematic guidance to support the proper usage of
the framework for certification purposes is missing. Actually,
an aspect that was highlighted by CHESS project evaluation,
by submitting questionnaire to experts [8], was a moderate
belief that the provided analysis techniques could support
engineers in the safety certification process. This is due to the
lack of guidance for external users adopting the CHESS
methodology for producing certification evidence in
compliance with existing safety standards.

State of the practice in the assessment of critical systems
adopting model-based techniques comprises proposals of
MBD toolsets [6][10] to address system design, automatic
code and documentation generation, verification and
validation, and model/requirements traceability in compliance
with the aforementioned standards. However, such MBD
toolsets do not provide support for integrated system design
and dependability analysis, not addressing ISO 26262 Part 3 –
Concept Phase and Part 4 – Product development at the

system level, and SAE ARP 4754A development and safety
processes, which is required to produce certification evidence.
We propose to fill this gap by augmenting the CHESS
methodology with a systematic process that supports users at
producing safety-related certifiable evidence in compliance
with standards, thus, bridging the gap between standards,
industrial practices, and academia, guiding analysts in the
properly usage of the CHESS to generate certifiable evidence.

The main contributions of this paper are: i) a systematic
process to guide analysts in using CHESS model-based
methodology in dependability analysis of safety-critical
systems to obtain certifiable evidence in compliance with ISO
26262, SAE ARP 4754A, and DO-331 MBD principles, ii) the
application of the process in a real world automotive hybrid
braking system case study, and iii) contextualization of the
proposed process with respect to the ISO 26262 safety
certification processes.

The rest of this paper is organized as follows. Section II
presents an overview of the CHESS framework. Section III
presents the proposed systematic process. Section IV presents
a case study illustrating the application of the proposed
process in an automotive Hybrid Braking System (HBS),
while in Section V we discuss the mapping with the
ISO 26262 standard. Section VI discusses the related work.
Finally, conclusions are drawn in Section VII.

2

II. THE CHESS FRAMEWORK

CHESS is a model-driven, component-based, methodology
and toolset for the development of high-integrity systems for
different domains. The methodology has a strong focus on the
specification and analysis of non-functional properties,
especially predictability and dependability, and the generation
of code preserving such properties. The CHESS methodology
consists of a UML-based modeling language, named
CHESS-ML [16], and a set of plugins to support code
generation, constraints checking, and different kinds of
analyses.

In the CHESS methodology, functional and extra-
functional properties are addressed using dedicated views,
which each view have different fixed privileges on model
entities and properties that can be manipulated. The CHESS
methodology uses an incremental and iterative process where
components can be defined in an incremental way using
repositories of components or via composability. Results of
different analyses are back-annotated into the model, allowing
engineers to perform an iterative development process.

Modeling is organized in a set of separated views. Each
design view applies specific constraints on UML diagrams and
entities that can be created, displayed or edited in that view
[16]. The requirement view is used to model requirements by
using the standard requirement diagram from SysML. The
system and component views are respectively used to model
system-level entities and software components with SysML
[16]. The component view comprises two sub-views, the
functional view and the extra-functional view. The
deployment view is used to describe the hardware platform
where the software runs (i.e. CPUs, buses), and software to
hardware allocation. Finally, the analysis view is used to
provide information to the different analysis techniques, also
called analysis context. CHESS supports analysis techniques
for real-time and dependability properties. In this paper, we
solely focus on dependability analysis.

The CHESS methodology provides two plugins to perform
dependability/safety analysis, namely CHESS-FLA and
CHESS-SBA. CHESS-FLA [13] allows users, i.e., system
architects and engineers, to decorate component-based
architectural models, specified using CHESS-ML, with
dependability information, execute Failure Logic Analysis
(FLA), and get the results back-propagated onto the original
system model. The CHESS State-Based Analysis (CHESS-
SBA) plugin [18] allows users to perform quantitative
dependability analysis on system models, specified using
CHESS-ML, by enriching them with quantitative (i.e.,
probabilistic) dependability information, including failure and
repair distribution of components, propagations delays and
probabilities, and fault-tolerance and maintenance concepts.

The CHESS methodology is implemented by the CHESS
framework, a collection of Eclipse plugins, released as open
source under the PolarSys initiative [22]. The latest version of
the CHESS framework allows both CHESS-FLA and CHESS-
SBA plugins to operate together on a consistent set of UML
stereotypes and share some pieces of information [17]. Still, to
the best of our knowledge, the combined application of

CHESS-FLA and CHESS-SBA techniques on a real use-case
have not been experimented on real-life systems. One of the
reasons, as highlighted by questionnaires submitted to experts
[8], appears to be that the role of CHESS with respect to
certification is not completely clear to the external community.

