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Abstract—Dependability and performance analysis of modern
systems is facing great challenges: their scale is growing, they
are becoming massively distributed, interconnected, and evolv-
ing. Such complexity makes model-based assessment a difficult
and time-consuming task. For the evaluation of large systems,
reusable submodels are typically adopted as an effective way
to address the complexity and improve the maintanability of
models. Approaches based on Stochastic Petri Nets often compose
submodels by state-sharing, following predefined “patterns”,
depending on the scenario of interest. However, such composition
patterns are typically not formalized. Clearly defining libraries
of reusable submodels, together with valid patterns for their
composition, would allow complex models to be automatically
assembled, based on a high-level description of the scenario to
be evaluated. The contribution of this paper to this problem is
twofold: on one hand we describe our workflow for the automated
generation of large performability models, on the other hand we
introduce the TMDL language, a DSL to concretely support the
workflow. After introducing the approach and the language, we
detail their implementation within the Eclipse modeling platform,
and briefly show its usage through an example.

Keywords-modularity; model-based evaluation; state-based;
performability; template models; composition; model-driven en-
gineering.

I. INTRODUCTION

Model-based evaluation [28] plays a key role in depend-
ability [4] and performability [25] evaluation of systems.
Modeling allows the system to be analyzed at different levels
of abstraction, can be used to perform sensitivity analyses,
identify system bottlenecks, highlight problems in the design,
guide experimental activities and provide answers to “what-if”
questions. Most importantly, model-based analysis enables the
evaluation of specific events without their actual occurrence in
the real system. For this reason, modeling and simulation are
widely used in the assessment of high-integrity systems and
infrastructures, where the evaluation of the effects of faults
and attacks can potentially lead to catastrophic consequences.

While ad-hoc simulators are used in some domains, (e.g.,
see [29]), state-based formalisms like Stochastic Petri Nets
(SPNs) and their extensions [12] are widely used to assess
non-functional properties across different domains. The use
of such formalisms has several key advantages: they provide
a convenient graphical notation, support different abstraction
levels, enable modular modeling via state-sharing formalisms
[33], and they are well-suited in the representation of random

events (e.g., component failures). Moreover, due to their
generality, such formalisms can be used in different domains,
and for the analysis of different kinds of system properties.

Nowadays, the analysis of modern systems is facing great
challenges: their scale is growing, they are becoming mas-
sively distributed, interconnected, and evolving [9]. The high
number of components, their interactions, and rapidly chang-
ing system configurations represent notable challenges for the
application of model-based evaluation approaches. A large
amount of work in literature propose techniques for the
generation, handling, and numerical evaluation of large state-
space models, which can be grouped in largeness avoidance
and largeness tolerance approaches [28]. While techniques
for the efficient evaluation of large models are fundamental,
the growing complexity of modern systems is also posing
challenges for the specification of analysis models itself.

A key principle in addressing the complexity in the specifi-
cation of analysis models for large systems and infrastructures
is modularization. When using approaches based on SPNs
and their extensions, reusable submodels addressing different
concerns are typically defined and then composed by state-
sharing, following predefined “patterns” based on the scenario
to be analyzed. The reusability and maintanability of the
obtained analysis model is therefore improved: submodels
can be modified in isolation from the rest of the model,
can be substituted with more refined implementations, can be
rearranged based on modifications in system configuration.

However, while submodels can be precisely defined using
well-established formalisms (e.g., SPNs), patterns for their
composition are typically not formalized. As a result i) sub-
models libraries are difficult to be shared and reused, and
ii) the overall system model for different scenarios must be
assembled by hand by people who know the appropriate rules
to follow. Moreover, even when rules for the composition of
submodels have been properly specified, obtaining a valid (i.e.,
correctly assembled) model requires a lot of manual effort,
involving error-prone, time-consuming, and repetitive tasks.

In this paper we define a workflow that addresses this
problem, with the ultimate goal to support the automated
assembly of large performability models, based on well-
specified libraries of reusable submodels. The workflow is built
around TMDL, a Domain-Specific Language (DSL) that is
used to precisely specify and instantiate libraries of “template”



performability models.
The paper is organized as follows. The necessary back-

ground and motivation for our work are introduced in Sec-
tion II, while a motivating example which can benefit of our
approach is introduced in Section III. An overview of our
workflow for the automated assembly of large performability
models is provided in Section IV, while Section V details the
TMDL language and sketches the automated model assembly
algorithm. Section VI introduces the current implementation
and provides an overview of its application to the previously
introduced example. Conclusions are drawn in Section VII.

