
Model-based Evaluation of Scalability and
Security Tradeoffs: a Case Study on a

Multi-Service Platform

Leonardo Montecchi1, Nicola Nostro1, Andrea Ceccarelli1,
Giuseppe Vella2, Antonio Caruso2, Andrea Bondavalli1

1 Università degli Studi di Firenze, Dipartimento di Matematica e Informatica
Viale Morgagni 65, I-50134 Firenze, Italy

{leonardo.montecchi,nicola.nostro,andrea.ceccarelli,andrea.bondavalli}@unifi.it
2 Engineering Ingegneria Informatica S.p.A.
Viale Reg. Siciliana 7275, Palermo, Italy

{giuseppe.vella,antonio.caruso}@eng.it

Abstract

Current ICT infrastructures are characterized by increasing requirements of reliability, security, perfor-
mance, availability, adaptability. A relevant issue is represented by the scalability of the system with
respect to the increasing number of users and applications, thus requiring a careful dimensioning of re-
sources. Furthermore, new security issues to be faced arise from exposing applications and data to the
Internet, thus requiring an attentive analysis of potential threats and the identification of stronger secu-
rity mechanisms to be implemented, which may produce a negative impact on system performance and
scalability properties. The paper presents a model-based evaluation of scalability and security tradeoffs of
a multi-service web-based platform, by evaluating how the introduction of security mechanisms may lead
to a degradation of performance properties. The evaluation focuses on the OPENNESS platform, a web-
based platform providing different kind of services, to different categories of users. The evaluation aims at
identifying the bottlenecks of the system, under different configurations, and assess the impact of security
countermeasures which were identified by a thorough threat analysis activity previously carried out on the
target system. The modeling activity has been carried out using the Stochastic Activity Networks (SANs)
formalism, making full use of its characteristics of modularity and reusability. The analysis model is realized
through the composition of a set of predefined template models, which facilitates the construction of the
overall system model, and the evaluation of different configuration by composing them in different ways.

Keywords: Performance evaluation, scalability, web-services, security evaluation, security tradeoffs.

1 Introduction

The increased mobility of devices, pervasive connectivity, and multiple devices per

user, produced a shift towards a “thin client” approach, where a large part of the

required storage and computational power is demanded to servers [3]. The recent

cloud computing paradigm extends this approach with an additional layer of ab-

straction, which separates physical resources (i.e., hardware) from logical resources

(e.g., applications, storage, computational power) which are provided to users.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 310 (2015) 113–133

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.12.015

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.12.015
http://dx.doi.org/10.1016/j.entcs.2014.12.015
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

In the Software-as-a-Service (SaaS) paradigm, software applications are hosted

on a central server, and provided to users on-demand. This is often accomplished

by means of web-based interfaces, so that clients do not need any other application

than a web browser. Social networks and online storage facilities are prominent

examples of this paradigm. Due to its advantages in terms of resources, costs,

and convenience, this kind of paradigm is often used also within organizations, to

provide services to employees or internal users.

However, this approach also introduces several challenges. One of the main prob-

lems consists in the scalability of the system with respect to an increasing population

of users and applications, so that resources need to be carefully dimensioned. An-

other challenge consists in the additional security threats originating from exposing

applications and data to the Internet, thus requiring stronger security mechanisms

to be implemented within the system. Security and performance are often in con-

trast with each other [17]: mechanisms to improve the security of the system often

prescribe constraints on resource usage, or require additional computations to be

performed in order to guarantee that security policies defined at design time are

actually applied at runtime. Moreover, a large part of security mechanisms relies

on cryptography algorithms, which are typically resource-intensive. Therefore, the

addition of security mechanisms can produce a negative impact on system perfor-

mance, which needs to be carefully quantified and evaluated.

In this paper we adopt a stochastic modeling approach in order to evaluate the

scalability of a multi-service web-based platform, and the impact of introducing

security mechanisms. The evaluation focuses on the OPENNESS platform, a web-

based platform providing different services, to different categories of users. The

evaluation aims at identifying the bottlenecks of the system, under different config-

urations, and assess the impact of security countermeasures.

The model is constructed using the Stochastic Activity Networks (SANs) for-

malism [16], which can be considered an extension of the well-known Stochastic

Petri Nets (SPNs) [5] formalism. The key characteristic of our approach is in the

modularity and reusability of the model: the analysis model is defined as a compo-

sition of a small set of “template” SAN models, which are then composed to form

the overall system model. By composing them in different ways, the same templates

can be used to evaluate different system configurations.

The rest of the paper is organized as follows. The OPENNESS framework is

described in Section 2, while related work are discussed in Section 3. The stochas-

tic model is described in Section 4, while evaluations and results are described in

Section 5. Finally, conclusions are drawn in Section 6.

2 The OPENNESS Platform

The OPENNESS (OPEN Networked Enterprise Social Software suite) platform is

the framework conceived within the research project VINCENTE [18], which aims

at defining, realizing, and experimenting a technological platform for sustainable

entrepreneurship. It optimizes the resources, enhances the sharing of knowledge,

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133114

Fig. 1. Logical architecture of the OPENNESS platform.

and supports social discussion, while supporting modern technological standards.

Moreover, such platform guarantees secure exchange of data between several services

of heterogeneous frameworks. The design of the platform has thus been strongly

characterized by the risk evaluation on the whole system, where the need to realize

a secure system was of paramount importance.

The logical architecture of the OPENNESS platform adopts a classical three

tier model, where every tier is independent from the others. The Three-Tier Archi-

tecture exposes a first layer, or Web Layer, where a web server manages requests

coming from Clients, either Desktop, Web or Mobile, and delivers the content to

the Application Layer, which in turn interacts with the Data Layer. Such layer is in

charge to provide data to services in order to aggregate them and finally to satisfy

Clients requests.

The Web Layer, which is built on top of the Apache Server, is also composed by

a Web Cache, operating as a Reverse-Proxy, in order to reduce bandwidth and to

improve response time. The Apache Web server communicates with the Application

Layer components (e.g., Tomcat and PHP application servers), using AJP (Apache

JServ Protocol), which is an optimized protocol for the J2EE and PHP containers.

Communication between layers is based on the SSL (Secure Socket Layer) protocol.

The access to the platform is managed by an identity provider system, and a

specific module is in charge to manage user accounts, which are centralized on an

LDAP (Lightweight Directory Access Protocol) server.

The other components of the platform are integrated with the LDAP repository

with a full synchronization of the user accounts; at the same time the modules for

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 115

the users management within the individual components are disabled, in order to

make OPENNESS the only entry point for user registration and management.