In the following, we present an integrated process for the
application of dependability analysis using the CHESS to
support the production of standard-compliant certification
evidence and its application in a realist automotive braking
system (Section IV), and contextualize the proposed process
with respect to some recent safety standards. We believe this
contribution can help in the diffusion of the CHESS, and
possibly its extension with the definition of a systematic
process, being it an open source toolset.

III. THE PROPOSED PROCESS

The proposed process was defined in compliance with the DO-

331 MBD fundamentals/principles [23]: i) “identifying the

safe-subset use of MBD technology and suitable graphical
engineering methods to be used in safety-related applications”
which is addressed by CHESS-ML constraints, by the fact that
we can only use a specific subset of UML, and by CHESS
having a separate dependability analysis view (failure logic
and state-based analyses steps in Figs. 1b and 1c); ii) “clear

distinction between design and specification models”: it can be
addressed since both the proposed process and CHESS
comprise the specification of a high level system model (in a
SysML Block Definition Diagram), and a detailed CHESS-
ML design model (Fig. 1a), and by the integration between
system design/dependability analysis via system and
dependability views; iii) “determining which artefacts will be
in a model to drive the determination of applicable objectives

and activities”: in CHESS, detailed architecture, data and
control flow and implementation form the content of a SysML

Internal Block diagram, which corresponds to the Software

Design Document. Thus, the proposed process and CHESS
can address this fundamental by supporting model traceability
and verification; iv) “MBD data items to be expected in a

program-model planning, model standards, and model

element libraries”: this fundamental can be addressed in
CHESS via system design activities supported by CHESS-ML
language for system specification, design, and dependability
analysis; and finally v) “MBD data items to be expected in a

program-model coverage and model simulation” fundamental
can be addressed by the proposed process due CHESS
methodology enabling support for back failure propagation
analysis via failure logic and state-based analyses.

The proposed process, given in SPEM 2.0 and illustrated in
Fig. 1, provides systematic guidance to produce standard
compliant certification evidence using the CHESS
methodology. This process prescribes a set of steps to guide
engineers at performing system design using CHESS-ML
Block Definition Diagram and Internal Block Diagram,
component instance generation (Fig. 1a), and dependability
analysis using CHESS-FLA (Fig. 1b) and CHESS-SBA (Fig.
1c). CHESS-FLA supports engineers at specifying qualitative
behaviors of individual components in terms of component

3

failures and their causes, and partially automates FTA and
FMEA synthesis back-propagated onto the original system
model. CHESS-SBA allows engineers at specifying more
expressive and detailed fault behavior of individual
components and supports quantitative dependability analysis.
Execute failure logic analysis and execute state-based analysis

are fully automated tasks supported by CHESS toolset.
The proposed process, illustrated in Fig. 1, was built upon

DO-331 principles [23], avionics SAE ARP 4754A [11] and
automotive ISO 26262 [15] development and safety processes.
A detailed mapping with ISO 26262 concepts and work
products is provided in Section V. In the following, the
individual steps of the process are illustrated in details, by
applying them to a realistic automotive Hybrid Braking
System (HBS) case study.

IV. THE HYBRID BRAKE SYSTEM (HBS) CASE STUDY

HBS is a real world automotive braking system originally
designed in MATLAB/Simulink. HBS is meant for integration
in electrical vehicles, in particular for propulsion architectures
that integrate one electrical motor per wheel [9]. The term
hybrid comes from the fact that braking is achieved
throughout the combined action of the electrical In-Wheel

Motors (IWMs), and the frictional Electromechanical Brakes
(EMBs). One of the most important features of this system is
that the integration of IWM in the braking process allows an
increase in the vehicle’s range. Thus, while braking, IWMs
work as generators and transform the vehicle kinetic energy
into electrical energy that is fed into the Powertrain Battery.
HBS should not raise omission of braking torque or incorrect
value of braking torque failures in the wheel’s while braking,
since the occurrence of such hazardous events can lead to
catastrophic consequences for the driver.

A. System Design/Modeling

 The system modeling workflow, illustrated in Figure 1a,
consists in the system definition which comprises the
specification of subsystems, components and their
connections, using SysML Block Definition Diagram, and the
detailed description of each constituent subsystem, using

SysML Internal Block Diagram.

