D-MBTDD: An Approach for Reusing Test
Artefacts in Evolving Systems

Thais Harumi Ussami and Eliane Martins
Institute of Computing
University of Campinas
Campinas, S.P., Brazil

Email: thais.ussami@gmail.com, eliane @ic.unicamp.br

Abstract—Agile software development methodologies use an
iterative and incremental development in order to handle evolving
systems. Consolidated techniques in the field of testing have been
applied to these techniques with the main purpose of aiding in
the test creation stage. An example is Model-Based Test Driven
Development (MBTDD) which joins the concepts of Model-Based
Testing (MBT) and Test Driven Development (TDD). However,
when iterative and incremental processes are used, problems
appear as the consequence of the evolution of the system, such as:
how to reuse the test artefacts, and how to select the relevant tests
for implementing the new version of the system. In this context,
this work proposes a process called D-MBTDD in which the agile
development of a system is guided by model-based tests, focusing
on helping with the reuse of test artefacts and on the process of
identifying tests relevant to development. The information about
the modifications between two versions of the test model are
used in this approach, which was compared to the Regenerate-
All approach, which regenerates test cases along the iterations
and does not reuse any of them.

Keywords—Model-Based Test Driven Development, Evolving
System, Agile Development, Incremental Tests, Test Reuse, Model-
Based Regression Tests

I. INTRODUCTION

Since the Manifesto for Agile Software Development [1],
also known as the Agile Manifesto, the adoption of agile
approaches has been growing. With these approaches, the
focus is on the client’s needs, and the development phases
(Planning, Analysis, Project, Implementation, Test and De-
liver) are performed iterative and incrementally [2]. Agile
software development methodologies use an iterative and
incremental development in order to handle evolving systems
and consequently requirement changes. In each iteration, a
subset of the system requirements is analysed, designed,
implemented and tested incrementally.

Agile development contributes to improve the client sat-
isfaction with the final version of the system by means of
performing continuous tests. Following this idea, some agile
approaches were created emphasizing tests. One of these tech-
niques, proposed by Kent Beck, is Test Driven Development
(TDD) [3]. TDD proposes that unit tests are iteratively created
before the Implementation phase in order to anticipate the
validation and verification (V&V) of the system. These tests
guide the development of the features during the Implemen-
tation phase following a cycle composed of three steps. It

Leonardo Montecchi
Dipartimento di Matematica e Informatica
University of Florence
Florence, FI., Italy
Email: Imontecchi @unifi.it

starts with a test case creation, which is executed before the
implementation of the software, and therefore initially it will
fail. In the second step, the code that will make the test
be executed successfully is written. And finally the code is
refactored in order to make it easier to be maintained [3].

Based on TDD, Dan North proposed Behaviour Driven De-
velopment (BDD) [4]. However, differently from TDD which
focuses on unit tests, BDD focuses on acceptance tests. BDD
focuses on system behaviour and proposes the collaboration
between business-oriented and technology-oriented people in
order to anticipate the validation of the system.

Tests are often created manually in a non-systematic way,
and that is what usually happens with the use of TDD
and BDD. However, this practice is subject to human errors
because of the repetitive process and the lack of guarantees that
the system has a good test coverage, a measure that represents
how complete the test suite is. Furthermore, test artefacts
created in this way are difficult to be reused, which is of
particular importance in a context of test driven development
with constant evolution and modification.

A more systematic way to generate test cases consists of
deriving them from test models that represent the expected
system’s behaviour. This idea comes from Model-Based Test-
ing (MBT) [5], in which formal test models that represent
the system’s behaviour are created and validated in order to
automatically generate test cases from them. Following this
idea, Model-Based Test Driven Development (MBTDD) [6]
joins the concepts of MBT and TDD. Therefore, MBTDD
proposes that test models are iteratively created in order to
represent enough information for the current iteration, and
from these models and using concepts and techniques of MBT,
test cases are automatically generated. These tests guide the
development of the system by using concepts and techniques
of TDD.

In every iteration of MBTDD, the test model evolves to
specify new behaviour and consequently a new version of the
test model is created. From this new version, test cases are
derived in order to guide the development of the new version
of the system. During this life cycle, two problems emerge:
how to reuse previous generated test cases and how to identify
those that will support the development of new features.

In order to minimize these problems, this work proposes D-

MBTDD, a solution combining MBTDD with some concepts
from model-based regression testing, to support and facilitate
the reuse of test cases. In particular we use concepts inspired
in a Software Product Line (SPL) approach, Delta-Oriented
Model-Based SPL Regression Testing [7, 8, 9]. It proposes
an approach in which delta modelling concepts are used to
express the variability between the product variants, and the
revalidation of the previous test suite is based on the modifica-
tions of the test model. It aims for test artefact reusability and,
with the support of deltas that explicitly represent differences
among variants, it determines which existing test cases are
valid for a product variant and which ones have to be created.

