
Evolving a Software Products Line for E-commerce
Systems: a Case Study

Raphael P. Azzolini
Institute of Computing
University of Campinas

Campinas, Brazil
ra144657@students.ic.unicamp.br

Cecília M. F. Rubira
Institute of Computing
University of Campinas

Campinas, Brazil
cmrubira@ic.unicamp.br

Leonardo P. Tizzei
IBM Research

São Paulo, SP, Brazil
ltizzei@br.ibm.com

Felipe N. Gaia
Federal Institute of SP

Boituva, Brazil
felipegaia@ifsp.edu.br

Leonardo Montecchi
University of Florence

Firenze, Italy
leonardo.montecchi@unifi.it

ABSTRACT
Software Product Lines engineering is a technique that ex-
plores systematic reuse of software artifacts in large scale to
implement applications that share a common domain and
have some customized features. For improving Product Line
Architecture evolution, it is advisable to develop Software
Product Lines using a modular structure. This demand
can be satisfied by an aspect-oriented and component-based
feature-architecture method that integrates components, as-
pects and variation point aspect-connectors. This approach
allows minimization of feature scattering in the architectural
model and supports modular modelling of crosscutting fea-
tures. A case study mapping major features of significant
e-commerce systems operating in Brazil and other countries
was performed to evaluate this approach. The assessment
of our solution was performed comparing its stability and
modularity with other two approaches. Our results indicate
that change impact in the architectural model is reduced
when using our solution in the context of Software Product
Lines evolution.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture;
D.2.13 [Software Engineering]: Reusable Software

Keywords
Software product lines, e-commerce, software architecture
stability, component-based development, aspect-oriented de-
velopment, software evolution

1. INTRODUCTION
Clements and Northrop [5] conceived Software Products

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW ’15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
c© 2015 ACM. ISBN 978-1-4503-3393-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2797433.2797460

Lines (SPL) as a set of software systems that share com-
mon domain and have distinct features in order to satisfy a
market’s segment. This concept promotes software reuse in
large scale, providing ways to develop customized products
at a low cost. Despite its advantages, SPL evolution can be
impaired by the inefficiency of variability mechanisms in ac-
commodating changes, especially those affecting its Product
Line Architecture (PLA). Architectural stability means that
the PLA can endure evolutionary changes by sustaining its
modularity properties.

Component-based development (CBD) [20] and aspect-
oriented development (AOD) [15] are techniques that can
be used to support SPL’s evolution. CBD is a structur-
ing technique where systems are developed by means of
software components, providing separation between speci-
fication and implementation, favouring modularization and
software reuse. AOD is a technique that uses aspects, which
are modular units for supporting the encapsulation of cross-
cutting features by means of composition mechanisms, such
as pointcut-advice and inter-type declarations [9]. Feature
is a domain property or a visible characteristic to the fi-
nal user. Crosscutting features represents concerns that are
widely-scoped properties and usually crosscut several mod-
ules in the software system, which may cause large impact
in evolving the PLA.

Tizzei et al. [22] have proposed the use of variation
point aspect-connectors, called VP-connectors, to support
PLA stability in order to modularize crosscutting concerns.
The VP-connector solution was evaluated in a small case
study comparing two different implementations of the same
SPL. The first implementation applied the concepts of VP-
connector, aspect (AO) and component (CB) while the sec-
ond implementation used a pure-component approach (i.e.,
without aspects and VP-connectors). As a consequence, the
study could not identify individual benefits of applying VP-
connectors when compared to an implementation based only
on aspects and components. The authors also proposed a so-
lution called AO-CB feature-architecture method, ACFAM
for short, for mapping crosscutting features identified in the
feature model to architectural aspect-elements [23]. The
concept of AO-feature models was proposed by extending
the feature model proposed by Kang et al. [14] and the
ACFAM approach includes an AO feature-modelling that
extends the FArM method [19] with crosscutting concerns.

The claim is that ACFAM solution can facilitate evolution
of PLAs; however, further studies are necessary to investi-
gate to what extent the impact of explicit encapsulation of
variation points by means of VP-connectors can facilitate
SPL evolution when applied to real complex and large ap-
plications.