1) System Definition. After creating a new CHESS
project, and a Papyrus UML model, a new Block Definition

Diagram should be created in the «SystemView» for
specifying the system architecture. In this view, the system, its
subsystems and components, their input, output ports, and
connections can be specified, each one as a distinct SysML
«Block» element. This constitutes the “inventory” of
component types available for the modeling process.
 The automotive HBS system, discussed through this paper
comprises ten components/subsystems: four Brake Unit
subsystems (i.e., one per wheel); one Mechanical Pedal,
which is a hardware device aimed at capturing driver presses;
one Electronic Pedal device that senses and processes the
actions triggered by the Mechanical Pedal; two
communication buses (Bus1 and Bus2) that send wheel
braking forces to the wheel Brake Units; one Auxiliary Battery

device responsible for feeding the electromechanical brakes
while braking; and a Powertrain Battery, a device that
receives the electrical energy produced by the In-Wheel

Motors. Fig. 2 illustrates an excerpt of the HBS block

definition diagram. The HBS block represents the braking
system which comprises four wheel brake units, mechanical
and electronic pedals, two communication buses, one auxiliary
battery, and one powertrain battery.

2) Subsystem Definition. Once the system and its sub
components have been specified in a block definition diagram,
for each composite system/subsystem, a new Internal Block

Diagram should be created. Each of those diagrams defines
the internal implementation of a subsystem, in terms of
instances of components defined in the previous step.

Fig. 1. The proposed CHESS model-based design and dependability analysis process.

Fig. 2. Excerpt of the HBS block definition diagram in CHESS-ML.

4

 The internal implementation is defined by creating new
instances of the previously declared components, which,
following the UML terminology, become a «part» of the
container, and connecting their ports in an Internal Block

Diagram. Since HBS comprises four wheel braking
subsystems, an internal block diagram should be created for
each wheel brake unit.
 As illustrated in Fig. 3, each wheel Brake Unit comprises: a
Wheel Node Controller component, which calculates the
amount of braking torque to be produced by each wheel
braking actuator, and it sends commands to Electromechanical

Braking (EMB) and In-Wheel Motors (IWM) power converters
that control EMB and IWM braking actuators. The In-Wheel

Motor (IWM) actuator decreases the vehicle kinetic energy
converting it into electrical energy. IWMs have, however,
braking torque availability limitations at high wheel speeds or
when the Powertrain Battery is close to full state of charge.
Thus, the Electromechanical Braking (EMB) actuator is used
dynamically with IWMs to provide the required braking
torque to address the total braking demand. While braking, the
electric power flows from the Auxiliary Battery to EMB via
EMB Power Converter; and IWM acts as a power generator
providing energy for the Powertrain Battery via IWM Power

Converter. Finally, the Add component outputs the braking
torque, and the generated power while braking. Thus, HBS
architecture comprises 4 subsystems, 24 subsystem
components, 6 components, and 69 connections among
subsystems and components.

B. Failure Logic Analysis
1) Annotation. In order to perform failure logic analysis

(Fig. 1b), all system components and subcomponents should
be annotated with «fLABehavior» stereotype. To obtain the
necessary information to perform such annotation, each
component should be analyzed to:

• Identify output deviations: failures on component
output ports that can contribute to system failures.
So, FPTC expressions can be written as illustrated in
Fig. 4a. An output deviation is specified by pointing
out which output port is affected followed by a
failure mode, e.g., out1.omission. Fig 4a. illustrates
“omission” and “value subtle” output deviations for
the IWMPowerConverter braking system component
out1 port;

● Identify contributing input deviations to output
deviations: contributing input deviations should be
specified for each output deviation, as illustrated by

FPTC expressions for the IWMPowerConverter (Fig.
4a). The first FPTC expression shows that the
occurrence of an omission failure in in1 input port
implies an omission failure on the out1 port. The
second expression shows that a subtle incorrect value
through the in1 input port may lead to producing an
incorrect value in out1 output port; and

● Annotate incoming errors from root input ports:
if the system and/or subsystems stated in the block

definition diagram have any root input ports, those
should be annotated with a failure mode. So when the
analysis is executed, such failure mode is propagated
throughout the system following the FPTC logic
defined to each one of the system subcomponents.
Fig. 4b illustrates Brake Unit1 component root input
ports annotated with omission failure modes.

After identifying how failures in input and output ports of
different components may contribute to system failures,
CHESS-FLA can be executed. Once the analysis is executed
all output ports of each one of the stated HBS components,
subsystems and sub-components will be annotated with failure
modes resulting from the analysis.