Account centralization and OPENNESS specifications allowed the integration

of two of the most efficient SSO Single-Sign On solutions. One of them is CAS

(Central Authentication Service) , an open source framework implementing a SSO

mechanism that provides a centralized authentication system on a single server.

When a request is sent to an application, it is redirected to CAS, which deals

with the authentication. The other Identity Provider implemented by OPENNESS,

Shibboleth, sets up his SSO (Single Sign-on) logic on SAML protocol (Security

Assertion Markup Language) allowing users to sign in to various systems using just

one identity. CAS can be integrated with the Shibboleth federated SSO platform

to serve as the authentication provider for Shibboleth.

As a multichannel platform OPENNESS will integrate mobile devices like smart-

phones and tablets either with iOS and Android. In order to allow a federated

authentication a SSO mechanism has been implemented through a CAS service

authentication using the REST protocol (Representational State Transfer) thus

guaranteeing the persistence of the authentication even among different kinds of

applications using the platform.

The OPENNESS architecture is summarized in Figure 1. The module in the

left part of the figure shows the Web Layer, which includes the reverse-proxy. The

central part of the figure highlights the core of the platform, which is represented by

the Application Layer, which is in turn composed of different submodules. Based

on the offered functionalities, it is possible to identify different submodules; in this

paper we will consider the following main blocks:

• SSO Container (or Authentication). Comprises the SSO modules, i.e., CAS and

Shibboleth, and is in charge of managing the authentication procedure.

• J2EE Container. Represents the web container in which all the services of the

platform relying on Java 2 Enterprise Edition are installed. Within this modules

it is possible to identify two main applications: the Liferay Portal and the D2R

WS 1 . Liferay is a web portal framework written in Java based on a Service-

Oriented Architecture (SOA). D2R WS is a framework that can be used to map

different kinds of information to an ontology model, and retrieve them using

SPARQL queries. Such service can be used both to expose the information on a

certain database, and to perform SPARQL queries on external data providers.

• PHP Container. This block comprises all services that rely on PHP for their exe-

cution. In particular, we consider the Moodle and Mantis applications 2 . Moodle

is a modular e-Learning platform. It allows teachers to organize lectures, and

provides social features like forums, blogs, and chats to students. Mantis is a

popular open source bug tracking system written in PHP.

• SO Container. This container provides access to the most popular social network

platforms. This block is realized by means of the Virtuoso Universal Server 3 , a

1 Liferay: http://www.liferay.com/. D2R WS: http://www.d2qr.org/. Accessed: 2014-03-10.
2 Moodle: http://www.moodle.org/. Mantis: http://www.mantisbt.org/. Accessed: 2014-03-10.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133116

http://www.liferay.com/
http://www.d2qr.org/
http://www.moodle.org/
http://www.mantisbt.org/

middleware which combines features of traditional relational databases with other

data models, providing uniform access to them. Within OPENNESS, Virtuoso is

used to manage the access to social media, through the Oauth2 protocol.

The right part of Figure 1 also depicts the Data Layer. Within such layer we

identify a set of databases used to store application data (e.g., Moodle DB, Liferay

DB) or user data (OpenLDAP), and the social media data provider.

3 Security, Scalability, Performance: Related Work

While precise definitions of security [2] and performance [8] properties exist in the

literature, to the best of our knowledge, no unique definition of “scalability” has

been established. With some variants, scalability is however usually intended as a

metric that links the size of the system with the performance that it is able to reach

[11,7]. Therefore, in our evaluation we will focus on performance metrics, and their

sensitivity with respect to the size of the system.

In the literature, the impact of security mechanism on performance metrics, and

thus on system scalability, is a well-known problem for different application domains.

As an example, it is an important problem in the Wireless Sensor Networks (WSNs)

domain, where the scarcity of resources and the large number of nodes raise the

need to reduce the computational cost of security mechanisms and protocols. In

[22] the overhead introduced by three different mechanism for secure communication

in WSNs is evaluated by experimental means. In the worst case, among the kind

of messages considered by authors, an overhead of up to 50% in message size has

been measured, with a subsequent increase of more than 10% in transmission time.

Similar results have also been obtained in completely different application do-

mains, e.g. e-commerce [6,1]. In particular, the authors of [1] perform an exper-

imental evaluation of the impact of the TLS/SSL protocol on the performance of

an application server in a business-to-business (B2B) setup. The evaluation per-

formed by the authors of this work compares key performance indicators obtained

with and without a secure connection based on the SSL protocol, at varying the

number of clients that are concurrently using the system. Also in this case, the

results obtained by the authors show that using a SSL channel introduces a perfor-

mance degradation between 5% and 10%. In is interesting to note that, according

to authors themselves, such results are optimistic and that with different workloads

an even greater impact should be expected.

The impact of security on performance is even higher on web services which

rely on XML for communication. Even though the use of XML for communication

guarantees properties like interoperability and flexibility, its usage for implementing

security mechanisms has a great impact on performance, mainly due to its excessive

verbosity. Several works in the literature highlight the high performance cost due

to the adoption of WS-Security, a standard based on XML to provide security

mechanisms to web services. For example, results in [9] show an increase of network

3 Virtuoso: http://virtuoso.openlinksw.com/. Accessed: 2014-03-10.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 117

http://virtuoso.openlinksw.com/

traffic up to 690% with the introduction of WS-Security if compared to web services

without any security mechanism. Even worse, results in [17] highlight an increase

of transmission time up to 2100% for response messages of small dimensions.

In addition to experimental approaches, model-based evaluation has also been

used as a method for relating performance and security aspects. The adoption of

a model-based approach allows analysts to i) obtain useful insights on the system

from the early phases of system design, and ii) perform “what-if” analyses in order

to estimate the impact deriving from architectural changes.

The authors of [21] analyze the tradeoffs existing in a key distribution centre,

using the Markovian process algebra PEPA. Other existing approaches in the com-

bined evaluation of performance and security are reviewed in [20]. In the same

paper, the authors describe a general process using the example of choosing an

appropriate key length for encryption.

For a successful deployment of a multi-service web-based system like OPEN-

NESS, means to evaluate its scalability with respect to the expected workload are

needed. Moreover, the evident impact of security mechanisms on the planned ar-

chitecture needs to be assessed as well, in order to find the proper balance between

security, performance, and flexibility of the system. In this paper we describe a

model-based approach for performance and scalability analysis of OPENNESS.

4 Stochastic Model of the OPENNESS Platform

4.1 Modeling Approach

The modeling approach adopted in this paper is based on a compositional approach,

where the overall system model is built by composing together a set of submodels,

each addressing a specific aspect or component of the system.

