
 1

Software Faults Emulation at Model-Level:
Towards Automated Software FMEA

Valentina Bonfiglio1, Leonardo Montecchi1,2, Ivano Irrera3, Francesco Rossi4, Paolo Lollini1, Andrea Bondavalli1,2

1 University of Florence – Firenze, Italy – {vbonfiglio, lmontecchi, lollini, bondavalli}@unifi.it
2 Consorzio Interuniversitario Nazionale per l’Informatica (CINI), University of Florence – Firenze, Italy

3 University of Coimbra – Coimbra, Portugal – ivano@dei.uc.pt
4 ResilTech s.r.l. – Pontedera, Italy – francesco.rossi@resiltech.com

Abstract— Safety is a fundamental property for a wide class
of systems, which can be assessed through safety analysis. Recent
standards, as the ISO26262 for the automotive domain,
recommend safety analysis processes to be performed at system,
hardware, and software levels. While Failure Modes and Effects
Analysis (FMEA) is a well-known technique for safety assessment
at system level, its application at software level is still an open
problem, especially concerning its integration into certification
processes. Fault injection has been envisioned as a viable
approach for performing Software-FMEA (SW-FMEA), but it
typically requires an advanced development stage where code is
available. The approach we propose in this paper, aims to
perform software fault injection at model-level, namely on
fUML-ALF models obtained from a component-based UML
description through transformations proposed in a previous
work. Model-level fault injection allows SW-FMEA to assess the
effectiveness of safety mechanisms from the early stages of
system design. The work in this paper focuses on how the
software fault injection is implemented, and on the study of fault
propagation through appropriate points of observation to
highlight possible violations of requirements, with the
identification critical paths.

Keywords—software safety analysis; executable model; ALF;
fUML; component-based; model-implemented fault injection.

I. INTRODUCTION

Software is becoming increasingly important in the design
of safety-critical systems, thus impacting on safety
requirements, which must be assessed at both hardware and
software level. For this reason, recent safety standards are
putting more and more emphasis on safety analysis at software-
level. In the automotive domain, the recent ISO26262 standard
[3] for the functional safety of road vehicles foresees safety
analysis to be performed at different levels: system, hardware,
and software. However, besides software safety analysis being
mandatory at various levels (e.g., architectural level), such
standards do not specify how it should be performed, thus
resulting in a gap to be addressed for its industrial adoption.

In our previous work [1] we have proposed a high-level
view of the activities that are needed to perform a rigorous
safety analysis in accordance with Part 6 related to Product
development at the SW level and Part 9 related to Automotive
Safety Integrity Level (ASIL)-oriented and safety-oriented
analyses of ISO26262 standard [3]. The proposed activities
include the definition or refinement of a SW model, the

definition of a fault model, and the application of the SW
FMEA technique, among other support activities. A high-
level view of the activities workflow is illustrated in Fig. 1.
Our subsequent work focused on defining an approach to
perform automated SW-FMEA at model-level. In fact, Failure
Modes and Effects Analysis (FMEA) is an important step in
any safety analysis, and its application at hardware and system
levels has been extensively addressed in the literature.
Conversely, an equivalent analysis at software level has not
such an established background. In particular, in [2] we
introduced an approach for SW-FMEA based on executable
fUML models, obtained by model-transformation starting from
a component-based system architecture described in a
syntactically richer UML model.

In this paper we take the successive step towards automatic
SW-FMEA, proposing the use of the fault injection technique
at model-level to emulate the faulty behavior that the system
can present. Possible faulty behavior is detected by executing
the system model and comparing the system’s nominal
behavior with its behavior when faults are injected. We believe
that model-execution and model-level fault injection can
facilitate the highlight of faulty behavior, which can be used
for: i) studying the propagation of faults for identifying high-
risk components, ii) identifying and implement appropriate
fault mitigation mechanisms, and iii) validating such safety
mechanisms.

Furthermore, besides the fact that several fault injection
techniques can be found in literature [8][9][17][18][19][28],
there are few works that address the problem of injecting at

Fig. 1. Safety analysis of software architectures according to ISO26262 [1].

 2

model-level; these work do not specify the fault model
associated to the injection and its representativeness (i.e., if the
injected faults are likely to occur in a real system). In this
paper, we propose to inject the expected effect of a fault at the
interface of components, thus emulating failures at the
component interface. Our approach permits to i) address the
problem of specifying a fault model at the architectural level,
where software still does not exist, and ii) study the
propagation of faults as the effects of failures propagating from
a component to another.

The paper is organized as follows. Section II discusses the
background on semi-automatized SW-FMEA and the related
work about fault injection addressing FMEA analysis. Section
III presents the semi-automatized SW-FMEA approach
defined in [2], and how the executable system model can be
obtained from its use. Section IV describes the proposed fault
injection approach, including the identified fault model. The
implemented framework is then presented in Section V.
Finally, concluding remarks are reported in Section VI.