2) Analysis and results. Two scenarios were considered
in performing failure logic analysis for the BrakeUnit1
subsystem from the HBS case study. In each scenario,
different incoming input deviations were defined. In the first
scenario, omission failure modes coming from brake unit input
ports can cause omission of braking torque. In the second
scenario, omission and value subtle failure modes propagated
from brake unit input ports can cause a wrong braking torque.
Details are shown in Fig. 5; note that, besides those on the
input ports, «FTPCSpecification» annotations are
automatically added by the CHESS-FLA analysis plugin. In
the scenario illustrated in Fig. 5, omission failures in brake
unit's input ports propagate throughout the Wheel Node

Fig. 3. Internal Block Diagram of wheel Brake Unit subsystem.

Fig. 4. (a) IWM power converter FLA, (b) Brake Unit input ports
with failure annotations.

5

Controller input ports which further propagate throughout
input ports from EMB Power Converter, IWM Power

Converter, EMB and IWM components. In the end, the Add
component receives an omission failure on both of its input
ports, omitting the data that have not been propagated
throughout its pw output port, meaning that the BrakeUnit1
component won't send any power to the Powertrain Battery in
the occurrence of omission failures on both of its input ports.

To summarize, the output of this analysis which is a failure
mode such as an omission can actually be propagated as an
output to the pw port of a BrakeUnit. In the following, using
CHESS-SBA, we estimate their probability of occurrence,
which will make it possible to determine the exposure to the
related hazard.

C. State-Based Analysis

1) Annotation.
In order to perform state-based analysis, preliminary
information or assumptions on the system architecture are
used as input. System components that are mechanical or are
going to be implemented in hardware should be annotated
with «simpleStochasticBehavior» stereotype, since hardware
failures are traditionally described using a probabilistic
behavior. Repositories or handbooks like MIL-HDBK-217F
[25] can be used to set failure rates. For software components,
two options are possible. They can be annotated with the

«errorModelBehavior» stereotype when a detailed failure
model, e.g., containing errors, internal failures and repair
rates, is needed. Otherwise, the same annotations used for
failure logic analysis, «fLABehavior», can be (re-) used. It is
important to highlight that, when detailed information is
available, the error model («errorModelBehavior») can be
applied to hardware components as well. Thus, the following
three kinds of annotations are possible for CHESS-SBA:

«simpleStochasticBehavior». In this case, dependability
properties of the given hardware component should be
specified: the time to the occurrence of a failure (as a
probability distribution), possible failure modes and their
relative probabilities of occurrence (optional), and the time
required to repair the component after the occurrence of a
failure (optional), which is also specified as a probability
distribution (Fig. 1c).

In the hybrid braking system, Auxiliary Battery,

Powertrain Battery, Electronic Pedal, and Mechanical Pedal
hardware components were annotated with the
«simpleStochasticBehavior» stereotype. As illustrated in Fig.
6, the time to failure of the Mechanical Pedal follow an
exponential distribution with rate of 1.0e-6 per hour of
operation. Once a failure occurs, only two possible failure
modes can be propagated throughout its output ports: there is
90% of probability of propagation of an “omission” failure,
and 10% of probability of propagation of a “value subtle”
failure mode;

«errorModelBehavior». In this case, a finite state
machine or a set of finite state machines, containing
information such as component internal fault occurrence and
repair rates, relevant external faults (received on input ports),
and possible failure modes (affecting output ports) must be
defined, i.e., the activity “Define Error States” in Fig. 1c must
be performed. This also implies that transitions among
erroneous states should be created, and that the error model
state machine must be linked to the component. In the HBS
system, all software components, except Add components
within wheel Brake Units were annotated with
«errorModelBehavior» stereotype.

Multiple error models can be defined for the same
component, addressing different perspectives. For example,
the Electronic Pedal in the HBS, has two error models: one
for modeling internal fault occurrence and propagations of
internal faults (Fig. 7a), and another for modeling the effect of
external faults (Fig. 7b);

«flABehavior».In this case, the steps Identify Output
Deviations and Identify Contributing Input Deviations to the

Fig. 7. Electronic Pedal component error models.

Fig. 6. Mechanical pedal component stochastic behavior.

Fig. 5. Failure logic analysis results.

6

output deviations defined in the Failure Logic Analysis
workflow (Fig. 1b) must be performed again in order to model
the component failure behavior. In the HBS, the components
annotated with «fLABehavior» stereotype were Add sub-
components from Brake Unit subsystems. The reason for this
choice is the Add sub-components being very simple
comparators, thus, we assume no internal faults, but only
propagation of errors received as input which can be specified
via FPTC expressions as illustrated in Fig. 8.

