
9
Composable Framework Support

for Software-FMEA through
Model Execution

Valentina Bonfiglio1, Francesco Brancati1, Francesco Rossi1, Andrea
Bondavalli2,3, Leonardo Montecchi2,3, András Pataricza4,

Imre Kocsis4 and Vince Molnár4

1Resiltech s.r.l., Pontedera (PI), Italy
2Department of Mathematics and Informatics, University of Florence,
Florence, Italy
3CINI-Consorzio Interuniversitario Nazionale per l’Informatica-University
of Florence, Florence, Italy
4Dept. of Measurement and Information Systems, Budapest University of
Technology and Economics, Budapest, Hungary

9.1 Introduction

Performing Failure Mode and Effects Analysis (FMEA) during software
architecture design is becoming a basic requirement in an increasing number
of domains. However, due to the lack of standardized early design-phase
model execution, classic Software-FMEA (SW-FMEA) approaches carry
significant risks and are human effort-intensive even in processes that use
Model-Driven Engineering (MDE).

From a dependability-critical development process point of view,
FMEA – more generally, the identification of hazards and planning their
mitigation – should be performed in the early phases of system design; for
software, this usually translates to the architecture design phase [1]. Addition-
ally, for some domains, standards prescribe the safety analysis of the software
architecture – as is the case, e.g., with ISO 26262 in the automotive domain.

However, historically, software architecture specifications in the most
widely used modelling languages either do not represent behaviour, only
structure, or the behavioural models do not have standardized operational

183

184 Composable Framework Support for Software-FMEA

semantics. This is a major problem for SW-FMEA; in contrast to hardware,
relatively small changes of “internals” of a software component (essentially
the program logic) can lead to wide variations in the response of executed
software components to various external and internal faults. This means that
in addition to computing error propagation from component to component,
the sensitivity of each component for internal and external faults has to
be explored on a case by case basis, and this can be done only by using
specifications of behaviour.

In the absence of this capability, the system modeller has to either make
strong guarantees in advance (“this component will be fail-silent under all
circumstances”), or make too pessimistic assumptions (e.g., “all kinds of
output failures are possible”). Significant risk is introduced by the fact that
the error propagation assumptions made at this stage have to hold for the
final system – otherwise the constructed hazard mitigation arguments will not
hold, either. Thus, without rolling back the development process, we run the
risk of having to enforce not easily enforceable guarantees, or having to use
dependability mechanisms that are actually superfluous in the given system.

This chapter addresses the aforementioned problem on the basis of a new
standard for the UML 2 modelling language. Throughout the next sections,
we will introduce the reader to advances in standardized model execution
semantics, the outline of a composable framework built on top of executable
software architecture models to help SW-FMEA, as well as a realization of
such a framework applied on a case study from the railway domain.

9.2 Software-FMEA Using fUML/ALF

For UML 2, the status quo of not having standardized operational semantics
has changed with the standardization of “Foundational UML” (fUML) [2]:
a core subset of UML 2 has been given standardized execution semantics.
Although fUML mainly contains facilities for describing structured activities
of communicating, typed objects, in theory, the whole UML 2 language can
be mapped to it. To facilitate practical application, fUML also has an action
language called Alf, the “Action Language for Foundational UML” [3].

Alf is a quasi-imperative, Java-like programming language. As a “surface
language” for fUML, its structure and execution is directly and unambigu-
ously mapped to fUML. Whole programs can be written purely in Alf, but
it can be also used to define specific behaviours in an encompassing UML 2
model. However, in this case, the operational semantics of the embedding
model containing the Alf code snippets also has to be specified, e.g., by trans-
lating the whole model to pure Alf. This is not necessarily a shortcoming; our

9.2 Software-FMEA Using fUML/ALF 185

approach actively exploits the partially “underdefined” composite structure
semantics. That said, it is worth to note that the newly finalized standard
“Precise Semantics of UML Composite Structures” (PSCS) [4] addresses
exactly this issue.

9.2.1 Tooling for fUML and Alf

Due to the novelty of the languages, fUML and Alf tooling is still maturing,
but the progress is steady. For both fUML and Alf, reference interpreters
exist [5]; for fUML, additional execution engines are also available [6].
Papyrus, the popular Eclipse-based modelling environment includes an Alf
editor for UML 2 language elements and supports direct compilation of Alf
code into UML 2 [7].