II. RELATED WORK

The need of modularity and composition for tackling the
complexity of modern systems has emerged in several en-
gineering domains. The one in which this aspect is most
evident is perhaps software engineering, where techniques
for properly constructing a software system out of modular
elements are well established [18, 24]. More in general, a
wealth of methodologies and formalisms have been proposed
in literature to address composability, i.e., the construction of
a whole system from parts (components); an interesting survey
can be found in [17]. Several work specifically addressed
composability for high-integrity and real-time systems, by
defining formal models for specifying interactions between
components, e.g. see [7, 21].

Our focus is not on component-based system development,
but rather on the modular construction of models for stochastic
analysis by means of reusable elements. It should be noted
that compositional modeling has also been the subject of much
work present in literature; a nice discussion on this topic can be
found in [28]. Many approaches exist that apply compositional
modeling to take advantages of symmetries existing in the
model, thus reducing the space or the time required for its
numerical evaluation.

Although techniques for efficient analysis of performability
models are of paramount importance, they are not the purpose
for which – in this paper – we are looking at compositional
modeling approaches. Indeed, while compositional modeling
approaches (e.g., [30, 33]) were initially introduced for the
purpose of reducing the size of the generated state-space, such
approaches have later gained importance also in improving
the specification of models, since they also carry with them a
number of other practical advantages: submodels are usually
simpler to be managed, can be reused, can be refined, and can
be modified in isolation from other parts of the model.

Several approaches based on Petri nets and their extensions
have recognized the benefits in applying “separation of con-
cerns” principles [15] to the construction of performability
analysis models. In such approaches (e.g., see [10, 20, 31,
37]) the overall analysis model is built out of well-defined
submodels addressing specific aspects of the systems, which
are then composed following predefined rules based on the
actual scenario to be represented. When submodels are reused
multiple times, this approach leads to a modeling paradigm
that resembles object-oriented programming (OOP): libraries

of “template” submodels are created for a given system, having
fixed “interfaces” and “parameters”. Such templates are then
“instantiated” multiple times and then connected through their
interfaces. Indeed, when referring to submodels and their
properties, some of these works actually use OOP-derived
terms like interface [31], template, instance [8] and even
inheritance [5].

The main gap in applying this approach is that, while
established formalisms exist both for defining the submodels
and for physically composing them, the patterns to be followed
for their composition – which depend on the system to be
modeled, and the set of identified submodels – are typically not
formalized. In many cases, submodels are based on SPNs and
they are composed by state-sharing, but composition patterns
are provided either informally or by examples. Even worse,
those “rules” often are not even written somewhere, but they
are only known to the person(s) that developed the submodel
library for the system under analysis. For this reason, reusing
such template models and composition patterns, and sharing
them between different teams is currently impracticable.

In this paper we address exactly this problem, by defining
a workflow which provides support for defining libraries of
reusable submodels, including library-specific patterns for
their composition. The ability to precisely define submodel
composition patterns allows the overall performability model
to be automatically assembled via model-transformation from
a high-level specification of the scenario of interest. While
automated assembly of complex models is useful per-se, it
also provide a means for easier adaptation of performability
analysis model to modifications of system configuration.

It should be noted that several other work in literature
apply Model-Driven Engineering (MDE) [35] techniques for
the automatic derivation of performance and dependability
models, e.g., see [6, 13, 23, 26, 32]. However, the purpose of
such approaches is usually to provide an application-specific
abstraction to users of a certain domain, and then automatically
derive analysis models defined by a domain expert. Reuse
across different domains, or with different submodel libraries
is not considered, and therefore composition patterns are
typically embedded in the transformation algorithm, which is
therefore different for every different library of submodels.

In our approach the definition of composition patterns is part
of the submodel library, and it is therefore separated from the
model generation algorithm. In this way, the model generation
algorithm is defined (and implemented) only once, and it can
be used to generate and assemble models from different model
libraries. This of course requires adding some “intelligence”
(and complexity) directly in the submodel library.

Within the performability community, the approach which
is more related to ours is the one proposed by the OsMoSys
framework [39]. In particular, it also promotes an Object-
Oriented modeling approach, using OO-derived terms like
“model class”, which have strong analogies with terms adopted
in this paper. The focus, and consequently the approach, is
however quite different. OsMoSys provides a way to compose
performability models created with different formalisms, and



to orchestrate their solution in order to evaluate the global
system model. In this paper we focus on the reuse and
automation of composition patterns for a specific class of
formalisms, aiming at enabling the automatic assembly of
large performability models with reduced effort for the user.

Finally, it should be noted that the Möbius framework
[14] provides some means for reducing the effort required
to specify complex models. Actually, its implementation of
the Rep/Join composition formalism [33], allows multiple
instances of the same Stochastic Activity Networks (SAN) [34]
model to be used. However, instances of the same submodel
are completely identical, and each instance still needs to be
manually connected to the rest of the composed model.