In order to thoroughly evaluate the ACFAM solution by
means of a case study based on a real industry context, we
have chosen E-commerce systems, since they play an impor-
tant economic role on Information Technology (IT) market
growth. In 2014, the expectations were that worldwide e-
commerce or Business-to-consumer (B2C) sales increase by
nearly 20%, reaching $1.471 trillion of dollars [8]. In this
domain, integration with other systems is commons, as for
shipping and payment services, for which high level of secu-
rity is important. The system needs to be protected from
unauthorized access to customers personal data or payment
service. In addition, the system demands an efficient user
experience for costumers trust in its services [6].

The main contribution of this paper is to evaluate the AC-
FAM approach by developing an open source e-commerce
SPL, called Mercurius-SPL, available at a public repository
[11]. Our case study consists of developing and comparing
three different SPL implementations: a component-based
implementation, called CBImpl, a pure-aspect-component
implementation, called AO-CBImpl, and a VP-AO-CB im-
plementation, called VP-AO-CBImpl. Each implementation
has four releases, in a total of 12 releases. Each release
includes evolution scenarios for including mandatory and
non-mandatory (optional and alternative) features in the e-
commerce SPL. We used metrics suites for change impact
(lines of code and operations added and modified) [25] and
modularity (average coupling, separation, interlacing of fea-
tures) [4] to measure the architecture stability evaluation of
the 3 implementations.

The results pointed out that VP-AO-CBImpl tends to
promote better PLA resilience when compared to the other
two approaches involved in our study. Our findings con-
firm the preliminary results of Tizzei et al.. Moreover, our
study highlights the individual impact of aspects and VP-
connectors in achieving PLA stability.

This paper is structured as follows. Section 2 presents
some necessary concepts to understand the rest of this pa-
per. Section 3 presents the e-commerce domain study and
Mercurius-SPL implementation. Section 4 presents the re-
sults of impact of changes and modularity analysis. In Sec-
tion 5 we discuss the results of this work. Section 6 lists
some limitations of our study. Section 7 discuss some related
work, and finally, in Section 8, we draw our conclusions.

2. BACKGROUND

2.1 Aspect-Oriented Development (AOD)
Aspect-oriented development (AOD) separates concerns

in modules called aspects. Concern is anything a stakeholder
may want to consider as a conceptual unit of the system
[18], and crosscutting concerns are those that affect multiple
modules of a software system. Persistence objects, access se-
curity, concurrent access are some examples of crosscutting
concerns. This kind of concern causes scattering in the ar-
chitecture, hindering new features to be added and removed
in the system. This problem can be avoided using aspects to
modularize crosscutting concerns. These concerns are con-

Figure 1: Partial feature model for e-commerce sys-
tems

centrated in a aspect, that injects them in the parts of code
that need them, favouring the code modularity.

Crosscutting Programming Interfaces (XPI) [12] improve
the reuse and modularity of a system mediating the rela-
tionships and interactions between classes and aspects, ab-
stracting an existing crosscutting behaviour in the code.

It operates in a manner analogous to the concept of API,
separating the specification from the implementation. In
other words, the implemented advices do not know the joint
points that will be crosscut, which are defined by the XPI,
providing higher decoupling for the SPL.

2.2 AO-CB Feature-Architecture Method
(ACFAM)

2.2.1 AO Feature Method
Kang et al. [14] define features as system attributes that

affect directly the final user. These features are documented
in a model, like the one in the Figure 1, that represents
the hierarchy, composition rules and their rational analysis.
A feature model is used for the representation of the SPL
variability and is built with mandatory, optional, alternative
and OR-feature features [7].

The feature model can be transformed in the architectural
model of the SPL. The transformation of the features model
of the Figure 1 was developed according to the AO Feature
Method [23].

First, the features model has been transformed into the
PLA model. To do that, AO Feature Method specifies four
transformation steps: T1 Remove features not related with
the architecture and resolve the non-functional features;
T2: Transform based on the architecture requirements; T3:
Transform based on the features interactive relations; and
T4: Transform based on the hierarchical relationships.

These steps will transform features into elements, classes
or methods, resulting in the initial architectural model. To
obtain the architecture with variation point connector, the
crosscutting interfaces and crosscutting connectors have to
be specified. The AO Feature Method gives the following
steps for specifying them: S1: Identify base and cross-
cutting interfaces; S2: Specify base and crosscutting inter-
faces operations; S3: Assess legacy components; S4: Imple-
ment/refactor the base and crosscutting components; and
S5: Specify and implement base and crosscutting connec-
tors.