In performing such decomposition, particular attention is devoted to the iden-

tification of the interfaces between the different submodels. Clearly defining the

interfaces between submodels before their implementation improves the reusability,

maintainability and modularity of the obtained submodels. Taking this concept

to its highest level leads to a modeling paradigm that recalls object-oriented pro-

gramming: the implementation of each submodel is independent from the other

interacting submodels, and it only depends on the defined interfaces. Submod-

els obtained in this way are modular i.e., they can be easily replaced or refined

as needed, provided that the input and output interfaces remain the same. This

approach also eases the integration with external tools: a given submodel, imple-

menting a specific function, may be replaced with an ad-hoc external tool, either

directly or through a wrapper model. An example of such integration is described in

[4], where adopting this approach allowed SAN submodel implementing a mobility

model to be replaced with the output produced by a vehicular mobility simulator.

Another dual aspect that enhances the modularity of submodels is the identifica-

tion of their parameters. In complex systems like OPENNESS, different components

may have a similar behavior, only differing by some numerical parameters that are

specific of a particular instance of the component, depending on its role in the

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133118

Fig. 2. Template models and parameterization.

system, or on the environment in which it is operating.

This process leads to the definition of “template submodels”, which are com-

posed of two parts: a part defining its behavior and a part defining its parameters

(Figure 2). In the construction of the overall model these templates are then in-

stantiated multiple times, with different parameters settings. This approach saves

the modeler from manually creating (and maintaining) multiple models for compo-

nents having a similar behavior, which is a very time-consuming and error-prone

task. Also, any change in a template model is automatically propagated to all the

instances of that template.

Instances of templates are then composed according to precisely defined rules, in

order to obtain the overall model for the desired scenario. The ability to easily create

different instances of the same model makes it also easier to evaluate the system

under different conditions and different scenarios, which requires only adding or

removing model instances or changing their parameters. When coupled with model-

transformation techniques, such approach can greatly reduce the effort needed to

create and assemble large stochastic models [12].

In this paper, the model is defined using Stochastic Activity Networks (SANs)

[16], which provide useful features for the concrete application of such approach.

4.2 Assumptions and Metrics

The system architecture used as a reference for constructing the analysis model is

the one described in Section 2. In order to precisely define some aspects of the

system, some assumptions have been introduced on the behavior of users and on

the deployment of services provided by the system.

The OPENNESS platform is used by users having different profiles, e.g.,

“teacher”, “developer”, “project manager”. Each user of the system may perform a

number of high-level actions on the platform, e.g., “manage an e-Learning course”,

“engage the communication and collaboration services”. The kind of actions that

are available to each user, and the pattern followed for their execution depend on

the user profile.

Each action requires the use of one or more services of the platform (e.g., Moo-

dle, Virtuoso, etc.). We also assume that the behavior of a generic user of the

OPENNESS platform can be outlined as follows:

• The user u remains inactive for a mean time T u
activation, according to an exponen-

tial distribution with rate λu
activation = 1/T u

activation.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 119

• After becoming active, a user executes, in a probabilistic way, a number of actions

among those available to him, before returning into an inactive state.

• After the execution of an action has been completed, the beginning of the sub-

sequent one is delayed by a physiological reaction time of the user (think time)

T u
think, in which the user processes the output of the platform and decides whether

he will perform further actions or return into an inactive state. Such delay is dis-

tributed following an exponential distribution with rate λu
delay = 1/T u

think.

The assumptions concerning the services provided by the platform are instead

the following:

• Requests received by service s are served with an exponential rate λs
serve =

1/T s
serve.

• With a certain probability psproxy, requests for service s can be handled directly

by the proxy.

• When a service request is served by the proxy, the service time is reduced by

a factor γsproxy, i.e., the average service time in this case is γsproxy · T s
serve, with

γsproxy < 1.

The metrics of interest that will be evaluated by the analysis are mainly performance

indicators, and are described in the following.

Us: Utilization of service s. This metric provides an indication on the dimensioning

of resources allocated to each service. It is evaluated as the probability that, at

a certain instant of time, there are requests of service s waiting to be served.

Ts: Mean waiting time for service s. This metric provides an indication of quality

of service received by system users. The metric is evaluated as the mean time

that elapses from the instant to which a service request for s is issued, to the

instant in which the request is served.

The scalability of the OPENNESS platform is highlighted through the evaluation

of such metrics at varying parameters related to the size of the system, e.g., the

number of users and the frequency with which they request services provided by the

platform. The impact of security mechanisms on system performance, and thus on

its scalability, can be evaluated by assuming an increase of service delays, based on

experimental analyses available in literature (e.g., see Section 3).

4.3 System Model

The compositional modeling approach, the predefined assumptions, and the mea-

sures of interest to be evaluated, led us to identify three template models, each

addressing a specific aspect or component of the system. The overall OPENNESS

model is built by composing together such submodels. For the sake of brevity, in

the following we provide a detailed description of two of the three template models,

UserBehavior and Service; while the third one, Action, is only briefly described. Af-

ter that, a description of the composed model and a specification of the previously

defined metrics of interest are provided.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133120

Fig. 3. UserBehavior template SAN model, representing a generic OPNENNESS user.

4.3.1 UserBehavior Template Model

According to the introduced assumptions, a user of the OPENNESS platform pe-

riodically becomes active, performs a number of actions, and then returns in an

inactive state. The selection of an action by the user is modeled as a probabilistic

choice. The actions that are available to the user, as well as the probability of being

selected, depend on the user profile.

The SAN model for a generic user behavior u of the OPENNESS platform is

depicted in Figure 3; in this one and in the following figures, interfaces to other

template models are highlighted with a dashed yellow box. The user is initially

in a waiting state, modeled as a token in place Idle. The SAN activity Auth

represents the beginning of a new user session, and the subsequent request to the

authentication module, i.e., the event for which a user becomes active. The firing

time of such activity is exponentially distributed with rate 1/Tactivation.

When the Auth transition fires a token is added in place ReqAuth and in place

WaitAuth. Place ReqAuth is an interface to the model of the authentication service

(see Section 4.3.2), and it holds the total number of requests that are currently

waiting to be served. Conversely, place WaitAuth is local to the user model, and is

used to keep track that the user is waiting for the authentication to be performed.

Similarly, place DoneAuth is shared with the model of the authentication service,

and contains a token when a new request has been fulfilled. When there is a token

both in DoneAuth and WaithAuth places, the activity AuthOK is enabled and fires,

representing the completion of the authentication procedure. In this case, a token

is added in place SelectAction.