III. MOTIVATING EXAMPLE

To better illustrate the approach, we introduce a motivating
example of a large-scale distributed system, and show how the
proposed approach improves the manageability and scalability
of the analysis model.

A. A World Opera

The system we are considering as motivating example is
the one envisioned by the World Opera (WO) consortium
[36], aiming at conducting distributed, real-time, live opera
performances across several world renowned opera houses.
Each opera house represents a real-world stage with its own
musicians, singers, dancers, and actors. Participating artists
from different real-world stages are mapped to virtual-world
stages, which are projected as video on display devices, and
shown to the audience at the local opera house as well as
audiences at geographically distributed (remote) opera houses.
For example, the “Gilgamesh” performance, includes three
real-world stages in Norway, Sweden, and Denmark, respec-
tively. Additionally, virtual-world stages can display animated
cartoon characters mimicking the behavior of the artists at
remote stages [38].

The WO application exhibits several challenges, including
synchronization across several dimensions: spatial, temporal,
and precedence. Moreover, the infrastructure allowing for
these applications includes a high number of specialized
hardware and software components, whose slight malfunc-
tion could severely affect the performance, due to the strict
functional requirements. Fault-tolerant architectural solutions
are therefore necessary to ensure the correct execution of a
WO performance. To design such a fault-tolerant solution it is
essential to understand the interaction between the components
and the potential effects of their failure, from the audience
perspective, on the overall show.

The typical setup for a World Opera performance consists
of 3 to 7 real-world stages with different artists and possibly a
different set of technical components (microphones, projectors,
etc.). The activities at each stage in WO are logically divided
into four tasks. Capturing involves corresponding components
receiving activation signals and generating streams. There
exist three principal stream types: video, audio and sensor
(e.g., to track the movement of an artist on the stage). These

Camera 1 Video Capturing 
Workstation 1

Camera 2 Video Capturing 
Workstation 2

Camera 3 Video Capturing 
Workstation 3

Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Mic 6

WMic 
1

WMic 
2

WMic 
3

WMic 
4

WMic 
5

WMic 
6

Mixer

Audio 
Workstation 

1

Audio 
Workstation 

2

Spk 1

Spk 3

Spk 2

Spk 4

Gateway

Display 
Workstation 

1
Projector 1

Display 
Workstation 

2
Projector 2

Display 
Workstation 

3
Projector 3

Figure 1. System architecture of a World Opera stage [37, 38]

generated streams collectively represent the real-world data.
Processing is then performed on all generated streams to
remove noise. Additionally, video streams are encoded to
reduce the size of streams, timestamped, and processed using
computer vision techniques for artistic reasons. Streaming,
involves transmitting and receiving the streams to and from
the remote stages. Finally, rendering involves processing (e.g.,
decoding) received streams, synchronizing them based on their
timestamps and then rendering them to the virtual-world.

The architecture considered for a general WO stage is shown
in Figure 1. A stage consists of: microphones and cameras to
capture the multimedia streams from actors; projectors and
speakers to render the streams to the audience; a mixer to
route audio streams; workstations for processing of captured
streams; a gateway for transmission of streams to/from remote
stages. The actual number and kinds of components present in
each stage depend on the number of artists present in the stage,
and the role of the stage in the overall performance. In order
to cope with faults that may affect stage components, most of
them are required to implement some kind of fault-tolerance
mechanism.

B. Performability Model

Model-based analysis of the WO system is being undertaken
to: i) evaluate the impact of components failures, ii) compare
the benefits in introducing different fault-tolerance solutions,
and finally iii) evaluate the QoS perceived by users during a
WO show under different configurations.

A set of metrics for the evaluation of the WO system have
been defined in [37], and evaluated on a simplified case study.
A more complex and faithful model of the system is being
developed using a modular modeling approach as discussed
before, in which the model is subdivided in well-specified
“template” submodels, which are then instantiated multiple
times and connected together following precise rules [27].

The model considers components and streams as the ba-
sic elements of a WO performance, both having different
possible working states (e.g., working/failed for components,
good/missing/delayed for streams). The state of a stream in a
certain point of the architecture depends on the state of all the



components that have processed it so far (including compo-
nents that are capturing it). The state of different streams as
they are reproduced to the audience provides insights on the
QoS perceived by the users and it is therefore the target of
evaluation.

In the modeling of the WO system 4 basic SAN templates
are involved [27]:
• Component: A physical component of the WO

architecture. The interfaces of this submodel are
working_state, providing the current state of the
component, and num_f for each failure mode f ,
counting the number of components in the same group
that have experienced failure mode f .