2.2.2 Architectural model with VP-connectors
The result from this methodology is the Component Sys-

tem Model for Software Architectures with Variation Points

(VP-AO-CB model) [22]. This model is an extension of the
Component System Model for Software Architectures [10],
which provides guidelines to realize architectural elements
and explicitly separates the specification and the compo-
nents implementation [10]. The component specification de-
fines its services through provided interfaces and its depen-
dencies of other services through required interfaces. The
component implementation is encapsulated by restricting
external access to prevent unwanted dependencies between
components.

The architectural model with VP-connector extends the
Component System Model for Software Architectures pro-
viding architectural elements (components and connectors)
that can be base (component elements) or crosscutting ele-
ments. Crosscutting components use aspects to modularize
crosscutting features. Also, they are responsible for modu-
larizing the variants in order to favour architecture stability.
VP-connectors aim to minimize scattering of architectural
variation points, providing guidance on how to implement
them. They give the necessary treatment to the provided in-
terfaces of the crosscuting modules and crosscuts provided
XPI of modules affected by them. The provided XPI is
responsible for deciding the join points of the connector’s
advices.

3. CASE STUDY: THE MERCURIUS-SPL
FOR E-COMMERCE

The goal of this case study is to answer the following re-
search questions: RQ1 can VP-AO-CB model can be ap-
plied for a real application such as the e-commerce domain?
RQ2 is VP-AO-CBImpl more effective for the e-commerce
PLA stability than CBImpl and AO-CBImpl? RQ3 what
are the individual contributions of AOD and VP-connector
for the PLA maintenance and stability?

To answer RQ1 we identified the e-commerce domain fea-
tures and used the methodology of described in Section 2.2
to transform then into the PLA. For answering RQ2, we
made quantitative analysis of the implementations in four
different releases, comparing and assessing them to find out
which one has better results for evolving the PLA. Our hy-
pothesis was that VP-AO-CB approach contributes for lower
change impact and higher modularity than the other im-
plementations. The difference between the three presented
implementations is the answer for RQ3.

3.1 The E-commerce Domain
The first step of our case study was to extract the e-

commerce domain features. They were extracted from
four significant e-commerce systems operating in Brazil and
USA: a Brazilian store that sells many kinds of products; a
Brazilian store specialized in female fashion products; a USA
store that sells many kinds of products; and a USA store
specialized in supplements and health products. We did not
ask permission to divulge the stores names therefore they
are omitted in this work. 84 features were extracted from
these systems. We identified common and variable features
according to the type of product sold, such as attributes
like size or weight, and the system country, such as payment
method and product devolution rules.

The e-commerce has a set of similar software systems shar-
ing common features that can be reused, it also has distinct
features that make them different from each other [16]. In

many cases, the need to customize one e-commerce system
makes necessary the development of a new product without
the software reuse, that can be hindered by inefficiency of
variability mechanisms.

Figure 2: E-commerce buying process

The buying process in an e-commerce system, described
in Figure 2, is the same or similar in every kind of online
stores in the Internet. It is important that all e-commerce
systems have a secure environment at least in the operations
marked in the Figure 2.

The payment process is mediated by a payment gateway,
responsible for communication between the bank that re-
ceives the customer’s payment and the store’s bank. The
e-commerce system has to communicate with the payment
gateway by means of a webservice. First, the system sends
the payment information to the gateway; secondly, the pay-
ment gateway informs that it received the information; and
finally, when the payment is confirmed or cancelled, the pay-
ment gateway makes the necessary bank transactions and
informs the e-commerce system about the confirmation or
cancellation of the order’s payment.

3.2 The SPL Design
We used the ACFAM methodology to build a feature

model and transform it into the PLA. A simplified model
is presented in Figure 1.

Figure 3: Partial feature model after transforma-
tions

Following the transformation T1 of Section 2.2, depend-
ability and its subfeatures were transformed into functional
features (risk analysis, password encryption, SSL, session

control and load balance). Then, in T2, features related
with the architecture requirement were added to model, they
are: logging, persistence, and exception handling. Figure 3
shows the feature model after these two transformations.