In our solution we adapt the idea of Delta-Oriented Model-
Based SPL Regression Testing in order to include it in a
context of a model-based test driven development and to
support the development of new features by means of test case
reusability. Finite State Machines (FSM) are used to represent
the system’s behaviour, and test cases are derived from them.
When the system evolves, the reuse of the test model and
the test cases occurs. Therefore, test cases from the previous
version are analysed in order to identify which ones are still
valid and consequently can be reused. After that, new test
cases are created from the new test model version in order to
update the new test suite. These new test cases support the
development of new features, while the reusable test cases are
used as regression tests.

To understand the benefits of the proposed D-MBTDD
approach, we compared it with the Regenerate-All approach,
in which only the test model is reused, and the test suite
is regenerated any time the test model evolves, discarding
previously generated test cases.

This paper is organized as follows: Section II presents
related work, Section III introduces the D-MBTDD approach,
Section IV reports the evaluations and results of the approach,
and Section V presents the conclusions.

II. RELATED WORK

The use of model-based testing in an agile context has
increased due to the benefits that MBT has in an iterative and
incremental environment. MBT supports the automation of test
case generation and is adaptable to modifications. Therefore
some researches propose the use of MBT in an agile context.
Wieczorek et al. [10] propose an approach that uses TDD on
the component level, and MBT on the system level. MBT is
used to support the generation of integration tests. Hametner et
al. [11] propose a method which adapts TDD for the context of
the development of an automation system, in which models are
used to generate the test cases. However, they only describe the
design of the test models. Entin et al. [12] propose to use MBT
to support the generation of regression tests. Even though these
works deal with MBT in an agile context, test cases are not
generated with the aim of guiding the development.

Sadeghi and Hosseinabadi [6] proposed a technique that
combines MBT and TDD techniques so that model-based
tests guide the development, called Model-Based Test Driven
Development (MBTDD). In the MBTDD process, the TDD

cycle is extended with MBT steps. Two steps are included
before the TDD cycle: the modelling step and the model-
based testing step. In the first step the test model is created
in order to represent enough information for an iteration, and
in the second step the test cases that guide the development
are derived from the test model. Along the iterations the test
model evolves, so that in each iteration test cases to guide the
development are derived. Even though MBTDD deals with
a development guided by model-based tests, it does not deal
with the reuse of test cases along the iterations. Moreover, it
does not support the identification of which test cases guide
the development of new features.

In order to reduce these problems, techniques that use
Model-Based Regression Testing can be used. The use of
model-based regression testing is addressed with different
focus in literature, either by focusing on the revalidation of
the previous test cases, i.e. their classification [13, 14, 15], or
the reuse of test models and test cases [16, 17].

The approach described in this paper is based on the model-
based regression testing approach described in [7, 8, 9]. Delta-
Oriented Model-Based SPL Regression Testing is an approach
for incremental model-based testing of Software Product Line
(SPL) which aims to reuse test artefacts. It proposes the use of
delta modelling to support the specification of modifications
between variants and the incremental creation of test artefacts.
In delta modelling, similar products are represented by a
designated core product and a set of deltas that specify
changes with respect to the core product. Each product has
the following test artefacts: a test model which describes the
behaviour of the system, a fest suite containing test cases that
cover a set of fest goals which have to be covered, and a fest
plan containing the test cases that have to be (re-)tested during
regression testing. This technique was proposed in the context
of SPL, and consequently does not deal with a model-based
test driven development and with the identification of which
test cases guide the development of new features.

Delta-Oriented Model-Based SPL Regression Testing was
adapted to be used in an iterative and incremental develop-
ment, in which the first version of the system can be seen as
a core product, and the next version as its variant. When the
second version evolves into a third version, it is considered
as the core product and the new version as its variant. The
differences between the versions are represented as delfas.
To simplify the description when referencing a long chain of
versions, all versions after the first can be called variants of
the first version, considered the initial core version.

The same collection of test artefacts was used, but only
finite state machines were used as test models, and following
the idea of Korel et al. [18], the deltas contained only additions
and deletions of transitions. That is because an addition or a
deletion of a state is associated with an addition or a deletion
of at least one transition, respectively.

Differently from related works, D-MBTDD focuses on
supporting the reuse of test artefacts along the iterations of
a model-based test driven development, and the development
of new features by identifying the test cases that will guide

it. D-MBTDD proposes a new feature development cycle in
which new test cases guide the development of new features
and reusable test cases are used as regression tests. Moreover,
D-MBTDD reuses not only the test model, but also the test
cases.