• StreamCollector: Models the capturing of a stream. Its
interfaces are num_f for each failure mode f of asso-
ciated capturing components, and stream_out, which
represents the state of the captured stream.

• StreamAdapter: Models the processing of a stream. Its in-
terfaces are component_state, representing the state
of the associated processing components, stream_in,
representing the state of the stream received as input,
and stream_out, representing the state of the stream
produced as output.

• StreamPlayer: Models the playback of a stream to the
audience. Its interfaces are the state of the stream as
received as input, stream_in, the state of associated
playback components, num_f, and the state of the stream
as reproduced to the audience, stream_play.

These templates have also a number of parameters, e.g., the
failure rate and the number of spares in case of components.
The actual implementation of these models depends on the
behavior to be modeled; different implementations may for
example be needed for representing different fault-tolerance
mechanisms. For simplicity, we have assumed a hot-spare
behavior for all components as in [37], thus leading to a
single “Component” template. In case of components with
different behavior, different templates would be needed. For
example, “ComponentWithSpare” and “ComponentTMR” for
distinguishing between components with hot-spare and those
implementing triple modular redundancy.

By just composing multiple instances of these basic building
blocks, a wide variety of different scenarios can be assessed.
As an example, Figure 2 shows the composed model for a
WO stage consisting of 6 microphones, 2 cameras, 4 speakers,
2 projectors, 3 workstations, 1 mixer and 1 gateway, and
employed in a WO show consisting of 5 application streams.
The composed model in Figure 2 consists of 33 atomic model
instances, created from the fixed set of 4 templates listed
above. Actually, such model is only a part of a bigger model
addressing a three-stage WO performance, comprising ~50
components, modeled by ~100 instances of the 4 template
models described above.

By changing the way in which such templates are arranged,
or adding (or removing) specific instances, it is possible to
assess different scenarios in an efficient way. As an example, it
could be interesting to evaluate how the target metrics change

if the workstations that are in charge of processing each stream
are changed, of if different combinations of components are
used to reproduce multimedia streams.

C. Current Limitations

Currently, the applicability of this approach is hampered by
two major practical limitations: i) the lack of formalization of
template composition patterns, and consequently ii) the lack
of means for automated application of such patterns.

As described above, the overall system model is obtained
by composing instances of template atomic models following
predefined patterns. Such patterns are specifically tailored to
the library of template models that is being developed: they
can be considered a part of the library itself. However, such
rules are not formally specified: they are part of the expertise
of the person(s) that developed the model library. For this
reason, sharing such libraries and reusing them across different
projects becomes nearly impossible. Examples of rules for
creating instances in the WO model are:
• For each application stream to be modeled create an

instance of the “StreamCollector” template model
• For each component of the stage create an instance of

the “Component” template model, and an instance of the
“StreamAdapter” template model for each of the streams
the component processes.

Unfortunately, it is not sufficient to simply add atomic model
instances to the overall model. Depending on the semantic of
the defined templates it is required to properly connect them
based on: i) their predefined interfaces, and ii) the specific
scenario that should be modeled. Referring to Figure 2, for
each “Rep” or “Join” node (red and blue nodes, respectively)
there exist a precise pattern to be followed to correctly
assemble all the instances of atomic templates (black nodes).
Manually performing such a task requires considerable effort
at the increasing of model largeness. Examples of rules for
connecting instances in the WO model are:
• Connect each “StreamCollector” instance with the in-

stances of “Component” templates corresponding to
components that are used to capture the stream. Inter-
faces to be connected are num_f in all models.

• Connect “StreamAdapter” instances with the associ-
ated instance of the “Component” template. Inter-
faces to be connected are working_state and
component_state.

For large systems actually remembering or following such
patterns is difficult; even more after modifications occur
in system configuration. For example, the highlighted part
of Figure 2 models the playback of three video streams
(v orchestra, v director, v scene) on two different projectors
(projector orchestra and projector scene). Adding a third
projector dedicated to the v director stream only would require
to: i) add a new instance of the “Component” template
for modeling the projector, ii) removing the corresponding
instance s1 play v director of the “StreamPlayer” model from
the “Projector Orchestra and Director” Join composition, iii)



Figure 2. A SAN composed model for a WO stage, built out of the 4 SAN templates described in
Section III-B [27].

Figure 3. A composition system
allows components to be assembled
based on provided composition pro-
grams.

properly connect the new “Component” instance and the
existing s1 play v director instance into a new Join compo-
sition, and iv) properly connect the new Join as child of the
“DisplayWS with Streams” Join.

The approach we propose in this paper tackle these chal-
lenges by introducing: i) a custom language to precisely spec-
ify template models libraries and composition patterns, and ii)
automated model-transformations to automatically instantiate
the model templates and properly connect them.