II. BACKGROUND AND RELATED WORK

In this section we give some background on model
execution and on fault injection, which stand at the basis of our
approach for SW-FMEA.

A. Execution of UML models

The execution of UML models is a prerequisite to our
workflow. The topic has attracted much attention in recent
past. For example, UML/P [37] is an implementation-oriented
variant of UML allowing code generation [38]. A standard
semantics for the execution of UML models, called
Foundational UML (fUML), has been published for the first
time only in February 2011 by the Object Management Group
[4]. Since then, work on the execution and simulation of fUML
models has started to emerge. However, execution of UML
models for safety analysis is still a relatively new topic. To the
best of our knowledge, the most complete proposal for fUML
execution is Moliz [39]. Moliz supports the test and validation
of UML models; however, its focus is on functional testing of
(f)UML models, i.e., behavior in presence of faults is not
specifically addressed.

The Action Language for Foundational UML (or “ALF”)
[5] has been defined by OMG as the surface notation for
specifying executable fUML behaviors within a broader model
primarily represented by the usual UML notation. In our work
we use the ALF representation of fUML models; for this
reason the terms ALF and fUML will be used as synonyms in
the rest of this paper.

It should be noted that several works have adopted model-
transformation to perform different tasks related to
dependability and safety analysis [40]. For example, in [42]
faults and their effects are modeled at UML level in order to
analyze error propagation and testability. In [41] UML
annotations are exploited to perform quantitative dependability
analysis from the early phases of system design. Differently
from most existing work in this domain, in our workflow (see
also [2]), transformations are applied to obtain an executable

UML model, rather than some dependability-specific analysis
model (e.g., fault trees).

B. Fault injection

Faults are defined as the hypothesized cause of an error (an
unexpected internal state of a system) that can lead to a system
failure (e.g., crash, performance degradation, or any
interruption of the service provided by the system) [7]. In the
context of computer systems, faults can be divided in hardware
faults, occurring in hardware components (e.g., a bit-flip in a
system register due to excessive radiation), and software faults,
defects in a piece of software that exist due to some issue
during the development phase.

A well-known approach for analyzing systems in the
presence of faults is fault injection, which consists of
deliberately inserting faults into a system in a way that
emulates faults present in the system [8]. Fault injection
techniques have been used in several scenarios: validation of
fault tolerance mechanisms implemented on a system,
dependability validation [9], [10], estimation of fault tolerance
parameters (e.g., fault coverage and error latency) [8],
dependability benchmarking [11], and failure prediction
[12][13]. Besides hardware faults, during the last decades it has
been demonstrated that software faults became the major cause
of computer systems’ failures ([14], [15]), also due to the
increasing complexity of systems’ software. The injection of
software faults was first addressed in [16], but many other
works have been developed later (e.g., [8], [17], [18]). The aim
of software fault injection is to emulate residual faults, i.e.,
faults that escaped the testing phase at different system’s
development levels. In fact, several works focusing on the
importance of the impact of software faults onto the safety
properties of a critical system came up in the last years [19].

In the context of Failure Modes and Effects Analysis
(FMEA), several works adopted fault injection techniques to
emulate systems failures and execute the FMEA in an
automatic manner (e.g., [20], [21]), both injecting in the system
under test and in a high-level model of the system. Other works
also used fault injection and FMEA in the development phase
to improve the architecture of a system in terms of fault
tolerance, thus in a perspective of co-designing [22].
Nonetheless, the existing works aimed at injecting mainly
hardware faults for modeling system’s failure modes, not
considering software as a source of failures, which is useful for
performing FMEA at software level. Among the first works in
SW-FMEA, Ammar et al. [23]–[25] proposed a framework for
performing SW-FMEA and modeling the impact of software
defects at design level on the rest of the components. The
system model under test is injected with several faults, i.e.,
errors the designer could have done during model design. The
authors base their framework on the use of UML-RT for
modeling a real-time system, and the fault model defined is
based on UML-RT (structural and behavioral) elements. In
particular, the authors show that their approach is able to help
in performing a SW-FMEA for real-time systems as a
Pacemaker, whose model is analyzed. Nonetheless, the
analysis comprises the presence of design defects only, and no
analysis on the validity of the injected defects (e.g., what is the

 3

probability that a certain defect is present in the model) is
performed. Snooke et al. in [26] aim to automate SW-FMEA
for safety-critical embedded systems and model-driven
software developments, similarly to [22], proposing automatic
fault propagation model construction from the software, the use
of software fault injection in the model, and the identification
of system level effects. Nonetheless, the authors do not
distinguish faults between software defects, hardware defects
or system errors.