In T3 and T4, the relationship and hierarchy between
the the features were defined, resulting in the initial archi-
tectural model presented in Figure 4.

Following the specialization steps defined by the ACFAM
method, the interfaces described on S1 were defined and
specified as described in S2. Figure 4 presents the archi-
tecture obtained after these steps. The refinement steps of
Sections S3 and S4 were not executed because we did not
have legacy components.

Figure 4: PLA with its base and crosscutting inter-
faces

For each relation between the components of Figure 4, one
connector was specified. As defined in S5, these connectors
had to be specified as base or crosscutting connectors. Base
connectors were implemented where the relation between
components is realized by a base interface and crosscutting
connectors were implemented where the relation between
components is realized by a crosscutting interface.

3.3 Evolution Scenarios
After transforming the feature model into the PLA model

and specifying the interfaces, we obtained a PLA for the VP-
AO-CB model. This model is composed by the specifications
of the interfaces and connectors from the architectural mod-
ules and how they are connected. To evaluate this model
it was necessary to develop it in code and compare against
other possible implementations, derived from the PLA in
Figure 4, for the e-commerce SPL, hence, as described in
Table 1, three implementations were developed: CBImpl,
AO-CBImpl, and VP-AO-CBImpl. These approaches were
chosen because with them it is possible to isolate individ-
ual contributions of each technique used in the VP-AO-CB
model. This development was carried out with Java and
AspectJ [21].

Each implementation has four releases: the first release

Impl Type Techniques
I1 component-based imple-

mentation (CBImpl)
component-based devel-
opment

I2 aspect-component imple-
mentation (AO-CBImpl)

aspect-oriented program-
ming, component-based
development

I3 VP-AO-CB implementa-
tion (VP-AO-CBImpl)

VP-connector, aspect-
oriented programming,
component-based devel-
opment

Table 1: Case study implementations

implements the shopping flowchart from the Figure 2; in the
Release 2 the exception handling feature was implemented;
in the Release 3 the discount promotion feature was imple-
mented; finally, in the Release 4, the data cache feature was
implemented. Table 2 shows the summary of the releases in
Mercurius-SPL.

Release Description Type of Change
R1 E-commerce core
R2 Exception handling in-

cluded
Inclusion of manda-
tory crosscutting fea-
ture

R3 Discount promotion
included

Inclusion of optional
crosscutting feature

R4 Data cache included Inclusion of optional
crosscutting feature

Table 2: Summary of the releases for the Mercurius-
SPL

3.3.1 Release 1
The main objective of this release is to create e-commerce

systems where it is possible to sign-in, search for a product
and buy it. Hence the features implemented in this release
were: product, product attributes and description, physical
product type, category, shopping cart, order, credit card
payment method, customer, customer address, customer
sign-in and login, password encryption, product search by
text, persistence, and logging.

In our solution, the password encryption and logging fea-
tures were implemented with aspects and VP-connector.
The first one crosscuts customer login and registration meth-
ods; the second one crosscuts methods that should have log
for analysis.

3.3.2 Release 2
In this release we implemented exception handling, a

mandatory and crosscutting feature. This feature was cho-
sen because it allow us to evaluate how the stability of the
PLA is affected by adding one mandatory feature and be-
cause its modularization by means of AOD promotes reuse
[1]. For implementing this feature in the VP-AO-CBImpl
we used the method proposed by Iizuka et al. [13], that uses
the VP-connector for exception handling.

3.3.3 Release 3
In this release was added the discount promotion feature.

This optional feature was chosen because it is a default pro-
motion feature used by all the assessed e-commerce systems.

Furthermore, this features crosscuts main features of the e-
commerce domain, such as products, products search and
order.

With this feature, the products can have promotional dis-
counts, in percent of the product value or a fixed value. In
our solution, it was implemented a VP-connector that en-
ables to connect another types of promotion.

3.3.4 Release 4
This is the release where the cache feature was added.

This feature crosscuts the persistence feature and is respon-
sible to store accessed data from the database in memory
for a certain amount of time, as a way to improve the sys-
tem performance since disk access is much more costly than
memory access. The fact that this feature crosscuts the per-
sistence feature, that is present in almost all modules of the
SPL, justifies the need of assessing this change.