IV. APPROACH OVERVIEW

In this section we provide an overview of the proposed
approach, which defines a workflow (Section IV-B) for the
automated assembly of performability models for large-scale
systems. The approach is loosely based on the notion of
“composition system”, briefly introduced in Section IV-A.

A. Composition Systems

According to [2, 19], a composition system is defined
by three elements: i) composition technique, ii) component
model, and iii) composition language. The composition tech-
nique defines how components are physically connected. The
component model defines what a component is and how it
can be accessed. The composition language is used to specify
“composition programs”, i.e., a kind of script that specifies
which components should be connected, and how, in order to
obtain the intended composed model (Figure 3).

Reformulating our previous discussion, in order to realize
our target “composition system”, languages to specify compo-
nents exist (SPNs and their extensions), as well as the com-
position technique (Rep/Join and state-sharing formalisms in
general). What is currently missing is a composition language
capable to specify how submodels should be assembled. More
details are provided in the following.
• Component Model. In our system, components are models

in some state-space stochastic formalism (e.g., Markov
Chains, Stochastic Petri Nets). The interfaces that a
component may expose to other components are the state-
variables which define its state-space. In particular, we
consider SANs models as components, exposing specific
places as their interfaces.

• Composition Technique. As composition technique we
consider state-sharing. When specific interfaces of two or
more components are connected together, the associated
state-variables are shared between the components, i.e.,
they are constrained to have the same value. In particular,
we consider the Rep/Join formalism as state-sharing
formalism.

• Composition Language. The composition language is the
distinguishing contribution of our approach. We define
the Template Models Description Language (TMDL), an
ad-hoc language to support our approach. TMDL, which
is described in Section V, enables the specification of
i) components and their interfaces, and ii) composition
programs.

B. The Workflow

The overall workflow proposed by our approach is depicted
in Figure 4 and it described in the following.

Step 1. Starting from system requirements and architecture,
an expert in performability modeling develops a “Template
Models Library”, i.e., a library of reusable components and
composition patterns. Such library is composed of two parts:
• TMDL Library: A specification in the TMDL language,

containing i) the definition of elementary template models
and their interfaces, and ii) a set of valid composition
templates, which specify valid patterns for composing the
basic components.

• Components Implementation: The internal implementa-
tion of elementary components specified in the TMDL
Library. This part depends on the specific tools and
formalisms that are adopted in the modeling process. As
an example, the PNML language1 can be used for models
in formalisms derived from Petri Nets.

Step 2. In the second step the different system scenar-
ios and configurations that should be analyzed are defined.
Clearly, different levels of detail can be adopted in providing
a (semi-)formal description of system scenarios. At the level
of detail we are using, this step corresponds in creating

1Petri Net Markup Language (PNML) is an exchange format for Petri Nets
based on XML. It is undertaking a standardization process as ISO/IEC 15909.



Figure 4. Our workflow for the automated generation of performability models. Elements depicted in gray are specified using the TMDL language.

composition programs in our composition system. This step
is performed using the TMDL language as well, with a
specification which describes which submodels are selected
for modeling that particular scenario and the values of their
parameters (TMDL Scenario).

From a practical perspective, TMDL “Scenario” specifica-
tions can be created manually starting from informal descrip-
tions of scenarios to be analyzed (e.g., provided using the
natural language), but could also be automatically generated
from architectural UML-like models, by applying model-
transformation techniques.

Step 3. Starting from the Template Models Library defined
in Step 1 (i.e., our components), and the description of
scenarios provided in Step 2 (i.e., our composition programs),
the models for all the different scenarios and configurations are
automatically assembled and then evaluated. The generation of
composed models is accomplished by means of the “TMDL
Automated Composition Algorithm”, which takes as input a
“TMDL Scenario” specification and generates the correspond-
ing model by properly assembling the “Template Implementa-
tions” based on the patterns specified in the “TMDL Library”
(see Figure 4).

It is important to note that the “Automated Composition Al-
gorithm” of Figure 4 is the same for every library of template
models, i.e., it is specified and implemented only once, and
can be reused to automatically assemble models of different
systems. This it the key point of our approach, and the main
reason to develop the TMDL language. From a composition
systems’ point of view, such algorithm is the composition
engine, which interprets composition programs specified in
TMDL, properly assembling the specified submodels.

V. TEMPLATE MODELS DESCRIPTION LANGUAGE

A. Main Concepts

In the following we first introduce the main concepts on
which the TMDL language builds.

The basic building blocks of TMDL are model templates.
Model templates have a set of interfaces, which specify how
they can be connected to other model templates, and a set of

parameters, which specify variable elements in the compo-
nent (e.g., the initial number of tokens in a certain place).
Component templates can be either atomic templates or
composition templates. A set of model templates constitutes
a library.