III. D-MBTDD

Our approach, D-MBTDD, is inspired by MBTDD [6].
However, in addition to a model-based test driven develop-
ment, we support the incremental test creation and main-
tenance, and the identification of test cases that guide the
development of new features. D-MBTDD also aims to reduce
the effort required for the transformation of abstract test cases
into executable test cases by reusing those from previous
versions. In order to support this, we use some concepts from
Delta-Oriented Model-Based SPL Regression Testing [7, 8, 9],
adapting it to the context of an evolving system. Differently
from Delta-Oriented Model-Based SPL Regression Testing, D-
MBTDD assumes a sequential evolution of the test models in
which in each iteration the deltas are applied to the previous
version of the test model. We consider the same collection of
test artefacts, containing: a fest model to represent the system’s
behaviour, a test suite which contains test cases, a set of fest
goals that the test suite must cover, and a fest plan which
contains the valid test cases.

In this work, finite state machines (FSM) are used as test
models to represent the system’s behaviour and the deltas
which contain the differences between two versions. Even
though during the D-MBTDD process there are steps to create
and evolve the test models, it is not in the scope of the
approach how they are created. It is assumed that the test
models were already created and validated by specialists.

A. Process for the first iteration

In the first iteration the first version of the test artefacts
is created, followed by the first version of the system. There
are no artefacts to be reused, therefore the following steps are
performed:

1. Create and Validate the Test Model: A test model (TM)
is created and validated by specialists in order to represent the
expected system’s behaviour of the first iteration.

To illustrate the D-MBTDD process, we have a first version
of a FSM in Figure 1.

RCK_locking

3

RCK_unlocking

Fig. 1. Core test model example (adapted from [19])

2. Test Goals Definition: To support the generation of
model-based tests, it is necessary to define a coverage criterion

for the test suite. It is defined together with the client, the
developers and the testers. Based on this criterion, the fest
goals that the test suite has to cover are derived.

For example, considering a coverage criterion of 100%
transitions coverage, the test goals for the FSM illustrated in
Figure 1 are: tg = {t1,...,t8}.

3. Generate Test Cases: The fest cases that cover all test
goals are generated with the aid of an MBT tool.

For example, using the StateMutest tool [20], 5 test cases
were generated in order to cover all test goals for the FSM of
Figure 1.

4. Test Suite and Test Plan Definition: The test suite is
composed of all test cases, while the test plan is composed
of only the valid test cases. In the first iteration, all test cases
were generated, therefore the test suite and the plan are equal.

In our example, the test suite and the test plan are composed
of 5 test cases.

5. Development Cycle: The test plan guides the develop-
ment, during the Development Cycle which follows the TDD
concepts.

B. Process for the subsequent iterations

D-MBTDD is used in the context of an evolving system,
therefore in the subsequent iterations there will be new require-
ments and modifications to do, and test cases to be reused. The
process follows the steps below, considering:

e T'Sreu and T'Sobs: the set of reusable and obsolete test
cases, respectively, from the previous version.

e T'Sreu’, TSobs' and T'Snew’: the set of reusable, ob-
solete and new test cases, respectively, from the new
version.

1. New Test Model Creation and Validation: The modi-
fications necessary to obtain a new version of the system are
discussed with the client and are represented as a delta. This
delta is applied to the previous test model version (TM) in
order to obtain the new test model version (TM’), which is
validated with a specialist.

For example, we assume that in order to obtain the new
version of the system it was necessary to remove transitions
t3 and t4, and add transitions ?9,...,t15. This information
is represented in the delta illustrated in Figure 2, in which
removed transitions are represented with dashed lines and
added transitions with double lines. When the delta is applied
to the previous FSM illustrated in Figure 1, the new version
illustrated in Figure 3 is obtained.

2. Update Test Goals: The test goals for the new test model
are updated based on a coverage criterion. It can be the same
from the previous iteration, but it can also be a different one.

For example, for the new test model of Figure 3 and using
the same coverage criterion of the first iteration, the test goals
are updated to: tg = {¢t1,¢2,¢5, ..., t15}.

3. Revalidation of the Test Suite: The test suite from the
previous version is revalidated in order to identify which test
cases are still valid or not. Based on the delta information,
the set of reusable test cases used in the previous iteration
(T'Sreu), ie. those that were reused in the previous iteration,

RCK_unlocking
3,7
7

RCK_locking

15 %
RCK_sf_locking

) RCK_sf_unlocking = RCK_sf_on
RCK_sf_unlocking
_idle \—//

Fig. 2. Delta between model of Fig. 1 and model of Fig. 3. It contains
modifications that need to be applied to Fig. 1 in order to obtain Fig. 3
(adapted from [19])

RCK_locking

t
RCK_sf_unlocking

Fig. 3. New test model version example (adapted from [19])

can be classified in the new iteration as reusable if they remain
valid, or obsolete if they do not. A test case may become
invalid if it traverses removed transitions. Finally, the set of
reusable (T'Sreu’) and obsolete (T'Sobs’) test cases of the new
version are created.