The compilation of fUML/Alf to other languages and the formal anal-
ysis of fUML/Alf specifications are much less developed, with no directly
(re)usable solutions known. That said, notably [8] presents a full Model-
Driven Engineering approach where Alf code is translated into an interme-
diate model that, in turn, is translated to C++. On the formal analysis side,
initial progress has been made both for theorem proving [9] and classic model
checking [10].

9.2.2 Software-FMEA through Alf Execution

Earlier work performed in the CECRIS project (“Certification of Critical
Systems”) [11] has proposed an approach for the SW-FMEA of component-
based systems through Alf execution (using an interpreter) [12]. The main
idea of the approach is summarized in the following three steps.

1. Components as well as their Alf code are translated into a single Alf
program. During translation, the code for a cyclic scheduler component
is also woven into the Alf source (with a simple logical clock). The static
component activation schedule is determined by the modeller.

2. As a form of model-level fault injection, the translation can inject some
simple errors into the scheduler as well as replace output/input port
behaviours with “programmed” error behaviours.

3. Error propagation is analyzed by comparing simulation runs of the fault-
free case to various fault activations.

In general, simulation certainly has its drawbacks; e.g., it is hard to ensure that
all execution paths have been exercised in a nondeterministic system, though
this is not a major issue for three reasons. First, the reference simulator per-
forms sequential execution with deterministic choices (a semantic variation

186 Composable Framework Support for Software-FMEA

that the fUML standard fully allows). Second, although the embedded system
models we apply our approach to do not exhibit parallelism at either the micro
or the macro level, there is at least one fUML virtual machine called moliz
that supports very fine-grained external control of model execution [13].
This means that if the need arises, the various interleaving executions can
be tracked, accounted for and controlled. Thirdly, we do expect solutions for
the application of formal methods (at least model checking) on fUML/Alf
models to appear in the near future; these, by their nature, cover the entire
state space of models.

These considerations demonstrate an important strength of the approach
proposed in Bonfiglio et al. [12] and provides one of the main motivations
for the framework presented in this chapter. If, during the translation of the
component model to pure Alf, we are able to equip the Alf code with all
the facilities that transform model execution into explicit error propagation
execution, then we can reap the benefits of advances in fUML/Alf tooling
without additional effort.

9.2.3 Framework Support for Executable Error Propagation

Along the previous consideration, we describe the design of a model trans-
formation framework that transforms component models with Alf behaviour
specifications into a pure Alf program that simulates error propagation by
passing error tokens between the components and computing (or approximat-
ing) the input-output error transformation that a potentially faulty software
component exhibits upon (erroneous or correct) activation (Figure 9.1). As
the user-supplied Alf code cannot always be used to compute error propaga-
tion (e.g., the component itself might have an active internal fault), in some
cases, error transformation draws on a library of behavioural patterns (e.g.,
“fail-silent”).

The orchestration of the execution of components is broken into a number
of configurable, cooperating functions. These functions have generic variants;
these are drawn from a framework library of options (Figure 9.2).

9.2.4 Error Tokens, Component Activation

The composite error tokens passed between components carry a reference
value – the object that should be seen during the interaction in a fault free
system – as well as error information. The error being passed is either a
standard category (succinctly introduced, e.g., in TanjaMayerhofer [14]), a
refinement thereof, or a specific one (e.g., a specific erroneous value that is
late by a known amount of time).

9.2 Software-FMEA Using fUML/ALF 187

Figure 9.1 Composite error token passing during execution and component activation.

188 Composable Framework Support for Software-FMEA

Framework library (Alf code)

Component1

Normal

behavior: Alf

Component2

Normal

behavior: Alf

Port Port

Model of

Computa!on

(MoC)

Port
Port

Port

Component

ac!va!on

sequence logic

Token delivery

logic

Fault Ac!va!on

logic

Behavioral

dependability

pa"erns

Error

specializa!on

taxonomy

UML MARTE component model with Alf behavioral specifica!on

Framework

configura!on

Woven into single, self-contained Alf program

Model clock

Figure 9.2 Framework components for program composition.