In the software safety analysis scenario, there is the
problem of emulating software faults that can be present in
system models in a realistic way, thus the faults
representativeness must be addressed. However, in the works
presented above the representativeness of the injected faults
was not addressed. Cotroneo and Natella in [19] propose the
injection of realistic software faults, on the basis of the most
occurring coding faults when developing a system.
Nonetheless, the injection of software faults requires the
existence of the software system, thus making such approach
not usable at architectural and model-level. Moreover,
literature is also plenty of error injection techniques, emulating
the activation of software faults [27]–[30]; however their
applicability at model-level is limited as well.

Conversely, few works on failures injection can be found.
The cause of the failures injected, i.e., the actual faults, can be
both hardware (soft faults) and software failures, being
independent on the development phases. Generic failure
models were proposed by Bondavalli and Simoncini [31]
(timing and value failures), extended by McDermid and
Pumfrey in [32] and used in [33] (adding the “commission”
failure, and thus the failure dimension relative to “Service
Provisioning”). Such failure models were adopted by Wallace
et al. in [6], for assessing fault propagation in a proposed
architectural model. Few other failure modes exist in software
systems literature (as for instance the Koopman and DeVale
C.R.A.S.H. scale for OSs [34]), but their adaptation to this
scenario is not interesting for now.

III. AUTOMATED SW-FMEA BASED ON EXECUTABLE MODELS

In this section we recall the approach for performing SW-
FMEA using executable models and fault injection that was
proposed in [2], while the approach for injecting faults at
model-level and the proposed framework are presented in the
next sections. In such work, we have explored a practical
approach to perform SW-FMEA at model-level (i.e., to cover
the part enclosed in the box in Fig. 1). In particular, we
proposed a modeling approach and a workflow for performing
SW-FMEA, based on model execution and foreseeing the use
of fault injection.

The workflow firstly creates a component-based
description of the software architecture (Fig. 2), which includes
behavioral information to be used in the model-execution
phase to simulate the runtime behavior of the system. At this
stage the software model is a functional, (ideally) fault-free
description of the system (or golden model). Successively, our
hypothesis is to have a specific engine able to interpret such
(architectural, functional and behavioral) model, which can be

executed, obtaining execution traces that are representative of
the behavior of the system under analysis. In particular, the
golden model will produce a nominal behavior. At last, fault
injection can be used to define faulty versions of the model,
whose execution can evidence faulty behavior, and data can be
used for safety analysis.

The first step was to define an approach for system
modeling, giving also the possibility to perform model
execution. With respect to other model-execution approaches,
our focus is on component-based UML models, which supports
a general-purpose description applicable to a wide range of
application domains. Unfortunately, the Object Management
Group (OMG) intentionally omitted a variety of useful
constructs out of the standard for UML execution, fUML [4],
to restrict it to a small set of foundational UML elements with
precise semantics. Some of the core elements of component-
based descriptions (e.g., components, ports, connectors) are
among the excluded elements. In [2] we overcame this
limitation by defining a model-transformation capable to
generate executable fUML-compliant models from a
component-based system architectures described in a
syntactically richer UML model.

We hypothesize that the systems can be modeled with
respect to its functionalities, which are associated to operations
at component level, the way in which communication (through
ports) occur between components (push or request/response),
and optionally the duration of execution of operations. Finally,
the system includes a scheduler for the management of
operations execution and timing: selected components’
operations are executed cyclically, with well-defined phase and
period. The failures, in particular, will be defined based on
such model.

 Practically, our component-based UML representation
uses elements from: i) UML, to model components, ports, and
composite structures; ii) fUML (in its ALF representation), to
specify the behavior associated to operations; and iii) MARTE
[1], to specify the periodicity of execution of operations, and to
distinguish ports with different interaction kinds. In such
component-based architectural model two kinds of interactions
may exist between components: data flow and function call
interactions. Data flow concerns with data exchange, e.g., a
value produced by component A is used as an input by
component B; Function call identifies the invocation of an

Fig. 2. The detailed workflow to perform the SW FMEA activity.

 4

operation, e.g., component B calls a function exposed by
component A. Component instances are connected to each
other and interact only through their (compatible) ports. Two
ports are said to be compatible if they are of the same type, and
of opposite direction (input/output). Each component may have
a set of operations. In our approach, we specify the behavior of
the operations at design-level (i.e., without coding language-
and hardware-related details) using the ALF language. A
subset of such operations may be exposed for function call
interactions; such operations are interface operations of the
component. In addition to being called by other components,
we assume that operations defined by components can be
executed by the environment, i.e., the scheduler, the OS, or in
general the execution platform. Accordingly, we allow the
model to define the periodic execution of a set of operations.