2) Analysis and results. In order to actually Execute
State-Based Analysis (see Fig. 1c), the targeted system, in this
case HBS, should be annotated with the
«CHGaResoursePlatform» stereotype. This is part of the
CHESS development methodology, which is capable of
building a tree of instances (UML InstanceSpecification
elements), out of multiple hierarchical UML Composite

Structure or SysML internal block diagrams. After that, a
“ComponentName_instSpec” package is automatically
generated by CHESS for each composite component/block,
containing all the component instances specified in the
diagram.

Once instances are generated, a new Class Diagram is
created in the CHESS DependabilityAnalysisView. In this
diagram, a new Component annotated with
«stateBasedAnalysis» stereotype is created for each metric to
be analyzed. The details of the metric to be analyzed are set
using attributes of such stereotype (see Fig. 9). The platform
points to the package of instances under analysis; measure
specifies the kind of measure, while targetDepComponent,
targetPort, and targetFailureMode are used to identify the
specific component(s), and possibly ports and failure modes of
interest. Analysis results calculated by the CHESS-SBA tool
are written in the measureEvaluationResult parameter of the
component annotated with «stateBasedAnalysis» stereotype,
in a process known as back-annotation.

In the HBS case study, the objective of the state-based
analysis we want to evaluate, quantitatively, is the probability
of occurrence of the omission failure mode highlighted by the
execution of CHESS-FLA, and its impact on the system-level
wheel brake functionality. Accordingly, we create a
component, annotated with the «StateBasedAnalysis»
stereotype (Fig. 9). In the created component, the
targetDepComponent references the four brake units, and
targetPort the four respective pw ports. The measure is
defined as Reliability {instantOfTime = 8760}, meaning
instant of time reliability at time 8760 (hours), and the
targetFailureMode is omission. The interpretation of this

specification is: “what is the probability that, after 8760 hours

(1 year), none of the four brake units have failed on their port

pw with failure mode omission?”. This probability is given by
the “measureEvaluationResult” value shown in the
component.

Fig. 9. State-based analysis results for one scenario.

This information should be used to mark the related
hazards (“no brakes”) as actually possible, and further actions
should be taken when designing the hardware and software
architectures. Thus, the proposed process has supported safety
analysts in complying with ISO 26262 3-7 Hazard Analysis

and Risk Assessment and 3-8 Functional safety concept as
illustrated in TABLE I.

V. THE PROPOSED PROCESS AND ISO 26262

System and subsystem definition modeling process
activities defined in Fig. 1a cover ISO 26262 2.5.2.2, and 3-5

Item definition (TABLE II), producing a high-level description
of the item (system) in a block definition diagram, and a low-
level description of the items in internal block diagrams.
CHESS-SBA process activities (Fig. 1c), support safety
analysts in creating a detailed error for an existing item
(component) in case of modification in the item or in its
environment, supporting ISO 26262 3-6.4.1 Determination of

development category (TABLE II). This is useful for the reuse
of an existing item in other similar projects, since new failures
modes can be raised when the item/environment is changed.

CHESS-FLA and SBA activities, and the execution of
FLA model simulations support analysts in identifying the
potential threats to the overall system safety, by producing
information, e.g., component deviations and error models, that
supports the analysis of failure propagation and identification
of emergent hazardous behaviors in both hardware and
software items, addressing ISO 26262 3-7. Additionally, the
execution of SBA model simulation process task produce the
calculus of the level of exposure to each identified hazard,
thus, supporting analysts in hazard classification, addressing
ISO 26262 3-7. The results of the execution of CHESS-
FLA/SBA model simulations process activities support
analysts in the derivation of Automotive Safety Integrity Level
(ASIL) to be allocated to mitigate hazards and hazardous

Fig. 8. Add component FPTC expressions for state-based analysis.

TABLE I. HBS HAZARD ANALISYS, RISK ASSESSMENT, AND

ALLOCATED SAFETY REQUIREMENTS.