Component activation computes the output error tokens of the component
based on the input ones. The logic for producing the error outputs depends
on numerous, but mostly straightforward factors (Figure 9.2); to note is that
for computing the error output when the specific error is not known, only the
category, the modeller may decide to either run the user-supplied Alf code
on a sample from the class or use a predefined error category transformation
logic from a library of dependability behavioural patterns.

9.2.5 Execution Orchestration

Component models in UML 2 do not have standard execution semantics;
the cyclic execution logic with a static schedule in Bonfiglio et al. [12]
(summarized in Section 9.2.2) came from the domain of the modelled system.
As a matter of fact, the overall approach is able to support numerous models
of computation (MoC) – rules defining the semantics of control, concurrency,
communications and time. Synchronous data flow networks, discrete events,
static scheduling, and workflow-like execution all fit the approach through
configurable, reusable implementations in Alf (with varying complexity,

9.3 Case Study: Application of Software-FMEA through Model Execution 189

of course). In order to be able to account for orchestration errors, the
framework is also intended to support runtime fault injection on the MoC
implementations.

9.2.6 Fault Injection

Fault injection is performed by configurable fault activation logic implemen-
tations. These determine active faults of the various components (including
orchestration) at various points in time (if the MoC defines a notion of time).

9.3 Case Study: Application of Software-FMEA
through Model Execution

The case study used for the Software FMEA process was based on the railway
domain, more specifically the European Rail Traffic Management System
(ERTMS) and its Control Command part European Train Control System
(ETCS) [15]. ERTMS/ERTCS is an automatic train protection system, and
as such, a safety-critical system. ERTMS is composed of trackside units (e.g.
beacons for positioning and information reporting) and on-board units. The
full system is rather complex, thus in the case study only a small, simplified
part of the specification was modelled. The focus of the modelling was on
the safety function of receiving and consistency checking of messages from
trackside beacons called balises.

9.3.1 Definition of the Modelled System

The case study system was based on the balise-related basic functionality
of ERTMS/ETCS. The system was modelled using UML and Alf (Action
Language for Foundational UML) [16]. The static structure part of the system
was also described with the textual syntax of Alf; however, some of these will
be represented on graphical diagrams for convenience.

As the envisioned Software-FMEA approach should be applied early
in the design phase, no actual implementation or detailed design model is
available in this stage. Therefore, in order to exercise the behaviour defined
in the executable model, the “environment” of the modelled system had to be
simulated. This scaffolding was also developed in Alf, thus the model consists
of two main parts.

• Target system: the On-board Unit (OBU) of ETCS, the core software
running in the train.

• Environment: simulation of the track, trackside equipment and move-
ment of the train.

190 Composable Framework Support for Software-FMEA

Figure 9.3 Parts of the simulated environment in the case study (figure based on European
Railway Agency [15]).

Note that to reduce the complexity, the simulation of the environment
focuses only on the necessary details to support the modelled functionality.
Hence, the simulation is based on discrete events, and speed, distance and
braking are all abstracted.

The main elements in the environment of the system are depicted on
Figure 9.3 (based on Figure 2.6 in ETCS Subsection 026 Chapter 2 [15])
and are briefly explained below.

• Track. The train is moving on a track (the actual physical dimensions of
the track are abstracted in the case study).

• Segment. The track is composed of neighboring segments. The train can
move from one segment to another neighboring one.

• Train. The train can move in forward or backward one segment in each
simulation step (the actual speed of the train is abstracted).

• Balise. A passive beacon deployed onto the track. When the train passes
over a balise, it powers it up remotely via radio waves, causing the balise
to send a so called telegram to the train.

• Balise Group. Balises can be organized in balise groups. A balise group
can contain up to 8 balises. By giving position numbers to individual
balises inside a group, the train can identify direction and detect missed
balises.

The modelled target system consists of the main parts depicted on Figure 9.4
and explained below.

9.3 Case Study: Application of Software-FMEA through Model Execution 191

Figure 9.4 Main components of the modelled system.

• Balise Transmission Module (BTM). Responsible for receiving raw,
individual telegrams from the balises, checking and then forwarding
them to the Kernel.