The ChoiceAction activity is then enabled and fires, representing a probabilis-

tic choice between the actions available to the user. The activity has a case for

each action X available to the user profile modeled, and each case has a different

probability of being selected, pX. When the case X is probabilistically selected, a

token is added in place ReqX and in place WaitX, which represents the beginning

of the corresponding action performed by the user. Similarly as to what already

described for the authentication service, each place ReqX is shared with the corre-

sponding model of the user action (Section 4.3.3), while place WaitX is local to the

user model. Once the action is completed, a token is added in place DoneX by the

corresponding Action model, thus enabling the corresponding EndX activity. When

the activity EndX fires a token is added in place ActionCompleted, representing the

completion of the action performed by the user.

The reaction time of the user is modeled by the ThinkTime activity, which fires

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 121

Fig. 4. Service template SAN model, representing a generic service of the OPENNESS platform.

with an exponentially distributed delay Tthink. The ThinkTime activity has two

cases, one corresponding to the choice to end the user session and return to an

inactive state (selected with probability pEnd), and the other corresponding to the

choice to perform a further action (selected with probability 1− pEnd).

4.3.2 Service Template Model

The SAN template model for a generic service s of the platform is depicted in

Figure 4. Place Queue is an interface to the corresponding ReqY of each Action

model. Thus, at any time this place contains a token for each pending service

request. The DoReq activity models the beginning of the processing of a user request;

with probability psproxy the service request will be handled by the proxy (case 1),

while with probability 1− pproxy the service is provided by the machine hosting the

service itself (case 2). In the first case a token is added in place WaitProxy, while

in the second case a token is added in place NotProxed.

Activity Serve represents the fulfillment of a service request; its firing time is

exponentially distributed with rate λs
serve. When the activity fires, it removes a

token from place NotProxed and adds a token in place Served.

Place UsingProxy is shared between all the instances of the Service template

model, and it contains a token when the proxy is being used to satisfy a service re-

quest. When there is a token in place WaitProxy and the proxy resource is free (i.e.,

the place UsingProxy is empty), the activity UseProxy is enabled and fires, adding

a token in places Proxying and UsingProxy, thus representing the utilization of the

proxy. Activity ServeProxed represents the fulfillment of the service request by the

proxy; its firing delay is thus distributed according an exponential distribution with

rate γsproxy · λs
serve. Similarly to the Serve activity, when the activity ServeProxed

fires it removes a token from places Proxying and UsingProxy, and adds a token

in place Served, to represent the fulfillment of the service request.

4.3.3 Action Template Model

The execution of a user action generates a number of service requests to the plat-

form. Once the action has started, the involvement of the different services is

modeled as a probabilistic choice, in a similar way as in the UserBehavior tem-

plate model. The platform services that are needed for the different actions depend

on the kind of action itself. For example, the action “manage an e-Learning course”

will perform a number of requests to the “PHP Container” and “Database” services.

The SAN template model for a generic action is depicted in Figure 5. Due to its

similarity to the UserBehavior template model, and to reasonable limits of space,

we do not provide a description of such model, whose details can be found in [19].

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133122

Fig. 5. Action template SAN model, representing a generic user action.

(a) (b)

Fig. 6. Composed model of the overall OPENNESS platform. In a first stage the UserBehavior model
is composed with instances of the Action model (a). In a second stage the different instances of the
UserBehavior-Action composed model are replicated and then composed with instances of the Service
template model (b).

4.3.4 Composing the Overall System Model

In order to obtain the overall model of the OPENNESS platform, the template SAN

models described in Sections 4.3.1, 4.3.2, and 4.3.3 are instantiated several times

with the appropriate parameters, and connected together – through the identified

interfaces – using the Replicate/Join composition formalism [15].

In a first composition step models for the different user profiles are created; each

of them is obtained by composing an instance of the UserBehavior template (Sec-

tion 4.3.1) with a number of instances of the Action template (Section 4.3.3), based

on the actions that are available to the corresponding user profile. In performing

the composition, for each action X, interfaces ReqX and EndX of the UserBehavior

model are connected with places ActStart and ActEnd of the Action model. This

step is then repeated for each user profile that should be modeled. The number of

ActX submodels depend on the number of actions that are available for the involved

user profile. An example model corresponding to a user profile for which 8 actions

are available is shown in Figure 6a. This kind of composed model will be referred

to as the UserProfile composed model in the following.

The complete system model is then created in a second composition step, by

replicating the models of user profiles, and composing them with instances of the

Service template model. Multiple instances of the UserProfile composed SAN

model are added, one for each of the user profiles that are supported by the system.

Each instance of the UserProfile model is replicated through the Replica operator

[15], in order to represent a number of identical users which operate on the platform

according to the same profile. In the model of Figure 6b, each submodel “UserK” is

an instance of the UserProfile template similar to the one depicted in Figure 6a,

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 123

while the red rectangle “Rep” represents the Replica composition operator.

Through the Join node “Join1” all the replicated models are composed together.

In the composition, all the interface places ReqX and EndX corresponding to the

same platform service are shared together. Then, such places are shared with the

corresponding Queue and Served places of the different instances of the Service

template model, which are shown in the upper right part of the figure. The instances

of the Service template also share the UsingProxy place, as already described in

Section 4.3.2. Finally, the Startup submodel is an helper model that is used to

properly initialize the parameters of the different template instances.

The number of submodels of kind UserProfile and the number of instances

of the Service template depend, respectively, from the number of different user

profiles and the number of different services that should be modeled.

4.3.5 Specification of Metrics

The metrics of interest defined in Section 4.2 are specified on the stochastic model

using reward structures. More in details:

Us: Utilization of service s. To evaluate this metric, the reward function is defined

as a function returning one unit of reward for each state in which service s is busy

(i.e., Mark(Queue)>0), and zero otherwise. The mean reward that is obtained in

a given instant of time t corresponds to the desired metric.

Ts: Mean waiting time for service s. This metric is evaluated as T s
tot/N

s
req, where

T s
tot is the total amount of time that users spend waiting for service s, and N s

req

is the number of requests that have been issued for service s. In reward terms,

the quantity T s
tot can be obtained by defining a reward function that assigns to

each state of the model the total number of users that are currently waiting for

the service (i.e., Mark(Queue)); while N s
req is obtained by defining a function that

provides one unit of reward each time that service s is requested (i.e., each time

that the case corresponding to service s is selected after the firing of a ReqService

activity in an Action model).

In this paper, both the metrics are evaluated at steady-state. It should be noted

that, using the same model, different metrics can be evaluated as well.

5 Evaluation and Results

In this section the model described in Section 4 is evaluated in different configu-

rations, to consider the impact of some key parameters on the metrics of interest.