Hazard Hazard Causes Prob. of

Occurence

ASIL

No braking
four wheels

Omission-BU1.out1 OR Omission-
BU2.out1 OR Omission-BU3.out1 OR
Omission-BU4.out1

9.933000e-01

D

Value
braking

Value-BU1.out1 OR Value-BU2.out1
OR Value-BU3.out1 OR Value-
BU4.out1

9.843000e-01

D

7

items, and allocation of functional safety requirements through
the system architecture. Thus, addressing ISO 26262-3-8:
Functional Safety Concept and 4-6.4.2: Safety Mechanisms.
The results of CHESS-FLA/SBA simulations also support the
analysis of the impact of item failures in the overall system
safety and determining measures to control random item
failures, thus, respectively addressing ISO 26262 4-7.4.3.1 and
4-7.4.4. Finally, the execution of FLA/SBA simulations
process activities support analysts in verifying whether or not
the developed system architecture addresses the safety
requirements, as stated in ISO 26262 4-7.4.8: Verification of

system design (TABLE III). The relation of the proposed
process and CHESS methodology with ISO 26262 activities
and work products are summarized in Table II and Table III.

VI. RELATED WORK

In the literature, the necessity of modeling and analyzing
non-functional properties at the architectural level is a
research area that has flourished in recent years. Various
architecture description languages (ADLs) with support for

non-functional properties have been introduced. Given the
wide adoption of UML, many of the proposed languages have
been implemented as UML profiles. EAST-ADL2 [7], for
instance, is a modeling language for electronic systems
engineering within the automotive domain, which extends
UML and SysML with various concerns, including safety
analysis. Due to its nature, EAST-ADL2 is very tied to the
automotive domain and to the AUTOSAR platform.

Across the years, OMG has released different profiles
addressing non-functional properties. The most successful is
the MARTE profile [20], which targets real-time properties
and provides some stereotypes to specify the hardware
architecture with richer details. The OMG “Dependability
Assurance Framework for Safety-Sensitive Consumer
Devices” [28] proposes a language for assurance for consumer
devices. However, the specification explicitly excludes critical
systems such as avionics or railways [28].

The work in [4] defines the Dependability Analysis
Modeling (DAM) profile, which extends MARTE with the
possibility to specify dependability properties. From the
methodology viewpoint, DAM does not impose constraints to
the modeler, allowing him/her to introduce inconsistencies, as
the same information may be entered in multiple ways. From
the practical viewpoint, we are not aware of tools actually
implementing the DAM profile, or frameworks based on it.

Outside of the UML world, the most complete proposal is
AADL, defined by the SAE “Architecture Analysis and
Design Language” standard; the AADL Error Model Annex
[24] is of particular relevance, since it allows users to add
dependability-related information to AADL architecture
models. Tool support is provided by the OSATE suite [5],
which also includes some plugins to perform dependability
and safety analysis. The CHESS Framework, being based on
UML profiles and separated design views, provides better
support of multiple concerns and greater extensibility.

HiP-HOPS [1] is a well-known methodology and tool to
perform semi-automated safety analysis at the software/system
architecture level, using failure logic analysis. The HiP-HOPS
toolset is however commercial software. Furthermore, it does
not address some of the concerns addressed by the CHESS
Framework, e.g., schedulability analysis and code generation.

To the best of our knowledge, at the time of writing
PolarSys CHESS [22] is the only open source toolset for the
development of embedded systems which simultaneously
provides: i) a UML-based language for the specification of
non-functional properties, ii) a customized editor with
enforcement of modeling constraints, iii) qualitative
dependability analysis, iv) quantitative dependability analysis,
vi) schedulability analysis, vii) back-annotation of analysis
results, and viii) code generation.

Recently, since standards like ISO 262626 [15] and
DO-331 [23] have started addressing model-based
development; works on how to apply existing MDE
techniques in a way that is compliant with standards have
started to appear. The work in [6], discusses an artifact-centric
compliance demonstration approach for software developed
using with code generation. The work only addresses software
certification, that is, Part 6 of ISO 26262. The work in [10]
addresses qualification of code generation tools with respect to

TABLE II. PROCESS/CHESS METHODOLOGY, AND ISO 26262.

ISO 26262 Activities The Proposed

Process Activities

The Proposed Process Work

Products

3-5: Item definition

System Definition:
1.1 – Create a Block
Def. Diagram

1-System Model in a Block

Definition Diagram

Subsystem
definition: 1.2 –
Create an Internal
Block Diagram

1-Subsystem internal block

diagrams

3-6: Initiation of the
safety lifecycle

3 - CHESS-SBA
activities

3-Detailed component error models

3-7: Hazard analysis
and risk assessment

2-CHESS-FLA and
3-SBA activities

2-Contrib. component deviations

3-Component error models

2.5 - Execute failure
logic analysis

2-System, subsystem, components
annotated with failure propagation
information.