• Kernel. Responsible for the core functionality in ETCS. In the current
case study, it collects telegrams from different balises to form and
analyze balise group messages. If an error is detected, it can notify the
driver through DMI or control the train through TIU.

• Driver Machine Interface (DMI). Can display information on the driver
interface.

• Train Interface Unit (TIU). Can control the train. In the current case
study, it can apply breaking.

The simulated environment and the target OBU system is connected by
sending and receiving balise telegrams. The structure of a telegram is defined
in Chapter 8 of the ETCS Subset 26 (SRS) [15], and is summarized in
Figure 9.5.

The telegram itself was modelled using data types in Alf. The simulated
balise and the BTM module directly work on this data structure, while the
Kernel receives an object structure built by the BTM based on the telegrams.

The modelled behaviour is attached to the active classes in the system.
Basically, they are all waiting for signals to receive, and then perform the
signal handler behaviour specified in Alf. For example, upon receiving a raw
telegram, the BTM checks the consistency of the header fields. This was
implemented in the Alf activity presented in Figure 9.6.

The model and the modelled scenarios were executed in the Alf Reference
Implementation [17]. The model includes logging to create execution traces.
For example, the output in Figure 9.7 shows a simple, valid execution trace
where the OBU receives a consistent telegram from a single balise. The same

192 Composable Framework Support for Software-FMEA

 GENERAL FORMAT OF BALISE TELEGRAM

Field No. VARIABLE Length (bits) Remarks

1 Q_UPDOWN 1 Defines the direction of the information:

Down-link telegram (train to track) (0)

Up-link telegram (track to train) (1)

2 M_VERSION 7 Version of the ERTMS/ETCS system.

3 Q_MEDIA 1 Defines the type of media: Balise (0)

4 N_PIG 3 Position in the group. Defines the position of the

balise in the balise group.

5 N_TOTAL 3 Total number of balises in the balise group.

6 M_DUP 2 Used to indicate whether the information of the

balise is a duplicate of the balise before or after

this one.

7 M_MCOUNT 8 Message counter (M_MCOUNT) – 8 bits.

To enable detection of a change of balise group

message duringpassage of the balise group.

8 NID_C 10 Country or region.

9 NID_BG 14 Identity of the balise group.

10 Q_LINK 1 Marks the balise group as linked (Q_LINK = 1) or

unlinked (Q_LINK = 0).

 Packet 0

(optional)

14 Virtual Balise Cover marker.

 Information Variable This information is composed according to the

rules applicable to packets.

 Packet 255 8 Finishing flag of the telegram.

Figure 9.5 Structure of a balise telegram [15].

privateactivityCheckTelegramConsistency(in t : Telegram) : Boolean {

let consistent: Boolean = true;

if (t.Q_UPDOWN != UpDown.Up || t.Q_MEDIA != Media.Balise ||

t.N_PIG<0 || t.N_PIG>7 ||

t.N_TOTAL<0 || t.N_TOTAL>7) {

 consistent = false;

 }

//further checks ...

return consistent;

}

Figure 9.6 Alf implementation of a BTM behaviour.

9.3 Case Study: Application of Software-FMEA through Model Execution 193

[test] SingleBalise_Valid_ReceiveTelegram

[train] Received MoveForward

[train] Moved to segment s2

[train] train -> s2 : TelePower

[s2] Received TelePower from train

[s2] s2 -> b1 : TelePower

[b1] Received TelePower from train

[b1] b1 -> BTM : TelegramReceived

[BTM] Received Telegram from Balise with position 0 in BG 2

[BTM] BTM -> KERNEL : TelegramReceived

[KERNEL] Received Telegram from Balise 1 in BG 2, consistent:

true

Figure 9.7 Log trace of a fault-free execution of the case study model.

Figure 9.8 Visualization of a fault-free execution tree of the case study model.

trace can be visualised by PlantUML as a sequence diagram (Figure 9.8). In
the modelled environment, there is a train, a track with two segments (s1, s2)
and a balise (b1). The train initially stands on the first segment (s1) and it
moves to the second (s2) as the first step of the test case. Note that for the
sake of simplicity, the component representing the train in the case study is
not associated with the balise component, so powering up a balise is mediated
by the segment component.