Such component-based representation is then automatically
transformed into an executable model in the ALF language,
thus making it executable. As example, we present in Table I
an example of ALF code resulting from the transformation. It
is worth noting that the code of the whole system is executed
through a single entry point, here also referred to as ALF main.

IV. THE PROPOSED FAULT INJECTION APPROACH: FAILURE

INJECTION IN ALF MODELS

In this section, we present the proposed approach to inject
failures in the ALF model of a system. We start from an
executable model of the SW architecture that describes the
nominal behavior of the system, obtained as in [2]. Our
proposal is to modify the model using a library of possible
failures, emulating the activation of unknown faults, and then
to execute the model to observe error propagation and the
impact of the injected failures on the overall SW architecture,
possibly resulting in the violation of safety requirements.

A. Failure injection: operation -level vs component-level

In defining a fault injection approach for the methodology
proposed in [2], the first question faced was, considering the
component-based software architecture, where to inject
failures for emulating the presence of faulty components. The
possible choices identified are:

 the component-level, i.e., considering a component as
faulty and modeling the possible failure modes it might
present at its boundaries;

 the operation-level (in the present work described in
ALF), in which failures can be injected directly in the
ALF specification of operation bodies, thus emulating
design faults, e.g., wrong behavior of the component at
the design level.

Since we are most interested in the effects of component
failures on the rest of the architecture, we inject failures at
component’s boundaries. For this reason, as the injected
failures would be always active (i.e., an injected failure would
always be executed), we introduce the use of trigger, for
simulating the activation of a fault and its evolution to a
failure, according to the model in [7]. A simple
implementation of a trigger can be an if(condition) at ALF
code-level, where the condition is associated to a given time
or a given input to the model under execution.

It should be noted that injection can be performed directly
on the executable ALF model generated by the transformation,
or as part of the model-transformation algorithm itself. Our
current implementation, detailed in the following, focuses on
the first option.

B. Failure injection and failure emulation triggers

A failure is injected in the ALF code by modifying the code
according to a given fault type. However, as already said, for
emulating the activation of a fault and its evolution to a failure,
the strategy we adopted here is based on the use of triggers. A
trigger is a variable inserted in the code, wrapping the fault
injected; in particular, as a fault is emulated by adding, deleting
or modifying existing ALF code, such part of the component’s
code is wrapped. An example is presented in Table II.

On the basis of the value of the trigger, a part of code
different from the nominal will be executed in order to
simulate the insertion of the considered fault. The proposed
fault injection approach works offline, injecting/modifying the
ALF code of all the components of the system. With such
approach, all the faults can be injected at once, while they can
be activated one at a time.

C. Failure model

The proposed failure model is based on the models
proposed in [6][31][32], in which failures are considered as
perturbations in the service that the system (or also a
component) offers (as defined also in [7]), e.g., a system can
provide an incorrect value (service value failure), output a
value too late (service time failure), or output anything (service
provisioning failure). A failure can be modeled according to
three dimensions and relative cases listed in the following:

 Service provision: omission, commission;

 Service timing: early, late;

 Service value: coarse incorrect, subtle incorrect.

TABLE I. EXAMPLE OF ALF CODE [5]

/* Generic component */

 public active class C {
 public i: Integer;
 public j: Integer;
 public t: TestRunner;
 @Create public C(in i: Integer, in t: TestRunner) {
 this.i = i;
 this.t = t;
 }
 }

TABLE II. EXAMPLE OF MODIFIED ALF CODE AND TRIGGER USAGE

/* Generic component */

 public active class C {
 public i: Integer;
 public j: Integer;
 public t: TestRunner;
 @Create public C(in i: Integer, in t: TestRunner) {
 this.i = i
 if (trigger_001 == true) {
 this.t = t+1; //incorrect value
 }
 else {
 this.t = t;
 }
 }
 }

 5

In particular, the adopted model reflects the classification
of failures by Bondavalli and Simoncini [31], later extended by
McDermid and Pumfrey [32], who organized the failure modes
in a slightly different way, and added the commission failure
mode, as in that model there was no mode representing a
spurious output from a component. However, despite this
evolution, we did not adopt the commission failure mode in our
model. The presented failure model is applied to the ports of
the ALF components, which are divided in Data Flow ports
(push) and Client/Server ports (request/response) (MARTE
profile [1]), and to the timing of the components’ operations. In
this paper we consider only the failure modes coarse incorrect,
subtle incorrect, omission, early and late, for the sake of
simplicity, but expecting extensions in the near future.

The failure model we present in this work is defined on the
flow ports and client/server ports, besides the system timing,
and is presented in Table III. In particular, the table presents
the failure modes associated to each port, and the way in which
the injection can be performed in the ALF code. Each kind of
failure is described by i) the type of model element
corresponding to the ALF code to which it can be applied, ii)
the failure mode that can be injected, iii) how the failure is
emulated in the ALF code, and iv) the identifier of the trigger
used for activating the failure.