Section 5.1 defines the scenario that will be used as a reference for the following

evaluations, and introduces the default parameters assigned to the model. The

scalability of the OPENNESS platform is analyzed in Section 5.2, while the impact

of introducing some security countermeasures is evaluated in Section 5.3. All the

obtained values have been computed by discrete-event simulation, with a confidence

level of at least 99%, and a confidence half-interval of 1%.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133124

ID Profile Name Tactivation (sec.) Tthink (sec.) Users

1 Project Manager 1800

20

10

2 Developer 3600 50

3 Trainee 600 80

4 Teacher 3600 10

5 Public Citizen 600 100

6 Decision Maker 3600 20

Table 1
User profiles that have been considered in the reference scenario, and their default parameters.

1: Manage working groups 5: Manage an e-Learning course

2: Assign bugs and development activities 6: Generate an entrepreneurship idea

3: Manage bugs and development activities 7: Engage the communication and collaboration services

4: Access to an e-Learning course 8: Decide for the realization of an entrepreneurship idea

Table 2
Actions that are available to OPENNESS users in the considered scenario.

5.1 Reference Scenario and Default Parameters

The reference scenario considers 6 different user profiles, 8 kinds of actions, and

6 services. The user profiles and the corresponding parameters are reported in

Table 1. Each of them has a different activation time (Tactivation), but the same

think delay (Tthink), set to 20 seconds. The total number of users for each profile is

also reported in the table.

The actions that can be performed in the platform are listed in Table 2. The

association between them and the different user profiles is detailed in Table 3,

where for each user profile are given the available actions and the corresponding

selection probability pX (see Section 4.3.1). Table 3 also lists the value of the puend
parameter, i.e., the probability that user become inactive after having completed a

specific action.

A user with profile Project Manager may manage the working groups (Action

1) and assign bugs and development activities to developers (Action 2). The latter

of the two actions is much more frequent, since development activities will change

more often than working groups. A Developer may only manage bugs and develop-

ment activities (Action 3); moreover, he will typically perform a longer sequence of

actions in the same user session. This aspect is modeled with a lower probability

to terminate the session, i.e., the value of the pend parameter is lower.

Similarly, a Trainee may only access to e-Learning courses (Action 4). A user

with profile Teacher may access to courses, but he may also manage them (Action

5). A Public Citizen may be involved in the generation of an entrepreneurship idea

(Action 6), and may use the platform to engage the communication and collabora-

tion services (Action 7). Finally, users with profile Decision Maker use the platform

to decide about the realization of ideas proposed by citizens (Action 8).

As previously described, each action involves the utilization of one or more ser-

vices of the OPENNESS platform. The services considered in the reference scenario

are listed in Table 4. In addition to the Authentication service, to which a request

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 125

User Profile Action Selection Probability

ID Name p1 p2 p3 p4 p5 p6 p7 p8 pEnd

1 Project Manager 0.2 0.8 – – – – – – 0.5

2 Developer – – 1.0 – – – – – 0.2

3 Trainee – – – 1.0 – – – – 0.2

4 Teacher – – – 0.6 0.4 – – – 0.2

5 Public Citizen – – – – – 0.8 0.2 – 0.4

6 Decision Maker – – – – – – – 1.0 0.5

Table 3
Available actions for each user profile of the reference scenario, and corresponding selection probabilities.

ID Service Name Layer Tserve (sec.) pproxy γproxy

1 Authentication Web 0.5 0.05 0.5

2 PHP Container Application 0.1 0.4 0.4

3 J2EE Container Application 0.5 0.3 0.7

4 SO Container Application 1.0 0.2 0.7

5 Database Data 0.1 0.1 0.9

6 Social Media Data 2.0 0.5 0.7

Table 4
Services that are considered in the reference scenario, and their default parameters.

is issued initiating a new session, other five services are provided by the architec-

ture, corresponding to the main blocks of the architecture described in Section 2.

For each of these services the table lists the mean time to satisfy a user request of

such services (Tserve), the probability that a service request is satisfied by the proxy

(pproxy), and the corresponding reduction factor for the time required to satisfy a

service request (γproxy).

The mapping between actions and services is described in Table 5, which lists

the services involved in each action, and their probability of being selected. Actions

1–5 involve the usage of the PHP Container (Service 2) and Database (Service 5)

services only, since they are all based on PHP applications. More in details, actions

1–3 involve the usage of the “Mantis” application, while actions 4–5 involve the

usage of the “Moodle” application. The ratio between the selection probability

of the two services (i.e., the PHP Container and the Database) depends on the

kind of action. For example, managing bugs and development activities (Action

3) is assumed to have a heavier impact on the database with respect to managing

working groups (Action 1).

The “generation of an entrepreneurship idea” (Action 6) involves collecting and

processing different information sources, in order to correctly describe the idea

with consistent information. Accordingly, such action uses multiple services of the

OPENNESS platform: the J2EE Container, the SO Container, the Database, as

well as the Social Media infrastructure. The J2EE container is used for accessing

the Liferay platform and the D2R server. The latter allows the user to access,

through the database, to the main concepts that will be referenced by the idea; the

SO container provides the access to Virtuoso, which in turn supports the collection

of information from social media.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133126

Action Service Selection Probability

ID Name p1 p2 p3 p4 p5 p6 pEnd

1 Manage working groups * 0.7 – – 0.3 – 0.5

2 Assign bugs and development activities * 0.6 – – 0.4 – 0.2

3 Manage bugs and development activities * 0.4 – – 0.6 – 0.2

4 Access to an e-Learning course * 0.7 – – 0.3 – 0.2

5 Manage an e-Learning course * 0.5 – – 0.5 – 0.5

6 Generate an idea * – 0.4 0.3 0.1 0.2 0.3

7 Engage the communication and collaboration services * – 0.3 0.2 0.1 0.4 0.6

8 Decide for the realization of an idea * – 0.6 0.2 0.2 – 0.7

* The “Authentication” service (Service 1) is not requested by users within as specific action;
instead, it is requested only once at the beginning of each user session.

Table 5
Services that are involved in the execution of each action, and their probability of being selected.

The same set of services is exercised also when using the communication and

collaboration services (Action 7). In this case however, due to the “social” nature

of such an action, the selection probability of the Social Media service is higher,

while the usage probability of the J2EE and SO containers is reduced. Finally,

deciding for the realization of an idea (Action 8), requires the same services as for

the generation of the idea, with the exception of the social media plugin, which is

not used in the decision process.

It should be noted that the introduced scenario allows to evaluate the system

at varying some key parameters. The modeling and evaluation approach is inde-

pendent of the actual values of system parameters (including available user profiles,

actions, and services), and can be used to evaluate the performance behavior of the

OPENNESS platform in a wide range of configurations and scenarios.