Atomic templates are associated to an implementation
in the selected state-based formalism (e.g., a PNML file,
or a tool-specific format like the XML-based format used
by Möbius [14]). Composition templates group together a
set of submodels, i.e. other model templates. For each of
the referenced submodels a multiplicity attribute may be
specified. Composition templates can have parameters as well,
which allow for example parametric multiplicity values to be
specified. Composition templates include a set of merging
rules, which specify the patterns for connecting the interfaces
of their submodels.

A model class is obtained from a component template by
associating concrete values to its parameters. An atomic class
is defined by a reference to an atomic template, and possibly
a set of values for its parameters. Similarly, a composed class
is a reference to a composition template, and possibly a set of
values for its parameters. In addition to the set of values for
its parameters, a composed class can also contain references
to other model classes, which are used as concrete submodels,
provided that they are compatible with the specification of the
template.

A model class can be used more than once in the over-
all composed system model, e.g., in case multiple identical
elements are present in the system. A model instance is
an individual instance (copy) of a model class. An atomic
instance is a copy of the template implementation, where all
the parameters have been set as specified by the atomic class.
A composed instance is an instance of a composed model
class, i.e., a collection of model instances composed according
the specified rules.

Submodels of a composition can in turn be other composed
models. Therefore, a composed instance can be considered
the root of a tree, in which internal nodes are associated with
other composed instances, and leaves are atomic instances. The



overall model that represents a certain scenario is therefore
identified by an instance of a composed component. Accord-
ingly, a scenario (i.e., our “composition program”) is specified
as a set of model classes, and a “root” instance that represents
the overall system model.

One of the goals of our approach is to save the modeler
from specifying and connecting multiple identical component
instances. However, at the same time, the language should be
flexible enough to be able to represent complex scenarios and
dependencies between components. In this perspective, a key
role is played by the multiplicity and index concepts.

Multiplicity allows multiple model instances to be specified
by specifying the model class and a numeric value. In the
model generation phase, an index is automatically assigned
to each of the generated instances, allowing them to be
distinguished from each other. By default, indices are set based
on the multiplicity of the model instance, i.e. a multiplicity
of n generates n instances, with indices ranging from 1 to
n. For greater flexibility, TMDL allows the user to directly
specify an array of indices in place of a multiplicity value. For
example, by specifying {3, 4, 5} as a multiplicity value, in the
model generation phase 3 identical component instances will
be created, having indices 3, 4, and 5. Moreover, indices can
be associated with textual prefix, thus allowing to distinguish
indices related to different dimensions.

When any interface of a submodel becomes an interface of a
composed model, an index (and possibly a prefix) is appended
to its name. Such name is the instance name of the interface.

B. The TMDL Language

The metamodel of the TMDL language is shown in Fig-
ure 5. For simplicity, only the main language elements are
shown in the figure: data types and other supporting ele-
ments have been omitted. As described before, the purpose
of TMDL is twofold: to define libraries of template models,
and to define scenarios in which such templates should be
instantiated. For this reason, a specification in the TMDL
language (specification element) may contain a model
library (library element), and a certain number of scenarios
(scenario elements).

1) TMDL “Library”: The library part of TMDL sup-
ports the first step in the workflow of Figure 4. A library is
composed of a set of template elements. Each template has
a distinguished name, and a set of parameters (param). The
template element is an abstract element, which is refined
in atomic templates (atomic) and composition templates
(composition). Each template may also have a textual
prefix, which can be specified for indexing purposes. When
the Boolean replica attribute is set, the composition template is
simply a replica of another template; in this case the composed
template can be used in any place where the template it
replicates is expected.

An atomic template has a body attribute, which specifies
where to actually find an implementation of such model,
and a set of atomic interfaces (interface_atomic).
An atomic interface can be either a single interface

(interface_single), or an array of similar interfaces
(interface_array). In the latter case, the interface has as-
sociated a multiplicity value and, optionally, a textual prefix.

A composition template contains a set of block el-
ements, which specify which kind of subcomponents are al-
lowed for the composition template. Each block element has
a distinguished name, and references a template element. A
multiplicity value can be specified to define multiple instances
of the same model class as submodels.