4. STUDY RESULTS
This section presents the results of an analysis made com-

paring the three SPL implementations. Two assessment pro-
cedures were made: a change impact analysis, where we
made a quantitative analysis of typical change impact mea-
sures [25], such as the number of lines of code, the num-
ber of operations inserted or modified; and a analysis of the
modularity of the SPL throughout the implemented changes,
where we choose metrics already used in other works [9][3]
for the same purpose.

The assessment was made in the four releases of each im-
plementation presented in the Section 3.3: Release 1 (R1);
Release 2 (R2); Release 3 (R3); and Release 4 (R4).

4.1 Change Impact Analysis

4.1.1 Lines of Code

Figure 5: Thousands of lines of code, operations
added and modified in the SPLs

For each implementation we measured the number of the
Kilo of lines of code (KLOC), where 1 KLOC = 1000 lines
of code. The results are in the Figure 5, where each group
of bars represents one of the implemented releases and each
bar represents one of the SPLs.

Even in the first release, where the KLOC of the SPLs
have a small difference, about 250 lines of code, the pure-
component implementation always have the higher KLOC.
Moreover the increase of lines of code in the pure-component
is higher than in the other implementations, in R4, the dif-
ference of KLOC between the pure-component and the im-
plementation with the variation point connector jumps from
250 lines of code to 1000 lines of code.

4.1.2 Operations Added and Modified
Figure 5 also shows the results of the metrics for the num-

ber of operations added and modified. Except R2, which,
unlike the other two SPL, the pure-component implemen-
tation had no exception handling module added and was
naturally added a lower number of operations, the number
of new operations and operations to be modified in each
change in SPL is always higher in the pure-component im-
plementation.

4.2 Modularity Analysis

4.2.1 Average coupling between modules

Figure 6: Average coupling, separation and inter-
lacing of features in the modules throughout the
changes in the SPL

Average coupling between modules shows the dependency
that they have on each other, a lower coupling means that
the modules have a higher modularity. We calculated the
average coupling between modules based on the metrics for
coupling between objects given by Chidamber and Kemerer
[4]. The arithmetic mean of the coupling of all modules in
the SPL was calculated, where the coupling of one module
is the number of modules it depends on.

As shown in the Figure 6, the average coupling of the
three implementations was stable after the releases changes.
However, the average coupling between the modules of the
implementation with the variation point connector is lower
than the other implementations.

4.2.2 Separation of features
Separation of features shows how modularized the features

are in the SPL. We used the metrics of Riebisch and Brcina
[17] to calculate the separation of each features. The lower
is the value calculated the lower is the scattering of features
among the modules of the SPL.

In the Figure 6 is shown that the components with
aspects and the components with aspects plus variation
point connectors implementations have similar values of
separation of features and, as these values are lower than
the pure-component implementation, the aspects utilization
promotes higher modularization of the SPL’s architecture.

4.2.3 Interlacing of Features
Interlacing of features shows how many features the same

module implements. As we did made for the separation
of features, to calculate the interlacing of features we used
the metrics of Riebisch and Brcina [17]. The lower is the
calculated value the higher is the SPL modularization and
the easier is to evolve the PLA.

The implementation based on components, aspects and
variation point connector has lower interlacing than the
other two implementations, that have similar interlacing be-
tween each other.

5. DISCUSSION
In our case study, Mercurius-SPL was successfully im-

plemented with the ACFAM solution, answering RQ1 and
showing evidences that the model can be applied for this
domain. Furthermore, answering RQ2, after assessing the
collected data, we conclude that this solution is more effec-
tive for the e-commerce PLA stability than the other ap-
proaches, as changes in code are lower and the architecture
is more stable in our solution. The answer for RQ3 is as
follows.

Aspects contributes to reduce the efforts for
changing and maintaining the code. In our case study,
AO-CBImpl and VP-AO-CBImpl presented lower KLOC
than CBImpl. Moreover, the increase of KLOC from one
release to another in CBImpl is higher than in AO imple-
mentations, as the difference jumps from about 250 lines of
code in the first release to about 1000 lines of code in the
last release. The number of operations added and modified
reinforce this observation, as CBImpl needs to modify more
operations than the AO implementations in order to add
new features.