In our example, all test cases from the old test model (Figure
1) are present in the set of reusable test cases (1'Sreu) of that
version, because it is the first version. T'Sreu has the 5 test
cases and when analysed, 3 remained valid in the new version
and 2 became obsolete. Therefore after the revalidation of the
test suite, T'Sreu’ had 3 test cases and T'Sobs’ 2 test cases.

4. Update the Test Suite: Using the sets of classified test
cases (T'Sreu’ and T'Sobs’) and the set of obsolete test cases
from the previous test suite (7'Sobs), the new test suite is
updated in order to cover all the test goals. If there are missing
test goals to be covered by the test suite, new test cases are
created and included in the set of new test cases (T'Snew’).
D-MBTDD does not discard the obsolete test cases in the next
test suite because they might be reused in subsequent versions.

In our example, no obsolete test case from the previous
version becomes valid for the new version. Therefore the new
set of obsolete test cases (T'Sobs’) was updated with the same
2 test cases of the previous set (T'Sobs). Consequently the
new set of reusable test cases (T'Sreu’) was updated with the
3 test cases from the previous set (1'Sreu). Because some
transitions were added by the delta (Figure 2), there were
missing test goals to be covered (t9, ..., t15). Therefore, 2 new
test cases were created, which make up the set of new test
cases (T'Snew’).

5. New Test Plan: The new test plan (TP’) is created with
only the valid test cases. Therefore, TP’ includes the sets of
reusable (T'Sreus’) and new test cases (T'Snew’) of the new
version.

In our example, TP’ was created with 5 test cases: 3 from
TSreus’ and 2 from T'Snew’.

6. New Feature Development Cycle: The fest plan guides
the development. Because now only the new features have
to be developed, a new development cycle is proposed based
on the TDD concepts. The set of new test cases guide the
development of new features, while the set of reusable test
cases are used as regression tests. Therefore, the reusable
test cases are applied in order to guarantee confidence in the
modified version of the system.

IV. EVALUATION AND RESULTS

In this Section we discuss the experiments that have been
performed and the obtained results. During the evaluation, D-
MBTDD was compared to the Regenerate-All approach. In
every iteration, differently from D-MBTDD, Regenerate-All
updates the test model and generates all test cases from it
without reusing any previously generated test cases. It discards
all test cases generated in the previous iterations and reuses
only the test model. Binder [21, 22] justifies this approach by
affirming that updating a test model requires less effort than
maintaining a test suite, since the size and complexity of test
models grows more slowly than the test suite.

This evaluation tries to identify if Binder’s claim is always
valid, or if reusing test cases can be a good alternative in some
cases. In a development guided by model-based tests there
is the necessity to identify those test cases that will support
the development of new features. Note that when test cases
are automatically generated from models the correspondence
between test cases and features might not be obvious. There
is also the effort to transform the abstract test cases into exe-
cutable test cases. Therefore, this evaluation aims to answer the
following research questions when D-MBTDD is compared to
Regenerate-All: a) Does D-MBTDD require less effort for test
case creation? b) Does D-MBTDD require less effort for the
identification of which test cases guide the development of new
features? c) Does D-MBTDD require a smaller total effort?

The objects used during the experiments were FSMs created
in a case study performed by the authors of Delta-Oriented
Model-Based SPL Regression Testing. The FSMs describe
functionalities of a simplified Body Comfort Sytem (BCS)
[19]. The delta modelling concept was used during the case
study, therefore core test models, delta models and different
variants were created. To adapt it to an evolving system
context, each FSM was used as if it were a test model of
an iteration. The core represents the test model of the first
iteration, while the variants represent the test models for the
iterations that follow. From all the core models present in
the article, only those which had at least one delta model
were selected, resulting in 8 selected core models. Table I
summarizes the number of delta models for each selected core
test model. The name of each core model was extracted from

the original source [19]. All the models are fully detailed in
[19].

TABLE I
CORE TEST MODELS INFORMATION
[ID | Model | Deltas |
M1 | Manual Power Window 1
M2 | Automatic Power Window 1
M3 | Remote Control Key 3
M4 | Central Locking System 2
M5 | Human Interface Component 3
M6 | LED Automatic Power Window 1
M7 | Alarm System 2
M8 | Exterior Mirror 2

The experiments were conducted following a process con-
sisting of two steps: 1) for each core FSM the test cases
were created following a coverage criterion of 100% transition
coverage; 2) for each version Regenerate-All and D-MBTDD
were performed following the same coverage criterion. When
Regenerate-All was used all test cases were generated in order
to cover all test goals of the FSM. When D-MBTDD was used
the analysis steps described in Section III were performed in
order to identify the reusable test cases, and only the test
cases necessary to cover missing test goals were generated.
To perform the test case generation, the StateMutest tool [20]
was used during all the experiments.