For what concerns the FlowPorts, they can be input or
output ports. In this work we do not consider injecting faults at
the input of a component, as the output flowports are input
flowports respect to another component connected to it. This
consideration is important because a value that is correct at the
output of a component can be altered at the input of a
component by an erroneous conversion or marshaling, for
instance. FlowPorts may be injected with:

 incorrect value – in range, the value at the output of
the flowport is incorrect, but it is within the range of
valid values;

 incorrect value – out of range, the value presented is
out of the range of valid values;

 omission value, the flowport does not provide any
value, when expected to do so.

About ClientServerPorts, two kinds of faults are
considered. The Incorrect Call fault indicates either i) a call to
an incorrect operation, or ii) a call to the correct operation, but
with incorrect parameters. The Omission Call fault instead
means that the call to an operation is not executed when
expected.

Some of the faults in Table III are also related to the timing
aspects. In particular:

 Incorrect period – Early, the execution of the
operation is repeated with a period smaller than the
nominal one, i.e. more frequently.

 Incorrect period – Late, the execution of the
operation is repeated with a period larger than the
nominal one, i.e. less frequently.

 Incorrect phase – Early, the execution of the
operation starts earlier with respect to the established
instant of time.

 Incorrect phase – Late, the execution of the operation
starts late respect to the established instant of time.

 Scheduler – The order of the execution of the
operation, fixed by the scheduler, is altered.

D. Faultload and workload

After defining the failure model, it is necessary to define a
faultload containing the failures to inject in the system’s
model, that is, it is necessary to specify what, when, and where
a failure must be injected. After this a workload represents a
typical execution profile for the considered application area
must be defined. The selection of valid workload and faultload
is of utmost importance for a valid failure modes analysis.
However, we do not specify any particular workload and
faultload here, as it goes beyond the scope of this work.

V. THE SW-FMEA FRAMEWORK

The approach for performing an automatic SW-FMEA based
on the injection of failures as defined in the previous section is
summarized in Fig. 3 and organized in a framework. The steps
the SW-SMEA framework proposed here takes for assessing

TABLE III. FAILURE MODEL, EMULATION PATTERNS AND TRIGGERS

Type of
port /

Property

Fault/
Failure
Type

Emulation
Pattern

Trigger
Type

ID

Trigger ID
(specific to
the single
injected

failure x)

FlowPort –
Output

Incorrect
value –
in range

the output of a component
is wrapped, and the value
of the port is changed to a

known value when the
trigger is activated

1
1_x,

x={1, 2…}

FlowPort –
Output

Incorrect
value –
out of
range

same as above 2
2_x,

x={1, 2…}

FlowPort –
Output

Omission
value

same as above, removing
the output value

3 …

Timing of
internal

operation

Incorrect
phase –
Early

wrapper + trigger +
operation phase altered

(scheduler)
4 …

Timing of
internal

operation

Incorrect
phase –

Late

wrapper + trigger +
operation phase altered

(scheduler)
5 …

Timing of
internal

operation

Incorrect
period –

Early

wrapper + trigger +
operation period altered

(scheduler)
6 …

Timing of
internal

operation

Incorrect
period –

Late

wrapper + trigger +
operation period altered

(scheduler)
7 …

Scheduler
Incorrect
variable

value

wrapper + trigger +
scheduler operations order

altered
8 …

ClientServer
Port

Incorrect
Call

the call to another
component is wrapped
and its code changed to
another operation, or the
same operation but other

parameters

9 …

ClientServer
Port

Omission
Call

same as above, removing
the operation call

10
10_x,

x={1, 2…}

 6

safety hazards of a system’s fUML/ALF model can be
summarized as follows:

1. modeling: the system architecture is described according
to the component-based model proposed in [2], where
each component provides a set of operations (each with
its ALF implementation). The failure model, i.e., the
failures to inject, and the observation points can also be
defined at this level;

2. model transformation: the model transformation
proposed in [2] is executed, thus obtaining a global
executable ALF model; such model uses only constructs
in the fUML specification it is therefore executable. Such
model contains a “main” Activity derived from the
periods and phases of execution of operations executed
by the execution platform, and is the entry point of the
simulation;

3. failure injection: faults from a pre-defined library are
injected into the model; the library may be customized
based e.g., on i) the kind of system under analysis, or ii)
preferences or common practices of industrial actors.
Failures are injected at the interface of components, thus
emulating software faults. Each failure is associated to a
trigger, which allows the emulation a generic software
fault in correspondence to given events (e.g., the
component being executed) or policies (e.g., emulating
fault bursts). It should be noted that, in principle, fault
injection can be performed either separately (as in this
paper), or during the model-transformation process (step
2);

4. observation points: the specified observation points are
added to the ALF code, logging information as the
execution of the components, the call of a given function,
and so on. Such logs will constitute the model’s
execution trace;

5. model execution: the model is executed, and an
execution trace is obtained. This involves executing both
the nominal (“gold”) model, as well as the faulty
mutations obtained through fault injection.