VP-connector and XPI interfaces promotes higher
modularization of the SPL’s architecture. Despite
AOD contributes to a lower separation of features, in our
study it could not present better results than a pure-
component implementation for interlacing of features and
can harm the coupling between modules. However, when
using VP-connector, in the VP-AO-CBImpl, the number of
these metrics was reduced, presenting satisfactory results.

The VP-connectors model adds the benefits of the AOD
for reducing the impact of changes to the PLA, contributing
for gains in stability. Moreover, it contributes to nullify
possible harm that AOD can give to the modularity of the
SPL, further increasing its architecture evolution stability.

6. THREATS TO VALIDITY
The validity of the results is closely linked to how well their

threats have been addressed. Considering the Wohlin [24]
classification, four threats are mapped: conclusion validity,
internal validity, external validity and construct validity.

Conclusion validity concerns the relationship between
treatment and outcome. It means that the conclusions based
on the statistical analysis of the data are significant. To mit-
igate the threat we used metrics that have already been used
in other works [25][9][3] for SPL evolution stability assess-
ment. A sample of both type of data were verified to make
sure that the process had not errors.

Internal validity refers to as an independent variable can
be affected, in other words, if a causal relationship exists
between treatment and outcome. A possible threat in this
study is the fact that the releases of the implementations
were developed by the first author of this work. To mitigate
this threat, systematic methods, reported on the literature
[19][23], were applied starting from the same requirements in
order to develop all the implementations. The requirements
were based on representative e-commerce systems and first
author‘s know-how, acquired from three years working in the

e-commerce industry, also helped to reduce the influences in
results.

External validity is concerned with generalization of the
results. We chose to use programming language and tools
already used in other works [9][22] for the same purpose of
evaluating SPL evolution stability.

Finally, concerning the construct validity, the modularity
metrics were collected manually, which can cause error in
the measures. To mitigate the threat the collected data
were double checked.

7. RELATED WORK
Laguna and Hernandez [16] present an e-commerce SPL

development for the .NET platform. Unlike Mercurius-SPL,
their approach does not use components and aspects tech-
niques for implementing the SPL.

Figueiredo et al. [9] assessed the positive and negative
impacts of AOD for supporting the PLA evolution stability.
They concluded that AOD copes well with the separation
of features with no shared code and adheres better than
object-oriented programming languages to well-known de-
sign principles. However, they identified that this strategy
is vulnerable to changes targeting core features.

Tizzei et al. [22] presents the study of the PLA stabil-
ity with the VP-AO-CB. However, their solution do not
present the development of a real and relatively large ap-
plication and did not evaluate individual contributions of
VP-connector and aspects for PLA stability.

8. CONCLUSIONS AND FUTURE WORK
This paper presented a real case study to evaluate

the ACFAM solution for implementing SPL for the e-
commerce domain, that is widely used in industry. The
result of this case study was the Mercurius-SPL, an open
source e-commerce SPL of a modular PLA, resistant to
changes. We compared Mercurius-SPL implementation
(VP-AO-CBImpl) with CBImpl and AO-CBImpl, assessing
its stability and modularity.

We concluded that the impact of changes in the architec-
ture is reduced when using aspects in the SPL, as showed in
the results of the Section 4. Another contribution of the use
of aspects is the lower scattering of features, favouring higher
modularization these implementations. Moreover, the use
of VP-connector contributes to nullify possible harm that
AOD can give to the PLA stability, favouring lower inter-
lacing between modules, contributing to the maintenance
and evolution of PLA.

For future work, we will continue the development of the
remaining features and improve the study of the impact
of non-functional requirements associated with crosscutting
features in the PLA stability. Furthermore, we are study-
ing ways to automate the ACFAM method, facilitating and
optimizing the process of transforming and specializing the
feature model into the architectural model.

Acknowledgements
This work has been partially supported by the DEVASSES
project, funded by European Union’s seventh frame-
work programme under grant agreement PIRSES-GA-2013-
612569 and by the AMADEOS project [2] under grant agree-
ment No. 610535.