Additionally, a composition template specifies a set
of rules that should be followed in connecting together its
subcomponents (mergerule). Three kinds of merge rules
are supported by TMDL: mergeall, mergebyname, and
forward. The mergeall rule specifies that all the selected
interfaces should be connected together, to form a single inter-
face of the composed component. The forward rule specifies
that a single interface of a subcomponent should directly
become an interface of the composed component; in this case
no interfaces are joined together. The mergebyname spec-
ifies that, within the selected interfaces, those with the same
instance name should be merged together, to form a single
interface of the composed component. The instance name is
formed by the “base name”, i.e., the name specified in the
composition template, and any indices and prefixes appended
during model generation. Without further parameters, instance
names need to be exactly the same for merging to occur.
The user may however specify a set of prefixes to which
the comparison should be restricted; in this case for merging
to occur it is sufficient that the different interfaces have the
same index values for the specified prefixes, while the rest of
the interface name is not taken into account. If some of the
selected interfaces cannot be merged with any other interface
they are forward as interfaces of the composed model.

Which interfaces are selected for each mergerule is spec-
ified by mergeitem elements. Each mergeitem element
references a single interface element, and optionally, a
specific block element and a multiplicity value. If a block
is specified, the rule is restricted to subcomponents derived
from such block only; similarly, if the multiplicity attribute
is specified, the rule is restricted to subcomponents having
the specified indices only. Each mergerule contains one or
more mergeitem elements.

Finally, a composition template may specify a set of
bindings between its parameters and parameters of its sub-
components (parambinding); in such case, parameters of
subcomponents are constrained to hold the same value as
parameter of the parent component.

2) TMDL “Scenario”: The scenario part of TMDL
supports the second step in the workflow of Figure 4.

A scenario is composed of a set of classes (class
elements). Each class has a distinguished name, and ref-
erences a specific template in the model library. Moreover,
a class may contain a set of assignments, which specify
concrete values for the parameters specified in the component
template.

In case of a composed class, i.e., a class element



Figure 5. Simplified version of the TMDL metamodel. For simplicity, data types and other supporting elements (e.g., arrays) are not shown in the figure.

which references a composition template, submodels may
be explicitly defined with instanceof elements. Each
instanceof element references another model class in
the same scenario, and possibly a multiplicity value. An
instanceof element may also specify a replica behavior,
and a “replica” composition template. In this case the
selected model class is first replicated using the specified
replica composition template (if they are compatible). It should
be noted however that instanceof elements are not always
needed. When a model template has no parameters, or only one
model class derived from it exists in the scenario, submodel
instances can be automatically generated by the transformation
algorithm based on default parameter values specified in the
library.

Finally, the root attribute of the scenario element defines
the model class which, once instantiated, represents the overall
system scenario (i.e., the “entry point” of the composition
program).

C. Model Generation

The third step of the workflow in Figure 4 is performed by
the automated model generation algorithm, which is organized
in two phases: instances generation, in which component
instances are generated, and instances composition, in which
the generated component instances are connected together.

The generation algorithm uses two data structures: a queue
Q containing model classes that still need to be instantiated,
and a stack T containing model instances that have been
instantiated but whose interfaces still need to be connected.
More in details, given a TMDL “Library” L, and a TMDL
“Scenario” S, the steps to assemble the overall performability
model are summarized in the following:
— Instances generation —

1) Based on the root element in S , the root model class c is
identified. The pair {c, 1} is enqueued in Q.

2) The pair {c,m} is dequeued from Q:
a) instances of c are created based on multiplicity m;
b) an index is assigned to each instance;

c) each instance is pushed into the stack T .
3) If c is a composed class:

a) For each model class ci, referenced as submodel of c
with multiplicity mi, the pair {ci,mi} is enqueued in
Q.

b) If the composition template corresponding to c requires
additional submodels that have not been specified in the
scenario, the corresponding default pairs {cj ,mj} are
created and enqueued in Q.

4) If Q is not empty then go back to Step 2. Otherwise stop.
— Instances composition —

1) The instance i is removed from the stack T .
2) If i is a composed instance, then the interfaces of its

submodels are connected based on the rules defined by
the related model template.

3) If T is not empty, then go to Step 1. Otherwise the whole
model generation process ends.

VI. APPLICATION EXAMPLE

A. Prototype Implementation

It is commonly agreed (e.g., see [40]) that the development
of custom DSLs and the related model-driven workflows is
a complex task that should be addressed with an iterative
process. Useful feedback for the formalization of domain
concepts is obtained by the definition and implementation
of the language; feedback for the definition of the language
is obtained by the definition and implementation of model-
transformations; feedback on model-transformations is ob-
tained by validating the produced artifacts.

According to this view, we developed a prototype im-
plementation of the entire workflow, which will guide us
through the validation and refinement of the entire approach.
The implementation is based on the Eclipse Platform and its
“Modeling” components [16]. The TMDL meta-model has
been defined as an Ecore model; Xtext [41] has then been
used to define a textual syntax, and to generate the editor,
parser, and syntax highlighter. A prototype version of the
transformation algorithm has been implemented using the ATL



language [3]. In the following we describe the application
of the approach to the World Opera system described in
Section III.