5.2 System Scalability

One of the most critical parameters in evaluating the scalability of a multi-service

platform is the number of users that have access to the system. Figure 7a depicts

the utilization percentage (Us on the y-axis) of the different services provided by the

platform at varying the total number of users accessing the system. In particular,

the system has been evaluated with a total number of users multiple with respect

to the reference configuration. The lower x-axis in the figure is labeled with the

adopted multiplier (e.g., 2n, 3n), while the upper x-axis is labeled with the total

number of users in the system. The reference configuration is highlighted with a

vertical line in the figure.

As shown in the figure, the system reaches its maximum workload, due to a

utilization factor of the proxy approaching 100%, when serving a population of

around 1000 users. In such conditions, the services SO Container and Social Media

reach a utilization factor near to 90% as well. Above a certain threshold (about

800 users) the utilization of some services appears to decrease. Such behavior is

caused by the overload condition of the system. In fact, active users perform actions

sequentially; the overload of some services (e.g., SO Container) causes some actions

to experience a high execution time, with the consequence of having less actions to

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 127

be initiated by users per unit of time.

Although the previous figure provides a good indication of system scalability

with respect to the number of users, such results assume that the ratio between

the different user profiles remain constant during the growth of the user-base. In

general, this is however not the case. Actually, some kinds of users are subject to a

higher increasing rate with respect to the others. In particular, the number of users

with Public Citizen profile can experience a very rapid growth, depending on the

popularity and spread of the platform.

Figure 7b depicts the utilization percentage of the different services (on the

y-axis), at varying the number of users with profile Public Citizen (on the lower x-

axis). Also in this case, the upper x-axis is marked with the total number of users in

the system. When comparing this picture with the previous one it becomes evident

that the ratio between the different user profiles has a great impact on the scalability

of the system. In this case the saturation of the system resources is reached with

just 600 users, i.e., 40% less then obtained when assuming a proportional increase

of users with all the different profiles. Also in this case the bottleneck appears to

be the proxy, followed by the SO Container and Social Media services, which reach

a utilization factor of about 90%.

By analyzing the quality of service perceived by users of the OPENNESS plat-

form, in terms of the mean time to have a service request fulfilled, Ts, we observe

that the practical limit to system scalability is way lower than 600 users (Figure 8a).

How it is shown in the figure, even with a total number of users higher than 400,

users experience a great increase of the mean waiting time for four of the six services.

With a population of more than 500 users, average waiting times of 10 seconds and

higher are experienced, which are clearly unacceptable from a user’s point of view.

Such a great increase is probably due to the saturation of the proxy, which has been

shown to be the performance bottleneck in the considered scenario.

Evaluations reported in Figure 8b show the effect of an increase of proxy per-

formances. In particular, we assume to double the proxy processing power, thus

halving its processing delay. Such an increase in proxy performances is modeled by

halving the γproxy parameter for each service. As shown by comparing Figure 8a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2n 0.6n 1n 1.4n 1.8n 2.2n 2.6n 3n 3.4n 3.8n

 54 162 270 378 486 594 702 810 918 1026

U
s

U
ti
liz

a
ti
o

n
 p

e
rc

e
n

ta
g

e
 o

f
s
e

rv
ic

e
 o

r
s
y
s
te

m
 r

e
s
o

u
rc

e

Number of users, for each profile, with respect to the reference configuration

Total number of users

Proxy
s1: Authentication
s2: PHP Container

s3: J2EE Container
s4: SO Container
s5: Database

s6: Social Media

(a) With respect to the global number of users

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

 170 211 252 293 334 375 416 457 498 539 580 621 662

U
s

U
ti
liz

a
ti
o

n
 p

e
rc

e
n

ta
g

e
 o

f
s
e

rv
ic

e
 o

r
s
y
s
te

m
 r

e
s
o

u
rc

e

Number of users with "Public Citizen" profile

Total number of users

Proxy
s1: Authentication
s2: PHP Container

s3: J2EE Container
s4: SO Container
s5: Database

s6: Social Media

(b) With respect to users with profile Public Citizen

Fig. 7. Impact on services utilization of an increasing number of users interacting with the platform.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133128

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400 450 500

 170 211 252 293 334 375 416 457 498 539 580 621 662

T
s
 (

s
e

c
o

n
d

s
)

A
v
e

ra
g

e
 w

a
it
in

g
 t

im
e

 f
o

r
th

e
 f

u
lf
ill

m
e

n
t

o
f

a
 s

e
rv

ic
e

 r
e

q
u

e
s
t

Number of users with "Public Citizen" profile

Total number of users

s1: Authentication
s2: PHP Container

s3: J2EE Container
s4: SO Container

s5: Database
s6: Social Media

(a) Default architecture

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400 450 500

 170 211 252 293 334 375 416 457 498 539 580 621 662

T
s
 (

s
e

c
o

n
d

s
)

A
v
e

ra
g

e
 w

a
it
in

g
 t

im
e

 f
o

r
th

e
 f

u
lf
ill

m
e

n
t

o
f

a
 s

e
rv

ic
e

 r
e

q
u

e
s
t

Number of users with "Public Citizen" profile

Total number of users

s1: Authentication
s2: PHP Container

s3: J2EE Container
s4: SO Container

s5: Database
s6: Social Media

(b) Improved proxy

Fig. 8. Impact on quality of service perceived by users of the OPENNESS platform of the total number of
users with profile Public Citizen.

and Figure 8b in the reference configuration (vertical line in both the figures), the

resulting system-level improvement is minimum: the greater impact is on the Social

Media service, for which we however have a reduction of the mean waiting time

of about 25%. For the Authentication and Database services the improvement is

practically negligible.

Still, such modification has a great impact on the system scalability with respect

to the Public Citizen user profile (see Figure 8b). The practical limit to the number

of users in the system is greatly improved in this case. Actually, it is possible to

obtain acceptable waiting times for all the services until about 500 total users. With

an improved proxy, the bottlenecks are now the SO Container and Social Media

services, which provide unacceptable mean waiting times for a population of users

greater than 500 (330 of which having Public Citizen profile). This is partially due

to the higher service time with respect to the other services (see Table 4), but also

to the fact that they are heavily used exactly by the Public Citizen profile.

5.3 Impact of Security Mechanisms

In this section the OPENNESS platform is evaluated considering the effect of in-

troducing some security mechanisms. We assume that the introduction of such

mechanisms produces an adverse effect on system performance, as largely docu-

mented by experimental work in the literature (see Section 3). The obtained results

are then compared with the ones described in the previous section.