A. Metrics

The evaluation aims to compare D-MBTDD with
Regenerate-All. Therefore, we defined some metrics to be
applied to each version of a core test model, in order to
compare the effectiveness of the two approaches.

Considering 7SO and T'SN the size of the old and the new
test suite, respectively, and N the number of new test cases
generated with D-MBTDD:

o Generated Test Cases (GenTC): represents the number

of generated test cases per iteration.

When Regenerate-All is used all test cases are generated
from scratch. The number of generated test cases equals
to the size of the new test suite, therefore:

GenTC(RA) = TSN (1)

When D-MBTDD is used only new test cases necessary
to cover missing test goals are generated, therefore:

GenTC(DMBTDD) = N)

o The generated test cases were classified as Not Modifica-
tion Traversal Test Cases (NotModTC) or Modification
Traversal Test Cases (ModTC). NotM odT C represents
the number of test cases that traverse only the unmodified
parts, i.e., that do not traverse any modified element of
the FSM. ModTC represents the number of test cases
that traverse at least one modified element of the state
machine. For both approaches, the following relationship
between these metrics hold:

GenTC = NotModTC + ModTC 3)

o Focus: measures the effectiveness in generating more
modification traversal test cases (M odT'C') than not mod-
ification traversal test cases (NotModT C') per iteration.
The ModTC test cases support the development of new
features, so having a larger portion of them results in
more generated test cases used during the development
of new features. For both approaches, focus measures the
relationship between ModT'C' and all generated test cases
(GenT (), therefore:

Focus = GenTC

B. Results

For each test model version, the values of Generated
Test Cases (GenT'C), Not Modification Traversal Test Cases
(NotModTC), Modification Traversal Test Cases (ModT'C)
and Focus are shown in Table II.

Each version of a core test model is identified with an ID in
Table II. This ID was defined using the following pattern: the
ID of the core test model, presented in Table I, followed by a
sequence of IDs (letter D followed by a number) representing
the deltas applied to the core model.

TABLE I
VALUE OF METRICS WHEN APPLYING THE TWO APPROACHES TO
DIFFERENT VERSIONS

\ Model ID [Approach | GenTC] NotModTC| ModTC] Focus (%) |
MI1_D1 Regenerate-All | 13 2 11 84.62
MI1_D1 D-MBTDD 7 0 7 100
M2_DI1 Regenerate-All | 17 0 17 100
M2_Dl D-MBTDD 7 0 7 100
M3_D2 Regenerate-All | 5 0 5 100
M3_D2 D-MBTDD 3 0 3 100

M3_D2_DI Regenerate-All | 4 0 4 100
M3_D2_Dl1 D-MBTDD 2 0 2 100
M3_D2_DI1_D3 | Regenerate-All | 8 0 8 100
M3_D2_D1_D3 D-MBTDD 6 1 5 83.33
M4_D1 Regenerate-All | 5 0 5 100
M4_D1 D-MBTDD 1 0 1 100
M4_DI1_D2 Regenerate-All 6 1 5 83.33
M4_D1_D2 D-MBTDD 2 0 2 100
M5_D1 Regenerate-All | 7 0 7 100
M5_Dl1 D-MBTDD 2 0 2 100
M5_D1_D2 Regenerate-All | 7 0 7 100
M5_D1_D2 D-MBTDD 2 0 2 100
M5_D1_D2_D3 | Regenerate-All 10 0 10 100
M5_D1_D2_D3 D-MBTDD 2 0 2 100
M6_D1 Regenerate-All | 12 3 9 75
M6_D1 D-MBTDD 7 1 6 85.71
M7_D1 Regenerate-All | 11 2 9 81.82
M7_D1 D-MBTDD 3 0 3 100
M7_DI1_D2 Regenerate-All 11 6 5 45.45
M7_D1_D2 D-MBTDD 10 3 7 70
M8_D1 Regenerate-All | 10 2 8 80
M8_Dl1 D-MBTDD 8 1 7 87.50
M8_D1_D2 Regenerate-All | 10 3 7 70
M8_D1_D2 D-MBTDD 9 2 7 77.78

To help with the discussion, the metrics have been plotted
using bar charts, and are displayed in Figures 4. For each
version of a core FSM two approaches were simulated, and
therefore we have two bars for each experiment: the left bar
contains the results obtained with Regenerate-All, and the right
those obtained with D-MBTDD. The total size of each bar
represents the value of GenT'C. Each bar was split into two
parts: a blue bar filled with squares, and an orange bar filled

with circles. The blue bar represents the value of ModT'C,
and the orange bar represents the value of NotModT'C.