9.3.2 Process Evaluation

As the discussion in section “Software-FMEA Using fUML/ALF” pointed
out, the fundamental tenet of our method is to perform SW-FMEA on
component-based systems through Alf execution (as of now, using an
interpreter).

194 Composable Framework Support for Software-FMEA

Based on the presented use case, process-wise, it is apparent that the
SW-FMEA approach can be used in a “drop-in” fashion in existing safety
processes, replacing classic approaches during software architecture analysis.
The major added value is delivering much tighter bounds on error propagation
characteristics (certainly not probabilities!) at the point in design where the
major dependability mechanisms are most probably decided upon. While
much more sophisticated than classic FMEA (and even such composable
methods as HiP-HOPS [18]), the approach largely remains an FME(C)A –
and thus there is no real reason it cannot be a candidate method in virtually
all safety processes where SW-FMEA is necessary.

Importantly, the ability to “mix and match” specific errors and error cate-
gories in evaluating and propagating errors may enable new process patterns.
Refinement of our knowledge of the error propagation characteristics in the
system is a definite (and largely new) option in this setting; thus, in theory,
safety arguments could very well evolve cooperatively with the refinement of
system and software design. Future research will explore this possibility.

Certainly, there are some apparent drawbacks, too.

• Modelling overhead. The least significant drawback that nevertheless
has to be mentioned is that the whole approach assumes that the system
under design is created in an appropriate Model-Driven System Design
(MDSD) workflow. Although MDSD is becoming the default in many
industries where SW-FMEA has to be performed, it is not necessarily
used in all settings.

• Early definition of behaviour. Executable models such as Alf give us
the possibility to model behaviour early on in the design process – but
this does not automatically mean that it is convenient or feasible at all.
Further studies are necessary to evaluate this aspect.

• Proof of behavioural equivalence. When executable behavior is speci-
fied early on in the development process and it is the basis of safety argu-
ments, behavioural equivalence of the final system (and components)
with this early specification has to be maintained during development.

• Simulation. As of now, we use simulation for model evaluation. Sim-
ulation has its drawbacks; e.g., it is hard to assure that all execution
paths have been exercised in a nondeterministic system. We argued in
chapter “Software-FMEA through Alf execution” that in our case this
is not a major issue. In fact, the proposed approach does not rely on
any specific simulation technique; all the facilities that transform model
execution into explicit error propagation execution are included in the
model. This way, we will be able to reap the benefits of advances in
fUML/Alf tooling without additional effort.

9.4 Implementation in a Blockly-based Modelling Tool 195

9.4 Implementation in a Blockly-based Modelling Tool

To demonstrate the general applicability of the approach presented so far, the
main points of the framework were also implemented for the modelling tool
introduced in “Chapter 4 – SYSML-UML like modeling environment based
on Google Blockly customization”.

The tool supports the modelling of static and dynamic aspects of
component-based systems by using blocks, interfaces and connections to
model structure, as well as sequence diagrams to model the collective
behaviour of the whole system. The former aspect defines the participants and
their relations, while the latter describes their interactions and the exchanged
data. The basic block of behaviour is a Service, which may have a specific
implementation in Python. Interactions then consist of Service Requests and
control logic (e.g. decisions). Once modelled, the tool can visualize the
connections in the system, as well as the sequence diagram defined for the
global behaviour. One of the strongest aspects of the tool is the ability to
generate a Python program for the simulation of the system. With small
modifications, the generated code is an appropriate candidate for the methods
defined in the previous sections.

9.4.1 Preparation of the Model

The case study model was again based on the balise-related basic functional-
ity of ERTMS/ETCS (Figures 9.3 and 9.4 for the structure and Figure 9.7 for
the behaviour). A bird’s eye view of the model itself is presented in Figure 9.9.

The generated code has been augmented with logging: values of parame-
ters and variables after assignment result of decisions and assertions as well
as service requests were all output to build an execution trace.

As before, faults activation was done by injected, configurable logic that
would determine which faults are activated during execution. In practice,
this involves the replacement of certain constructs (e.g., expressions) with
a function call that either performs the original behaviour (e.g., returns the
value of the original expression) or alters the behaviour in some way (e.g.,
negates a condition). In the current case study, faults affected the assignment
of Boolean and integer values (altering the value of the right-hand-side
expression), the conditions in decisions and the sending of service requests
(causing an omission fault).