6. results analysis: the execution traces(s) are then
analyzed in order to evaluate the effectiveness of safety
mechanisms, or detect requirements violations.

While in [2] we focused on steps 1 and 2 from the above
list, the present paper focuses on steps 3 to 6, that is, we
specify the fault injection component to be integrated in the
workflow presented above. In particular, the problem of
injecting (or emulating the existence of) software faults at
development-time and model-level is that the system is not yet

implemented. Therefore, we propose to perform the injection
of failures at model-level, in a way to emulate the effect of the
activation of a software fault at the interface of the faulty
system component. From the perspective of the involved
component we are thus injecting failures [7] on the interfaces
it provides to the other components; however, from the
perspective of the overall system architecture they are faults.
For this reason, in this work the term fault injection coincides
with the proposed failure injection, where not explicitly
specified.

The proposed framework is composed of three main
modules: i) an injector, that injects the faults offline, ii) a
model simulation launcher, which also activates one or more
injected faults in each execution, and iii) a checker, that
searches for safety requirement violation or other conditions. A
comprehensive visual description of the framework
components interactions is presented in Fig. 3.

A. Design-time definitions

The first steps are the definition of the failure model, and
the translation of the safety requirements in rules. In
particular, the aim of the rules is to check the safety
requirements validity. Thus, a designer should translate
requirements in machine-readable information, so that it can
be processer by a Checker, using information coming from
model execution. Checking can be performed offline, applying
the rule to one or more model outputs, or online, collecting the
model outputs on-the-fly and applying the rules to a selected
subset of observation points.

B. The fault injection, triggers and faultload

As discussed in the previous section, the faults/failures are
inserted directly in the system’s ALF code model, and a
trigger is associated to each fault. The proposed fault injector
works offline, injecting/modifying the ALF code of all the
components of the system, and putting a trigger around each
fault injected. In this case, a single or multiple faults can be
activated based on their trigger. The triggers are saved in a
table, called triggers set (an example is in Table IV).

A selection of the triggers will correspond to a selection of
the faults/failures to inject, and thus to a faultload. Each
failure activation/trigger has also associated a starting time, a
duration of the failure (if applicable), and a value, in the case
the failure is related to an incorrect output, for instance.

The structure of the triggers table is presented in Table IV,
while an example of faultload is presented in Table V. In
particular, Table V presents a faultload with three possible

TABLE IV. TRIGGERS TABLE

Trigger ID
Trigger

Type ID
Start Duration Value Comment

FP_A_001 1 100 1 1 an instant of time

FP_A_002 1 100 200 1 an interval

FP_A_003 1 1 500 (*) 1 always

TABLE V. FAULTLOAD CONTAINING THREE FAILURES TO INJECT

Trigger ID Component Port Fault/Failure Type

FP_A_001 Component_1 FlowPort_Out_A
Incorrect value –

out of range

FP_A_002 Component_1 FlowPort_Out_A
Incorrect value –

out of range

FP_A_003 Component_1 FlowPort_Out_A
Incorrect value –

out of range

 7

failures, whose triggers differ from each other by their
application time (start) and duration (see Table IV).

To support the proposed approach we implemented an
automatic tool for injecting faults in the ALF model of a
system, based on the defined faultload. In particular, the
injector is implemented in Python and takes ALF code files in
input, from which it searches injection points and injects one
or more injection types from Table III. Besides this, the
injector builds a table for keep trace of the triggers associated
to each fault, each of them identifying a single fault/failure.

C. Observation points

In order to identify the critical path and study the fault
propagation, it is necessary to introduce some Observation
Points, i.e., points in the code outputting information about
variables (for example a output FlowPort of a component) that
need to be monitored. The choice of such observation points
should be done on the basis of the considered safety
requirements. The aim is to make it possible to obtain an
execution trace that contains the values of the chosen
observation points, as result of the execution of the generated
code. After defining the observation points, the Rules may be
defined based on the information collected by them.

D. Launcher

The launcher is responsible for the start of the ALF
simulation, using the ALF reference implementation [5]. An
execution of the model can be a golden execution (i.e.,
without injected faults), generating a reference trace, or a
faulty execution, if some of the injected faults are activated
through their triggers. The activation is done on the basis on
the faultload table and with the chosen workload (e.g., a given
functionality the system must perform).

E. Checker

Finally, the checker is a module that takes in input the
rules that permit to verify if there are some safety requirement

violations. The checker also can receive as input one or more
model execution output traces.