2-Identified hazards

3.8 - Execute state-
based analysis

3-Risk assessment and hazard
classification: evaluation of the risk
posed by each hazard

3-8: Functional safety
concept

3.8 - Execute state-
based analysis

3-Allocated functional safety
requirements to the architecture and
safety integrity requirements to
mitigate hazards

 4-6.4.2: Safety
mechanisms

3-Allocated safety integrity
requirements to address fault
detection and fault mitigation

4-7.4.3.1: Measures for
avoidance of systematic
failures

2.5 - Execute failure
logic analysis,

3.8 - Execute state-
based analysis

2-CHESS-FLA (Fig. 5.) and 3-SBA
model simulations (Fig. 9)

4-7.4.8: Verification of
system design

4-7.4.4: Measures for
control random hard-
ware failures

3.8 - Execute state-
based analysis

3-CHESS-SBA simulation
interpretation enables analysts to
determine measures for detection,
control, or mitigation of random
hardware failures

TABLE III. CHESS AND ISO 26262 WORK PRODUCTS.

ISO 26262 Part ISO 26262 WP CHESS Methodology WP

3-5: Item definition

3-5.5 Item definition

CHESS system and
component models and their
instances.

3-6: Initiation of the
safety lifecycle

3-6.5.1 Impact analysis CHESS-FLA and SBA

3-7: Hazard analysis
and risk assessment

3-7.5.1 HARA CHESS-FLA and SBA

3-7.5.2 Safety goals CHESS SBA

3-7.5.3 Verification review
report of HARA and safety
goals

CHESS-FLA and SBA
model simulations

3-8: Functional safety
concept

3-8.5.1 Functional safety
concept (FSC)

Risk exposure calculus
derived from CHESS-SBA
results. 3-8.5.2 Verification report

of the FSC

8

ISO 26262-6. Similarly, an approach for the qualification of
model-based tools according to ISO 26262 is proposed in [14].
The work in [12] analyzes the adequacy of a model-based
testing tool, Fail-SafeMBT, with respect to the DO-178C/DO-
331 standards. The authors define a process for using the tool
in accordance with the work products expected by the
standards. The authors of [21] performed a survey on model-
based approaches to support avionics software development
and certification according to DO-178C, concluding that there
is a lack of integrated approaches [21]. In this paper, we make
a step forward in demonstrating the applicability of the
integrated PolarSys CHESS methodology as a support for the
standard-compliant certification of critical systems.

VII. CONCLUSION

This paper has presented a systematic process to support
system designers and safety analysts in using the CHESS
PolarSys methodology capabilities in the system design and
dependability analysis and modeling. The proposed process
prescribes a set of steps to perform system design,
dependability analysis using failure logic analysis and state-
based stochastic analyses in compliance with DO-331 MBD
principles and safety standards. The feasibility of the proposed
process was verified by applying it for design and
dependability analysis of a real world automotive hybrid
braking system, originally designed in MATLAB/Simulink.

This paper contributed with real life examples and
walkthroughs to support the end user in working with the
toolset of the CHESS methodology. The proposed process and
case study are expected to stimulate system designers and
safety analysts in incorporating the CHESS methodology and
toolset in their safety-critical systems projects, and guide them
at producing certifiable evidence in conformance with safety
standards. Being the toolset released as open source [22], we
also aim to stimulate the interest of researchers and engineers
in improving and extending the capabilities of the CHESS.

Further work intends to investigate the integration of
variability management techniques and tools into CHESS
methodology and toolset. In this way, we intend to present
how CHESS can be combined with exiting Eclipse-based
variability analysis and management techniques [26] to enable
support for software product line engineering and systematic
reuse of a CHESS-ML model. Thus, supporting the
specification of different error models for the same component
based on domain expertise, and support variability resolution
based on the concrete application design. We also intend to
investigate how dependability results can vary for a given
system model when derived from a reusable CHESS model.
Further work also intends to provide additional validation on
in-depth scenarios with other types of failure modes such as
timing and commission failures.

REFERENCES

[1] Adachi, M. Papadopoulos, Y., Sharvia, S., Parker, S., Tohdo, T. An approach

to optimization of fault tolerant architectures using HiP-HOPS. Software:

Practice and Experience, 41: 1303–132, 2011.

[2] ARTEMIS-JU-100022 CHESS – Composition with guarantees for High-

integrity Embedded Software components aSsembly, available on-line:

http://www.chess-project.org/

[3] ARTEMIS-JU-333053 CONCERTO - Guaranteed component assembly with

round trip analysis for energy efficient high-integrity multicore systems,

available on-line: http://www.concerto-project.org/.