Based on a threat analysis previously carried out on the reference system, a

number of countermeasures were identified to contrast the detected threats; we

refer to them through the identifier Cn. Among the 13 countermeasures that were

identified [19], we focus on two of them that could have a significant impact on

system performance:

C007 “Validate inputs provided by users with blacklist or whitelist approaches”.

C008 “Implement an Intrusion Prevention System”.

The introduction of validation mechanisms for data provided by users (C007)

requires additional checks in the application, with a subsequent increase, although

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 129

Service ID

Countermeasure ID 1 2 3 4 5 6

C007 – 5% 5% 5% – –

C008 10% 10% 10% 10% 10% 10%

Table 6
Increase in mean service times due to the introduction of security mechanisms C007 and C008.

limited, of the time required to satisfy a service request. Such countermeasure does

not impact on the whole OPENNESS platform, but only on components that run

application code, i.e., the PHP Container, J2EE Container, and SO Container.

Concerning the introduction of intrusion prevention mechanisms (C008) we assume

that they are introduced in several points of the architecture, thus having an impact

on all the service provided by the platform. In numerical terms, we assume an

increase of mean service times of 5% with the introduction of C007, and 10% with

the introduction of C008 (Table 6).

The following evaluation focuses on highlighting the differences between four

different system configurations:

(i) Default configuration;

(ii) Implementation of C007;

(iii) Implementation of C008;

(iv) Implementation of C007 and C008.

For both simplicity and space constraints, we focus on a subset of the available

services: the Authentication and the SO Container. This choice is due to the

following considerations on results obtained in Section 5.2: i) excluding the proxy,

the SO Container service resulted the less scalable service, together with the Social

Media service; ii) the Authentication service, together with the Database, resulted

instead the one less suffering from scalability problems. Focusing on these two

services provides then a good understanding, for the purpose of this paper, of the

behavior of the overall platform. In this case we consider an increase in users with

the Public Citizen profile only, as this configuration was deemed to be more critical

with respect to system scalability.

Concerning the utilization of the Authentication service (Figure 9a), the impact

of security countermeasures results to be minimum. Even for a large number of

users, the utilization of the service does not go beyond 30%, without a noticeable

increase with respect to the default configuration.

The introduced security mechanisms have instead a considerable impact on the

utilization of the SO Container service (Figure 9b). In this case, even the intro-

duction of the sole C007 mechanism produces a noticeable increase of the load on

the service. In particular, for a configuration with 300 users with profile Public

Citizen (470 users in total), the increase in service time is around 10% just with the

introduction of C007 or C008, and around 20% if introducing both. In particular,

the greatest increase occurs with a mid-large number of users (between 400 and 500

users in total), while the increase is slightly lower with a larger user population. We

also note that the countermeasure C007 is the one causing the greater part of the

load increase, causing an increase higher than 10%, while C008 is nearly irrelevant.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133130

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

 170 211 252 293 334 375 416 457 498 539 580 621 662

U
s

U
ti
liz

a
ti
o

n
 p

e
rc

e
n

ta
g

e
 o

f
s
e

rv
ic

e
 o

r
s
y
s
te

m
 r

e
s
o

u
rc

e

Number of users with "Public Citizen" profile

Impact of security mechanisms on the utilization of the "Authentication" service

Total number of users

Default
C007
C008
C007 + C008

(a) Authentication

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

 170 211 252 293 334 375 416 457 498 539 580 621 662

U
s

U
ti
liz

a
ti
o

n
 p

e
rc

e
n

ta
g

e
 o

f
s
e

rv
ic

e
 o

r
s
y
s
te

m
 r

e
s
o

u
rc

e

Number of users with "Public Citizen" profile

Impact of security mechanisms on the utilization of the "SO Container" service

Total number of users

Default
C007
C008
C007 + C008

(b) SO Container

Fig. 9. Impact of security mechanisms C007 and C008 on the utilization factor.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

 170 211 252 293 334 375 416 457 498 539 580 621 662

T
s
 (

s
e

c
o

n
d

s
)

A
v
e

ra
g

e
 w

a
it
in

g
 t

im
e

 f
o

r
th

e
 f

u
lf
ill

m
e

n
t

o
f

a
 s

e
rv

ic
e

 r
e

q
u

e
s
t

Number of users with "Public Citizen" profile

Impact of security mechanisms on the waiting time for the "Authentication" service

Total number of users

Default
C007
C008
C007 + C008

(a) Authentication

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400 450 500

 170 211 252 293 334 375 416 457 498 539 580 621 662
T

s
 (

s
e

c
o

n
d

s
)

A
v
e

ra
g

e
 w

a
it
in

g
 t

im
e

 f
o

r
th

e
 f

u
lf
ill

m
e

n
t

o
f

a
 s

e
rv

ic
e

 r
e

q
u

e
s
t

Number of users with "Public Citizen" profile

Impact of security mechanisms on the waiting time for the "SO Container" service

Total number of users

Default
C007
C008
C007 + C008

(b) SO Container

Fig. 10. Impact of security mechanisms C007 and C008 on the mean waiting time.

The impact of the introduction of the two security countermeasures is greatly

noticeable in the mean waiting times of users. As shown in Figure 10a, if consid-

ering the mean waiting times experienced by users, the two countermeasures have

a considerable impact even on the Authentication service. It should be noted that

such drawback was not noticeable if analyzing just infrastructure-oriented metrics

like in Figure 9a. However, the increase in the waiting time seems to be constant,

i.e., it does not get worse with an even higher number of users, and it is always

around 10%. This is probably due to the limited utilization of the service, which

prevent the stacking of excessive delays in the fulfillment of user requests.

Finally, Figure 10b depicts the impact of the considered security mechanisms on

the mean waiting time for the SO Container service. The impact of both mech-

anisms is in this case huge, especially when the number of users in the system

increase. With a number of users barely double with respect to the default configu-

ration (200 Public Citizen users, 370 in total) introducing both the countermeasures

increases the mean waiting time of about 30%.

If the number of users continues to increase the deterioration is sharp: with 300

Public Citizen users (470 in total) the introduction of both the countermeasures

produces a mean waiting time which is nearly double with respect to the one ob-

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 131

tained in the default configuration. Moreover, even the introduction of only one

of the two mechanisms increases the waiting time for the SO Container service of

nearly 30%. This behavior is mainly due to two factors: i) the high mean serving

time of the SO Container service, but also ii) the high utilization of this service by

users with Public Citizen profile. Finally, it is interesting to note that in this case –

despite their different impact on service times (see Table 6) – the two countermea-

sures have a similar impact on the overall system performance figures, with a slight

higher impact due to C007.