B Moadification Traversal TCs

B Not Modification Traversal TCs

B Modification Traversal TCs B Not Modification Traversal TCs

Fig. 4. Results of the experiments. The bar graphs show the number of
generated test cases for different test models.

When analysing the values of Table II, and the Figures 4
we noticed that:

1) In all experiments, the value of GenTC when D-
MBTDD was used was equal to or smaller than the
value when Regenerate-All was used. Therefore, D-
MBTDD generated less test cases per execution than
the Regenerate-All approach.

2) In 93.33% of the experiments, the value of ModlC
when D-MBTDD was used was equal to or smaller
than the value when Regenerate-All was used. The only
exception was the M7_D1_D2 example. Therefore, in
the majority of the examples, D-MBTDD generated an
equal or smaller value of modification traversal test cases
than Regenerate-All.

3) In 93.33% of the experiments, the value of NotModTC
when D-MBTDD was used was equal to or smaller
than the value when Regenerate-All was used. The only
exception was the M3_D2_D1_D3 example. Therefore,
in the majority of the examples, D-MBTDD generated
an equal or smaller value of not modification traversal
test cases than Regenerate-All.

4) In 93.33% of the experiments, the value of Focus when
D-MBTDD was used was equal to or greater than

the value when Regenerate-All was used. The only
exception was the M3_D2_D1_D3 example. Therefore,
in the majority of the examples, D-MBTDD had a
higher efficiency in generating test cases that guide the
development of new features than Regenerate-All.

C. Cost comparison between D-MBTDD and Regenerate-All

Based on the results and on the experiments we can discuss
the answers for the research questions defined in the beginning
of this Section. For each question we summarized the cost of
each step involved when using Regenerate-All and when using
D-MBTDD considering:

. c(ge): cost to generate the test cases;

e c(re): cost to revalidate the old test suite;

e c(id): cost to identify the test cases that guide the devel-
opment of new features;

o c(tr): cost to transform the abstract test cases into exe-
cutable ones

Total Cost of generating test cases (E_Cr)
In Regenerate-All, after the test model evolves the test cases
are simply generated from it, therefore:

E_Cr(RA) = GenTC*c(ge)
Considering equation 1:
E_Cr(RA) = TSN*c(ge) 5)

In D-MBTDD, before generating the test cases it is nec-
essary to revalidate the test cases from the old test suite,
therefore:

E_Cr(DMBTDD) = TSO%*c(re) + GenTC*c(ge)
Considering equation 2:
E_Cr(DMBTDD) = TSO%*c(re) + N*c(ge) (6)

When comparing equation 5 and 6, we can see that D-
MBTDD has an additional cost to revalidate the previous test
suite. Therefore, in general D-MBTDD does not require less
effort for test case creation per iteration when compared to
Regenerate-All. However, this is not true if (7SO + N) <
TSN and c(re) < c(ge).

Cost of identifying test cases that guide the development
of new features (E_Id)

The test cases that guide the development of new features
are those classified as modification traversal. In Regenerate-
All, after the generation of all test cases it is necessary to
identify those that traverse modified elements, therefore:

E_Id(RA) = GenTC*c(id)
Considering equation 1:
E_Id(RA) = TSN*c(id) @)

In D-MBTDD the generation of test cases is focused on
modified elements. Consequently the modification traversal

test cases are already identified in the set of new test cases,
therefore no effort is required for this task:

E_Id(DMBTDD) = 0 (8)

When comparing equation 7 and 8 we can conclude that D-
MBTDD requires less effort for the identification of which test
cases guide the development of new features when compared
to Regenerate-All.

Total Effort (E_Total)

The total effort to use each approach is composed of the
effort to generate the test cases, to identify the modification
traversal test cases, and to transform abstract test cases into
executable test cases.