[4] Bernardi, S., Merseguer, J., Petriu, D. A dependability profile within

MARTE Software and Systems Modeling, Springer Berlin / Heidelberg,

2011, 10, 313-336.

[5] Carnegie Mellon University, OSATE 2.3.0, http://osate.org (Accessed 20

november 2017).

[6] Conrad, M., Artifact-centric compliance demonstration for ISO 26262

projects using model-based design. In Proceedings of the GI-Jahrestagung, v.

208, pp. 807-816, 2012.

[7] P. Cuenot et al. “The EAST-ADL Architecture Description Language for

Automotive Embedded Software”. In: Giese H., Karsai G., Lee E., Rumpe

B., Schätz B. (eds) Model-Based Engineering of Embedded Real-Time

Systems. Lecture Notes in Computer Science, vol 6100. Springer, Berlin,

Heidelberg, 2010.

[8] CONCERTO, Deliverable D5.6: “Use case Evaluations – Final Version”,
May 2016. http://www.concerto-project.org/results

[9] De Castro, R., Araújo, R. E., Freitas, D. “Hybrid ABS with Electric motor

and friction Brakes’, 22nd International Symposium on Dynamics of

Vehicles on Roads and Tracks, Manchester, UK, 2011.

[10] Dion, B. A Cost-Effective Model-Based Approach for Developing ISO

26262 Compliant Automotive Safety Related Applications. SAE Technical

Paper, 2016.

[11] EUROCAE. ARP4754A - Guidelines for Development of Civil Aircraft and
Systems, EUROCAE, 2010.

[12] Gallina, B., Andrews, A. Deriving verification-related means of compliance
for a model-based testing process. In Proc. of IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1-6, 2016.

[13] Gallina, B., Atif Javed, M., Ul Muram, F., Punnekkat, S. A model-driven

dependability analysis method for component-based architectures. In

Proceedings of the Euromicro-SEAA Conference, IEEE Computer Society,

Cesme, Izmir, Turkey, September, 2012.

[14] Hillebrand J., Reichenpfader P., Mandic I., Siegl H., Peer C. Establishing
confidence in the usage of software tools in context of ISO 26262. In: Proc.
of SAFECOMP 2011. LNCS, v. 6894. Springer, 2011.

[15] ISO. ISO 26262: road vehicles functional safety, 2011.

[16] Mazzini, S., Favaro, J., Puri, S., Baracchi, L. CHESS: an open source
methodology and toolset for the development of critical systems. In Join
Proceedings of EduSymp/OSS4MDE@MoDELS, 2016, pp. 59-66.

[17] Montecchi L., Gallina B. SafeConcert: A Metamodel for a concerted safety
modeling of socio-technical systems. In: Model-Based Safety and
Assessment (IMBSA). LNCS, v. 10437, Springer, 2017.

[18] Montecchi, L., Lollini, P, Bondavalli, A.“A reusable modular toolchain for
automated dependability evaluation. In VALUETOOLS, Torino, Italy, pp.
298-303, 2013.

[19] Object Management Group (OMG), “MDA Guide rev 2.0”, OMG Document
ormsc/2014-06-01, June 2014.

[20] Object Management Group. A UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems, Version 1.1. OMG Document
formal/2011-06-02. June 2011

[21] Paz, A., El Boussaidi, G. On the exploration of model-based support for DO-
178C-compliant avionics software development and certification. In ISSRE
Workshop, IEEE, pp. 229-236, 2016.

[22] PolarSys CHESS, available on-line: http://www.polarsys.org/chess.

[23] RTCA. DO-331: model-based development and verification supplement to

DO-178C and DO-278A. Radio Technical Commission for Aeronautics,

2011.

[24] Society of Automotive Engineers. SAE Standards: AS5506/1, Architecture
Analysis & Design Language (AADL) Annex Volume 1, June 2006.

[25] U.S. Department of Defense, “Military Handbook – Reliability Prediction of
Electronic Equipment”, MIL-HDBK-217F, December 1991.

[26] Vasilevskiy, A., Haugen, Ø., Chauvel, F., Johansen, M. F., Shimbara, D. 2015. The
BVR tool bundle to support product line engineering. In Proc. of the 19

th
 Int. Software

Product Line Conf., ACM, New York, USA, 380-384.

[27] Wallace, M. Modular architectural representation and analysis of fault
propagation and transformation. Electronic Notes in Theoretical Computer
Science, v. 141 n.3, pp.53-71, December, 2005.

[28] Object Management Group (OMG), “Dependability Assurance Framework
for Safety-Sensitive Consumer Devices (DAF)”, Version 1.0, February 2016.