9. REFERENCES
[1] A. Almeida, E. Barreiros, J. Saraiva, F. Castor, and

S. Soares. Is exception handling a reusable aspect? In
SBCARS 2014, pages 32–41. IEEE, 2014.

[2] AMADEOS: Architecture for Multi-criticality Agile
Dependable Evolutionary Open System-of-Systems,
2013. Seventh Framework Programme,
FP7-ICT-2013-10.

[3] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia,
T. Batista, and C. Lucena. Composing design
patterns: a scalability study of aspect-oriented
programming. In International conference on
Aspect-oriented software development, pages 109–121.
ACM, 2006.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. Software Engineering,
IEEE Transactions on, 20(6):476–493, 1994.

[5] P. Clements and L. Northrop. Software product lines:
practices and patterns, volume 59. Addison-Wesley
Reading, 2002.

[6] B. J. Corbitt, T. Thanasankit, and H. Yi. Trust and
e-commerce: a study of consumer perceptions.
Electronic commerce research and applications,
2(3):203–215, 2003.

[7] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

[8] eMarketer. Worldwide Ecommerce Sales to Increase
Nearly 20% in 2014. Available at
<http://www.emarketer.com/Article/Worldwide-
Ecommerce-Sales-Increase-Nearly-20-2014/1011039>.
Accessed in 30 Dec. 2014, 2014.

[9] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. Ferrari, S. Khan,
F. Castor Filho, and F. Dantas. Evolving software
product lines with aspects: an empirical study on
design stability. In International Conference on
Software Engineering, pages 261–270, NY, USA, 2008.
ACM.

[10] L. A. Gayard, C. M. F. Rubira, and P. A.
de Castro Guerra. Cosmos*: a component system
model for software architectures. Tec. Rep. IC-08-04,
Instituto de Computaçao, 2008.

[11] GitHub - Mercurius. Available at
<https://github.com/raphaelazzolini/mercurius>.
Accessed in 24 apr. 2015.

[12] W. Griswold, M. Shonle, K. Sullivan, Y. Song,
N. Tewari, Y. Cai, and H. Rajan. Modular software
design with crosscutting interfaces. Software, IEEE,
23(1):51–60, Jan 2006.

[13] B. Iizuka, A. S. Nascimento, L. P. Tizzei, and C. M.
Rubira. Supporting the evolution of exception
handling in component-based product line
architecture. In Exception Handling, International
Workshop on, pages 62–64. IEEE, 2012.

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical report, DTIC
Document, 1990.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-oriented programming. In ECOOP’97 -
Object-oriented programming, pages 220–242. Springer,
1997.

[16] M. A. Laguna and C. Hernandez. A software product
line approach for e-commerce systems. International
Conference on e-Business Engineering, 0:230–235,
2010.

[17] M. Riebisch and R. Brcina. Optimizing design for
variability using traceability links. In Engineering of
Computer Based Systems, 2008. ECBS 2008. 15th
Annual IEEE International Conference and Workshop
on the, pages 235–244. IEEE, 2008.

[18] M. P. Robillard and G. C. Murphy. Representing
concerns in source code. ACM Trans. Softw. Eng.
Methodol., 16(1), 2007.

[19] P. Sochos, M. Riebisch, and I. Philippow. The
feature-architecture mapping (farm) method for
feature-oriented development of software product
lines. In Engineering of Computer Based Systems,13th
Annual International Symposium and Workshop on,
pages 9 pp.–318, 2006.

[20] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 2002.

[21] The AspectJ Project. Available at
<http://www.eclipse.org/aspectj/>. Accessed in 26
jul. 2014.

[22] L. P. Tizzei and C. M. Rubira. Aspect-connectors to
support the evolution of component-based product
line architectures: a comparative study. In Software
Architecture, pages 59–66. Springer, 2011.

[23] L. P. Tizzei, C. M. Rubira, and J. Lee. An
aspect-based feature model for architecting component
product lines. In Software Engineering and Advanced
Applications, EUROMICRO Conference on, pages
85–92. IEEE, 2012.

[24] C. Wohlin, P. Runeson, M. Host, M. Ohlsson,
B. Regnell, and A. Wesslen. Experimentation in
software engineering: an introduction. 2000, 2000.

[25] S. Yau and J. Collofello. Design stability measures for
software maintenance. Software Engineering, IEEE
Transactions on, SE-11(9):849–856, Sept 1985.