VI. CONCLUDING REMARKS

The importance of safety analysis of software architectures
is growing. In particular, the recent ISO26262 standard
comprises several requirements on the safety analysis of
software. Defining a precise workflow for the assessment of
software architectures is therefore of great industrial relevance.
Model-execution and fault injection is a promising approach to
apply SW FMEA in the early phases of software design. Based
on previous work, we have detailed our process of fault
injection. We first recalled how the executable model is
obtained and its properties; then, we defined a fault library to
take as reference during the injection process. Finally, we
detailed on the fault injection process and the current
implementation of the framework. Next steps are aiming at
extending and consolidating this work in several directions, the
main one being the integration of the SW-FMEA approach into
the CHESS-CONCERTO multi-purpose framework for the
design and evaluation of complex systems [35]. Another
improvement would consist in embedding the fault injection
process directly in the model-transformation from the
UML+ALF to the ALF only model. In this way we could take
advantage of specialized model manipulation tools (e.g.,
EMF-IncQuery [36]). Finally, one aspect that deserves further
research is the handling of timing concerns, although the
purpose here is not to replicate the features of the multitude of
analysis techniques existing in the real-time domain.

ACKNOWLEDGMENT

This work has been partially supported by the CECRIS
project, FP7–Marie Curie (IAPP) number 324334, by the
ARTEMIS-JU CONCERTO project (n.333053), by the
TENACE PRIN project (n.20103P34XC) funded by the Italian
Ministry of Education, University and Research, by the
DEVASSES project, funded by European Union's Seventh

Fig. 3. Detailed view of our approach for automated SW-FMEA, based on fUML/ALF model execution and failure injection.

 8

Framework Programme under grant agreement PIRSES-GA-
2013-612569, and by the MS-VIVA project, funded by the
Tuscany Region within the framework POR CReO FESR.

REFERENCES
[1] V. Bonfiglio, et al. “On the Need of a Methodological Approach for the

Assessment of Software Architectures within ISO26262,” SAFECOMP
2013 - Workshop CARS (2013).

[2] V. Bonfiglio, et al. “Executable Models to Support Automated Software
FMEA,” HASE (2015).

[3] ISO 26262 “Road vehicles -- Functional safety” (2011).

[4] fUML Reference Implementation, Accessed at 14/03/2014
http://portal.modeldriven.org/project/foundationalUML.

[5] ALF Reference Implementation, http://modeldriven.org/alf/, Accessed
14/03/2014.

[6] M. Wallace, “Modular architectural representation and analysis of fault
propagation and transformation,” Electr. Notes Theor. Comput. Sci.,
141(3):53–71 (2005).

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[8] J. Arlat, Y. Crouzet, and J. C. Laprie, “Fault injection for dependability
validation of fault-tolerant computing systems,” in 19th International
Symposium on Fault-Tolerant Computing, 1989, pp. 348–355.

[9] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E.
Martins, and D. Powell, “Fault injection for dependability validation: A
methodology and some applications,” Softw. Eng. IEEE Trans. On, vol.
16, no. 2, pp. 166–182, 1990.

[10] J. Duraes and H. Madeira, “Multidimensional characterization of the
impact of faulty drivers on the operating systems behavior,” IEICE
Trans. Inf. Syst., vol. 86, no. 12, pp. 2563–2570, 2003.

[11] J. Duraes, M. Vieira, and H. Madeira, “Dependability benchmarking of
web-servers,” Comput. Saf. Reliab. Secur., pp. 297–310, 2004.

[12] I. Irrera and M. Vieira, “A Practical Approach for Generating Failure
Data for Assessing and Comparing Failure Prediction Algorithms,” in
PRDC’14 proceedings, Singapore, 2014.

[13] M. Vieira, H. Madeira, I. Irrera, and M. Malek, ”Fault injection for
failure prediction methods validation”, in Proc. of Workshop on Hot
Topics in System Dependability at DSN 2009, Estoril, Lisbon, Portugal.

[14] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer, “Failure data analysis
of a LAN of Windows NT based computers,” in 18th Symposium on
Reliable Distributed Systems, 1999, pp. 178–187.

[15] I. Lee and R. K. Iyer, “Software dependability in the Tandem
GUARDIAN system,” IEEE Trans. Softw. Eng., vol. 21, no. 5, pp. 455–
467, 1995.

[16] J. Christmansson and R. Chillarege, “Generation of an error set that
emulates software faults based on field data,” in Annual Symposium on
Fault Tolerant Computing, 1996, pp. 304–313.

[17] M. C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[18] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Trans. Softw. Eng., pp. 849–
867, 2006.

[19] D. Cotroneo and R. Natella, “Fault Injection for Software Certification,”
IEEE Secur. Priv., vol. 11, no. 4, pp. 38–45, Jul. 2013.