Considering equations 5 and 7, and that all generated test
cases have to be transformed into executable test cases in
Regenerate-All, the total effort is:

E_Total(RA) = TSN*c(ge) + TSN*c(id) + GenTC*c(tr)
Considering equation 1:
E_Total(RA) = TSN*c(ge) + TSN*c(id) + TSN*c(tr) (9)

Considering equations 6 and 8, and that only the new test
cases have to be transformed into executable test cases in D-
MBTDD, the total effort is:

E_Total(DMBTDD) = TSO*c(re) + N*c(ge) + N*c(tr) (10)

When analysing equations 5 and 6, we noticed that the total
effort for using Regenerate-All is impacted by the value of
TSN, while D-MBTDD is impacted by the values of 7SO
and N. According to the evolution of the test model, in
order to cover a specific criterion, the number of generated
test cases when Regenerate-All is used (Gen(RA)) tends
to increase, and consequently the size of the new test suite
(T'SN). With D-MBTDD, in order to cover the same criterion,
there is a tendency to generate less test cases because part
of the test goals will be already covered by the reusable
test cases. Therefore, the value of the generated test cases
(Gen(DM BT DD)), and consequently the value of NN, tends
to be smaller than Gen(RA) = T'SN.

If we consider:

e T'SO ~ TSN, i.e., the size of the old and new test suites
are approximately the same, and

e N < TSN, the number of generated test cases with D-
MBTDD is smaller than with Regenerate-All as discussed
above.

Then two conditions improve the effectiveness of D-
MBTDD over Regenerate-All:

e c(tr) > c(re), i.e. the cost of transforming abstract test
cases into executable test cases is greater than the cost of
revalidating the old test suite; and

o c(id) > c(re), i.e. the cost of identifying the test cases
that guide the development of new features is greater than
the cost of revalidating the old test suite.

D. Threats to the Validity

When performing an experiment, there are some threats
to the validity to be concerned about. In this evaluation
the models and the number of deltas used during the ex-
periments represent threats to external validity since their
complexity, their size and their domain can affect the results.
The results are also impacted by the MBT tool used during
the experiments. The metrics measured during the controlled
experiments may not be able to completely show the trade-
offs between the two alternatives, representing threats to the
construction of the experiments.

V. CONCLUSIONS AND FUTURE WORK

A model-based test driven development has some challenges
along the iterations, such as the reuse of test artefacts and the
identification of those that should guide the development of
new features. This work proposed D-MBTDD, an approach
which tries to minimize these problems by joining MBTDD
and Delta-Oriented Model-Based SPL Regression Testing.
This results in a process which contains steps of Delta-
Oriented Model-Based SPL Regression Testing to support
test case creation, maintenance and reusability, and steps of
MBTDD to support the development guided by model-based
testing. D-MBTDD reuses not only the test model, but also the
test cases. During new increments, the test cases are generated
focusing on the modified elements of the test model. With that,
only these test cases have to be transformed into executable
test cases per iteration in order to support the development of
new features, allowing the effort needed for this transformation
to be reduced.

During this work D-MBTDD was evaluated against the
Regenerate-All approach, in which only the test model is
reused along the iterations, and the test suite is regenerated
any time the test model evolves. D-MBTDD performed better
according to the set of defined metrics. In 93.33% of the
experiments, D-MBTDD had an equal or greater value of
effectiveness (Focus) in generating modification traversal test
cases which are used to guide the development of new features.
Even though D-MBTDD requires a revalidation of the previous
test suite, it requires less effort to support the development of
new features. This is because D-MBTDD generates test cases
based on the modifications and consequently focused on the
new elements.

This work defined some formulas to quantify the total effort
to use D-MBTDD and Regenerate-All. While D-MBTDD has
a cost to revalidate the previous test suite before generating test
cases, Regenerate-All has the cost to identify the modification
traversal test cases after the test case generation. As a future
work we plan to develop experimental case studies in order
to quantify the costs involved in each step of the approaches.
Moreover, we plan to to perform more extensive experimental
analyses, and properly apply statistical techniques like hy-
pothesis testing to verify the obtained results. The obtained
experimental data would allow us to quantify and analyse the
total effort to use the approaches, and better understand in
which occasions one can be recommended over the other.

ACKNOWLEDGMENT

This work has been partially supported by the project
DEVASSES - DEsign, Verification and VAlidation of large-
scale, dynamic Service SystEmS, funded by the European
Union’s Seventh Framework Programme for research, techno-
logical development and demonstration under grant agreement
no PIRSES-GA-2013-612569. The authors also would like
to thank the grant 151647/2013-5, CNPq, for the financial
support.

REFERENCES

[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Granning, J. High-
smith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C.
Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Manifesto for agile software development,”
2001, http://www.agilemanifesto.org Acccessed March
21, 2016.

I. Sommerville, Software Engineering (original title in

Portuguese: Engenharia de software), 8th ed. Addison

Wesley, 2007, ch. Agile Software Development.

[3] K. Beck, Test Driven Development: By Example.
Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[4] D. North, “Introducing BDD,” Better
ware Magazine, Mar. 2006. [Online].
http://dannorth.net/introducing-bdd/

[5] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy

of model-based testing approaches,” Softw. Test. Verif.

Reliab., vol. 22, no. 5, pp. 297-312, Aug. 2012.