The fault activation logic can be fine-tuned by setting the maximum num-
ber of active faults as well as if the faults are transient of permanent. In case of
permanent faults, fault distribution is balanced by an initialization logic that
randomly selects a configured number of faults, which may then activate if

196 Composable Framework Support for Software-FMEA

Figure 9.9 Blockly-based model of the case study system and its environment.

the affected statements are executed (i.e. the injected fault activation function
is called). In this case study, the logic was configured to activate at most one
permanent fault.

Faults were injected in the relevant parts of the control logic of the train
(i.e. the Kernel and the Balise Transmission Module), but message omissions
were also included in the code simulating the powering of the balise to
emulate failure of equipment. Every time a fault activated, its type and the
affected line were logged, but not the specific value used to modify the
original expression.

Two test cases were used for the simulations: in the first one, the balise
sends a consistent telegram, while in the second; the balise has corrupted data
(it has an invalid position value). Thus, according to the specified behaviour,
correct reactions of the system would be to acknowledge the reception of
the telegram in the first case, and applying emergency brake in the second.
Assertions in the model checked if the produced behaviour was in accordance
with the balise data, as well as if a telegram was successfully processed in

9.4 Implementation in a Blockly-based Modelling Tool 197

a given time frame (in more complex settings, this could be detected and
handled when reaching the next balise).

9.4.2 Aggregation and Analysis of Traces

A single simulation of the fault-free model and 1000 simulations with random
faults in each test case provided a satisfying number of traces to conduct a
probabilistic analysis. The traces were processed through the following steps:

1. Error traces: Every faulty trace was compared to the reference (fault-
free) trace to obtain the differences, i.e. to identify the chain of errors
that led from a single fault activation to a failed assertion. Corresponding
to the injected faults, the errors could be Parameter errors, Data errors,
Control errors and Missing calls.

2. Superposition of traces: The error traces were merged to obtain a graph.
An arc in this graph from A to B means that in some trace, error A was
immediately followed by error B.

3. Annotation with occurrences: Arcs of the graph were then annotated by
the ratio of the number of traces in which B has eventually occurred after
A to the total number of traces in which A has occurred. This value cor-
responds to the conditional probability of eventually seeing B if A has
occurred. This way, a probability of 1 means there is a strong correlation
between errors A and B, which in this case may also suggest a causal
relationship. Hence, these cases are visually distinguished by using a
solid line for the potential causalities and a dashed line otherwise.

4. Reducing noise: Various techniques were employed to remove arcs that
were the consequences of other relationships. It is worth to note that,
this part of the process is the most theoretic and has a lot of room for
improvements. The more efficient the techniques used here are, the more
meaningful the results of the process can be.

Nodes of the graph (fault activations, errors and assertion failures) were
grouped by the component which logged them. The output for the test case
with the valid telegram can be seen on Figure 9.10. Things to node about the
figure are the following.

• In an FMEA terminology, each box corresponding to a component con-
tains the internal faults and the failure modes (errors) of the component.
Arcs entering the box denote external failure modes that affect this
component, while outgoing arcs denote failure modes of the component
that affect others.

• In the case study model, omission of service requests always results in a
failure to handle the balise.

198 Composable Framework Support for Software-FMEA

Figure 9.10 Error propagation in the case study model when input is consistent.

• On the other hand, corruption of data causes a system-level failure only
if the value of the Boolean flag “Consistent” gets corrupted. Once this
happens, there is no way to avoid failure, but only some corruption of
the other values leads to the corruption of the flag.

• A fault affecting the value of “Consistent” does not always cause a data
error, because always returning True is considered a correct answer in
this scenario.

Analysis of the test case with the invalid telegram showed similar results.

References 199

9.5 Concluding Remarks

In the chapter, the reader was introduced to the main ideas of a novel
approach to SW-FMEA for component-based systems that can be composed
with existing safety processes. The method can replace or augment classic
approaches during software architecture analysis and automating much of the
traditional FMEA techniques.