[20] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A. Lindsay,
“Experience with fault injection experiments for FMEA,” Softw. Pract.
Exp., vol. 41, no. 11, pp. 1233–1258, Oct. 2011.

[21] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani, “A Functional
Verification based Fault Injection Environment,” in 22nd IEEE
International Symposium on Defect and Fault tolerance in VLSI
Systems, 2007. DFT ’07, 2007, pp. 114–122.

[22] J. Perez, M. Azkarate-askasua, and A. Perez, “Codesign and Simulated
Fault Injection of Safety-Critical Embedded Systems Using SystemC,”
in European Dependable Computing Conference (EDCC), 2010, pp.
221–229.

[23] H. H. Ammar, S. M. Yacoub, and A. Ibrahim, “A fault model for fault
injection analysis of dynamic UML specifications,” in 12th
International Symposium on Software Reliability Engineering, 2001.
ISSRE 2001. Proceedings, 2001, pp. 74–83.

[24] S. M. Yacoub and H. H. Ammar, “A methodology for architecture-level
reliability risk analysis,” IEEE Trans. Softw. Eng., vol. 28, no. 6, pp.
529–547, Jun. 2002.

[25] D. E. M. Nassar, W. Abdelmoez, M. Shereshevsky, H. H. Ammar, A.
Mili, B. Yu, and S. Bogazzi, “Error propagation analysis of software
architecture specifications,” in Proc. of the International Conference on
Computer and Communication Engineering, ICCCE, 2006.

[26] N. Snooke and C. Price, “Model-driven automated software FMEA,” in
Reliability and Maintainability Symposium (RAMS), 2011 Proceedings -
Annual, 2011, pp. 1–6.

[27] R. Chillarege, K. Goswami, and M. Devarakonda, “Experiment
illustrating Failure Acceleration and Error Propagation in Fault-
Injection”. 2002.

[28] M. H. J. Christmansso and M. Rimén, “An experimental comparison of
fault and error injection,” in ISSRE, 1998, p. 369.

[29] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of error detection
schemes using fault injection by heavy-ion radiation,” in Fault-Tolerant
Computing, 1989. FTCS-19. Digest of Papers., Nineteenth International
Symposium on, 1989, pp. 340–347.

[30] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri, “An
Empirical Study of Injected Versus Actual Interface Errors,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, New York, NY, USA, 2014, pp. 397–408.

[31] A. Bondavalli and L. Simoncini, “Failure classification with respect to
detection”, IEEE Comput. Soc. Press, 1990.

[32] J.A. McDermid, D. J. Pumfrey, “A development of hazard analysis to
aid software design”, in Proceedings of the Ninth Annual Conference on
Computer Assurance, 1994. COMPASS '94 Safety, Reliability, Fault
Tolerance, Concurrency and Real Time, Security, June 1994.

[33] J.A. McDermid, M. Nicholson, D. J. Pumfrey, P. Fenelon, “Experience
with the application of HAZOP to computer-based systems”

[34] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, T. Marz, "Comparing
operating systems using robustness benchmarks," Reliable Distributed
Systems, 1997. Proceedings., The Sixteenth Symposium on , vol., no.,
pp.72,79, 22-24 Oct 1997.

[35] A. Cicchetti et al., "CHESS: a Model-Driven Engineering Tool
Environment for Aiding the Development of Complex Industrial
Systems" 27th International Conference on Automated Software
Engineering (ASE 2012), 2012.

[36] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z.
Szatmári, D. Varró, "EMF-IncQuery: An integrated development
environment for live model queries", Science of Computer
Programming, Volume 98, Part 1, 1 February 2015, Pages 80-99.

[37] B. Rumpe, “Modellierung mit UML”, Springer Berlin, 2004.

[38] M. Schindler, “Eine Werkzeuginfrastruktur zur agilen Entwicklung
mitder UML/P,” ser. Aachener Informatik-Berichte, Software
Engineering, Band 11. Shaker Verlag, 2012.

[39] T. Mayerhofer, P. Langer. Moliz: A Model Execution Framework for
UML Models. In: Proceedings of the 2nd International Master Class on
Model-Driven Engineering at MODELS 2012 (2012).

[40] S. Bernardi, J. Merseguer, D.C. Petriu, “Dependability modeling and
analysis of software systems specified with UML”. ACM Comput. Surv.
45, 1, Article 2 (2012),

[41] A. Bondavalli, et al. “Dependability analysis in the early phases of
UML-based system design.” Int. J. Comput. Syst. Sci. Engin. 16, 5,
265–275, 2001.

[42] A. Pataricza, et al. “UML-Based design and formal analysis of a safety-
critical railway control software module”. In Proc. of Symposium
Formal Methods for Railway Operation and Control Systems
(FORMS03). 125–132, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