A. Sadeghi and S.-H. Mirian-Hosseinabadi, ‘“Mbtdd:

Model based test driven development,” International

Journal of Software Engineering and Knowledge Engi-

neering, vol. 22, no. 08, pp. 1085-1102, 2012.

S. Lity, M. Lochau, I. Schaefer, and U. Goltz, “Delta-

oriented model-based spl regression testing,” in Proceed-

ings of the Third International Workshop on Product

LinE Approaches in Software Engineering, ser. PLEASE

’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 53-56.

M. Lochau, I. Schaefer, J. Kamischke, and S. Lity, “In-

cremental model-based testing of delta-oriented software

product lines,” in Proceedings of the 6th International

Conference on Tests and Proofs, ser. TAP’12. Berlin,

Heidelberg: Springer-Verlag, 2012, pp. 67-82.

M. Lochau, S. Lity, R. Lachmann, I. Schaefer, and

U. Goltz, “Delta-oriented model-based integration testing

of large-scale systems,” J. Syst. Softw., vol. 91, pp. 63-84,

May 2014.

S. Wieczorek, A. Stefanescu, M. Fritzsche, and J. Schnit-

ter, “Enhancing test driven development with model

based testing and performance analysis,” in Practice and

Research Techniques, 2008. TAIC PART ’08. Testing:

Academic Industrial Conference, Aug 2008, pp. 82-86.

R. Hametner, D. Winkler, T. Ostreicher, S. Biffl, and

A. Zoitl, “The adaptation of test-driven software pro-

cesses to industrial automation engineering,” in Indus-

(2]

Soft-
Available:

(6]

(7]

(8]

(9]

[10]

[11]

[14]

[15]

[19]

trial Informatics (INDIN), 2010 8th IEEE International
Conference on, July 2010, pp. 921-927.

V. Entin, M. Winder, B. Zhang, and S. Christmann,
“Introducing model-based testing in an industrial scrum
project,” in Automation of Software Test (AST), 2012 7th
International Workshop on, June 2012, pp. 43—49.
Q.-u.-a. Farooq, M. Z. Z. Igbal, Z. 1. Malik, and
A. Nadeem, “An approach for selective state machine
based regression testing,” in Proceedings of the 3rd
International Workshop on Advances in Model-based
Testing, ser. A-MOST °07. New York, NY, USA: ACM,
2007, pp. 44-52.

L. Naslavsky, H. Ziv, and D. J. Richardson, “Mbsrt2:
Model-based selective regression testing with traceabil-
ity,” in Software Testing, Verification and Validation
(ICST), 2010 Third International Conference on, April
2010, pp. 89-98.

J. O. Blech, D. Mou, and D. Ratiu, “Reusing test-cases
on different levels of abstraction in a model based devel-
opment tool,” in Proceedings 7th Workshop on Model-
Based Testing, MBT 2012, Tallinn, Estonia, 25 March
2012., 2012, pp. 13-27.

S. Weileder, D. Sokenou, and H. Schlingloff, “Reusing
state machines for automatic test generation in product
lines,” in MoTiP 08: Model-Based Testing in Practice,
Thomas Bauer, Hajo Eichler, Axel Rennoch, Ed. Fraun-
hofer IRB Verlag, 2008.

D. Dranidis, A. Metzger, and D. Kourtesis, Towards
a Service-Based Internet: Third European Conference,
ServiceWave 2010, Ghent, Belgium, December 13-15,
2010. Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, ch. Enabling Proactive Adaptation
through Just-in-Time Testing of Conversational Services,
pp. 63-75.

B. Korel, L. H. Tahat, and B. Vaysburg, “Model based
regression test reduction using dependence analysis,” in
Software Maintenance, 2002. Proceedings. International
Conference on, 2002, pp. 214-223.

S. Lity, R. Lachmann, M. Lochau, and I. Schaefer,
“Delta-oriented software product line test models - the
body comfort system case study,” TU Braunschweig,
Tech. Rep. 2012-07, 2013.

W. F. F. Cardoso, “Statemutest: an extended state model
based test support tool (original title in portuguese:
Statemutest: uma ferramenta de apoio ao teste baseado
em modelos de estado estendidos),” Master’s thesis,
Unicamp, SP, 2015.

R. V. Binder, “How to ice the testing backblog,”
2013, http://robertvbinder.com/how-to-ice-the-testing-
backblob/ Accessed March 21, 2016.

R. Binder, “Model-based testing: Taking bdd/atdd to the
next level,” 2014, slides from presentation at the Chicago
Quality Assurance Association, February 25, 2014,
http://pt.slideshare.net/robertvbinder/taking-bddtothenext
level Acccessed March 21, 2016.