The work transfers techniques well-known in academia into the SW-
FMEA of safety-critical embedded systems, with strong potential appli-
cability in other dependability-critical domains. These techniques include
explicitly embedding fault activation logic and operational semantics into
the interpreted model and constructing error automata from the specification
of normal and abnormal behaviours (see e.g., [19]). At the same time, the
presented approach promises to have a low effort overhead over producing the
base models (that are produced in a model-driven process even in the absence
of SW-FMEA); something that is sorely missing from manually performing
SW-FMEA.

References

[1] Pataricza, A. (2007). “Systematic Generation of Dependability Cases
from Functional Models,” in Proceedings of the Symposium FORMS/
FORMAT – Formal Methods for Automation and Safety in Railway and
Automotive Systems, Budapest, Hungary.

[2] Object Management Group. (2016). Semantics of a Foundational Subset
for Executable UML Models (fUML), version 1.2.1.

[3] Object Management Group. (2013). Action Language for Foundational
UML (Alf), version 1.0.1.

[4] Object Management Group. (2015). Precise Semantics of UML Com-
posite Structures (PSCS), version 1.0.

[5] GitHub. (2016). Foundational UML Reference Implementation. [Online].
Available at: https://github.com/ModelDriven/fUML-Reference-Implem
entation (accessed on 1 February 2016).

[6] GitHub. (2016). moliz – Model Execution Based on fUML [Online].
Available at: https://github.com/moliz (accessed on 1 February 2016).

[7] Seidewitz, E, and Tatibouet, J. (2015). “Combining Alf and UML in
Modeling Tools – An Example with Papyrus,” in OCL 2015 – 15th Inter-
national Workshop on OCL and Textual Modeling: Tools and Textual
Model Transformations Workshop Proceedings, 105–119.

200 Composable Framework Support for Software-FMEA

[8] Ciccozzi, F. (2014). From Models to Code and Back: A Round-trip
Approach for Model-driven Engineering of Embedded Systems. Doctoral
thesis, Mälardalen University, Sweden.

[9] Romero, G., Schneider, K., and Ferreira, M. G. V. (2014). “Using
the base semantics given by fUML for verification,” in 2014 2nd
International Conference on Model-Driven Engineering and Software
Development (MODELSWARD) (New York, NY: IEEE), 5–16.

[10] Schneider, A. S. and Treharne, H. (2011). “Towards a Practical
Approach to Check UML/fUML Models Consistency Using CSP,” in
Formal Methods and Software Engineering, eds S. Qin and Z. Qiu
(Berlin: Springer), 33–48.

[11] CECRIS. (2016). CECRIS – Certification of Critical Systems, Grant
Agreement no.: 324334, IAPP Marie Curie Action, 7th Frame-
work Program. Available at: http://www.cecris-project.eu (accessed on
16 January 2016).

[12] Bonfiglio, V., Montecchi, L., Rossi, F., Lollini, P., Pataricza, A., and
Bondavalli, A. (2015). “Executable Models to Support Automated
Software FMEA,” in 2015 IEEE 16th International Symposium on
High Assurance Systems Engineering (HASE) (New York, NY: IEEE),
pp. 189–196.

[13] Object Management Group. (2011). UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems, version 1.1.

[14] Mayerhofer, T. (2014). Defining Executable Modeling Languages with
fUML. Doctoral thesis, Vienna University of Technology.

[15] European Railway Agency. (2014). “ERTMS/ETCS System Require-
ments Specification”, SUBSET-26.

[16] Object Management Group. (2013). Semantics of a Foundational Subset
for Executable UML Models (fUML).

[17] ModelDriven. (2016). ModelDriven.org: Action language for UML (Alf)
open source implementation. Available at: http://modeldriven.github.io/
Alf-Reference-Implementation/

[18] Papadopoulos, Y., McDermid, J., Sasse, R., and Heiner G. (2001). Anal-
ysis and synthesis of the behaviour of complex programmable electronic
systems in conditions of failure. Reliabil. Eng. Syst. Safety 71, 229–247.

[19] Gallina, B., and Punnekkat, S. (2011). “FI4FA: A Formalism for Incom-
pletion, Inconsistency, Interference and Impermanence Failures’ Analy-
sis,” in 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA) (New York, NY: IEEE), 493–500.