6 Concluding Remarks

In this paper we applied stochastic modeling to the evaluation of performance and

scalability metrics of the multi-service web-based OPENNESS platform. The ap-

proach presented in this paper highlights one emerging application of stochastic

modeling, i.e., the evaluation of the impact of security countermeasures on the per-

formance of a service-based architecture. The framework defined in this paper also

highlights how achieving modularity can improve the reusability and maintainability

of models based on Stochastic Petri Nets.

In the last ten years, security and model-based evaluation have been more and

more coupled together [13], and formalism for quantitative analysis of security prop-

erties have started to emerge (e.g., the ADVISE formalism [10,14]). In this paper

we addressed a complementary aspect in “quantifying” security, i.e., quantifying

its impact on system performance. While quantifying security and quantifying its

performance impact are usually addressed in isolation, strong relationship exist be-

tween these two aspects. As a first step towards a unified performance/security

evaluation approach, future work aims at extending the framework presented in

this paper with attack models, and apply quantitative security analysis in order

to be able to identify the most convenient architectural solutions, quantitatively

balancing security, performance, and costs requirements.

Acknowledgement

This work has been partially supported by the TENACE PRIN Project (n.

20103P34XC) funded by the Italian Ministry of Education, University and Research,

and the PON Ricerca e Competitività 2007–2013 VINCENTE [18] project.

References

[1] Apostolopoulos, G., V. Peris, P. Pradhan and D. Saha, Securing electronic commerce: reducing the SSL
overhead, IEEE Network 14 (2000), pp. 8–16.

[2] Avižienis, A., J.-C. Laprie, B. Randel and C. Landwehr, Basic concepts and taxonomy of dependable
and secure computing, IEEE Transactions on Dependable and Secure Computing 1 (2004), pp. 11–33.

[3] Bondavalli, A., A. Ceccarelli and P. Lollini, Architecting and validating dependable systems: Experiences
and visions, in: Architecting Dependable Systems VII, Lecture Notes in Computer Science 6420,
Springer, 2010 pp. 297–321.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133132

[4] Bondavalli, A., P. Lollini and L. Montecchi, Qos perceived by users of ubiquitous umts: Compositional
models and thorough analysis, Journal of Software 4 (2009), pp. 675–685.

[5] Ciardo, G., R. German and C. Lindemann, A characterization of the stochastic process underlying a
stochastic petri net, Software Engineering, IEEE Transactions on 20 (1994), pp. 506–515.

[6] Garćıa, D. F., R. Garćıa, J. Entrialgo, J. Garćıa and M. Garćıa, Evaluation of the effect of SSL overhead
in the performance of e-business servers operating in B2B scenarios, Computer Communications 30
(2007), pp. 3063–3074.

[7] Hill, M. D., What is scalability?, ACM SIGARCH Computer Architecture News 18 (1990), pp. 18–21.

[8] IEEE Standards Boards, IEEE Standard Glossary of Software Engineering Terminology, IEEE Std
610.12-1990 (1990).

[9] Juric, M. B., I. Rozman, B. Brumen, M. Colnaric and M. Hericko, Comparison of performance of Web
services, WS-Security, RMI, and RMISSL, Journal of Systems and Software 79 (2006), pp. 689–700.

[10] LeMay, E., M. Ford, K. Keefe, W. Sanders and C. Muehrcke, Model-based security metrics using
adversary view security evaluation (advise), in: Eighth International Conference on Quantitative
Evaluation of Systems (QEST 2011), 2011, pp. 191 –200.

[11] Luke, E., Defining and measuring scalability, in: Proceedings of the Scalable Parallel Libraries
Conference, 1993, pp. 183–186.

[12] Montecchi, L., P. Lollini and A. Bondavalli, A DSL-Supported Workflow for the Automated Assembly of
Large Performability Models, in: Proceedings of the 10th European Dependable Computing Conference
(EDCC’14), Newcastle upon Tyne, UK, 2014.

[13] Nicol, D. M., W. H. Sanders and K. S. Trivedi, Model-based evaluation: from dependability to security,
IEEE Transactions on Dependable and Secure Computing 1 (2004), pp. 48–65.

[14] Nostro, N., A. Ceccarelli, A. Bondavalli and F. Brancati, A methodology and supporting techniques for
the quantitative assessment of insider threats, in: Proceedings of the 2nd International Workshop on
Dependability Issues in Cloud Computing, ACM, 2013, p. 3.

[15] Sanders, W. and J. Meyer, Reduced base model construction methods for stochastic activity networks,
IEEE Journal on Selected Areas in Communications 9 (1991), pp. 25–36.

[16] Sanders, W. H. and J. F. Meyer, Stochastic activity networks: formal definitions and concepts, in:
Lectures on formal methods and performance analysis, Springer-Verlag New York, Inc., New York, NY,
USA, 2002 pp. 315–343.

[17] Sosnoski, D., Java web services: The high cost of (WS-)Security, IBM developerWorks (July 2009).

[18] VINCENTE: A Virtual collective INtelligenCe ENvironment to develop sustainable Technology
Entrepreneurship ecosystems, PON Ricerca e Competitività 2007–2013, Decreto Direttoriale prot. N.
647 del 08/10/2012.

[19] VINCENTE, R4.1 “Valutazione di scalabilità in OPENNESS e relativo impatto su sicurezza”,
Technical report (2014).

[20] Wolter, K. and P. Reinecke, Performance and security tradeoff, in: A. Aldini, M. Bernardo, A. Pierro
and H. Wiklicky, editors, Formal Methods for Quantitative Aspects of Programming Languages, Lecture
Notes in Computer Science 6154, Springer Berlin Heidelberg, 2010 pp. 135–167.

[21] Zhao, Y. and N. Thomas, Efficient solutions of a PEPA model of a key distribution centre, Performance
Evaluation 67 (2010), pp. 740–756, special Issue on Software and Performance.

[22] Zia, T., A. Zomaya and N. Ababneh, Evaluation of overheads in security mechanisms in wireless sensor
networks, in: International Conference on Sensor Technologies and Applications (SensorComm 2007),
2007, pp. 181–185.

L. Montecchi et al. / Electronic Notes in Theoretical Computer Science 310 (2015) 113–133 133

	Introduction
	The OPENNESS Platform
	Security, Scalability, Performance: Related Work
	Stochastic Model of the OPENNESS Platform
	Modeling Approach
	Assumptions and Metrics
	System Model

	Evaluation and Results
	Reference Scenario and Default Parameters
	System Scalability
	Impact of Security Mechanisms

	Concluding Remarks
	Acknowledgement
	References