B. Application to the World Opera system

1) Library Specification: As introduced in Section III,
the performability model for a World Opera performance is
based on 4 atomic templates: Component, StreamCollector,
StreamAdapter, StreamPlayer. For simplicity, we assume here
that components are subject to two failure modes: a “silent”
failure mode, in which the component just stops working, and
a “noisy” failure mode, in which the component produces
noisy/incorrect output. Selected portions of the TMDL “Li-
brary” specification for this system are shown in Listing 1.
Ellipses (. . . ) have been used to mark parts of the specifications
which have been omitted.

Atomic templates are defined in lines 1–16; for each of
them, an implementation of the model is referenced using the
body attribute. The atomic template component (lines 1–9) has
five parameters: failrate, which specifies the failure rate of
the component, spares, which specifies the number of spares
allowed for the component, fprobnoisy, which specifies the
probability that the component fails with the noisy failure
mode, sw delay and sw prob, which specify the delay and
failure probability of switching to a spare component. The
component atomic template exposes four interfaces. As dis-
cussed in Section III, working state provides the current work-
ing state of the individual component, while num components,
num failed noisy, and num failed silent are used to record,
for components in the same group, the number of them that
are currently working or failed.

The streamcollector template (lines 10–14) models the
recording of a stream. It has no parameters, and its inter-
faces are stream out, num components, num failed noisy, and
num failed silent. It should be noted that the streamcollector
template is associated with the “s” (for stream) prefix. The
index associated to instances of this template model relates
to the index of application streams available in the scenario.
The streamadapter and streamplayer templates have a similar
structure and they are not shown here for the sake of brevity.
They are also associated with the “s” prefix.

Lines 18–49 depict the specification of some composition
templates. The repcomponent template (lines 18–27) is a
“replica” template for the component template model. This
template specifies which interfaces should be connected to-
gether when composing multiple identical instances of the
component template. This template covers the “Rep” nodes of
Figure 2: “Rep1”, “Rep2”, “rep01”, “rep02”. The template has
one parameter, num, specifing the number of components to
be replicated. The interfaces which are connected together are
num components, num failed noisy, and num failed silent,
while working state interfaces are not connected.

Lines 29–42 depict the specification of the node displayws,
corresponding to the composition of a display workstation
with its “StreamAdapter” models, and with the models of the
projectors that are under its control. This composition template

covers the node “DisplayWS with Streams” of Figure 2. The
template has one parameter, streams, describing which streams
(in the form of numerical indices) should be handled by the
display workstation represented by the model.

Submodels of this template are: one instance of the com-
ponent template to represent the workstation (“ws”), a certain
number of instances of the component template to represent
the projectors (“proj”), and a certain number of streamadapter
templates (“sa”). As shown in the listing, the multiplicity of the
streamadapter templates is set based on the streams parameter.
Three mergerules are defined: i) merge working_state
in the component model with component_state in all
the streamadapter models; ii) merge stream_out of the
streamadapter models with the stream_in of node proj
models having the same indices (i.e., referring to the same
stream), and iii) forward the stream_in of streamadapter
models as interfaces of the composed model (they will be
either connected with corresponding interfaces of the mixer,
or forwarded up as interfaces of the whole stage).

The specification of the overall WO model corresponds
to the stageset template (lines 44–49). As submodels it has
a certain number of the stage template model. The stage
template model, not shown here for the sake of brevity,
corresponds to the top-level Join of Figure 2, i.e., the “Gate-
way with Streams” node in the top right part of the figure.
Intuitively, each stage submodel has one interface for each
stream in which the stage is involved. More in detail, for
each stream that is acquired in the stage, the stream_out
interface of the corresponding streamadapter model is for-
warded as outgoing_out; similarly, for each stream that
is received from another stage, the stream_in interface
of the corresponding streamadapter model is forwarded as
incoming_in.

The mergebyname specification in the stageset template
model specifies that outgoing_out and incoming_in
interfaces of stage models should be connected based on their
indices having prefix “s”. For example, if stage A has an
interface whose instance name is “incoming in s3”, and stage
B has an interface whose instance name is “outgoing out s3”
the two interfaces will be connected together.

Listing 1. (Selected portions of the) TMDL “Library” specification for the
World Opera system.

1 atomic component {
2 body ”Component.xml”
3 parameters {
4 failrate def 1.0E−4, spares def 0, fprobnoisy def 0,
5 sw delay def 1, sw fprob def 0.05
6 }
7 interfaces { num components, num failed noisy,
8 num failed silent, working state }
9 },

10 atomic streamcollector prefix ”s” {
11 body ”StreamCollector.xml”
12 interfaces { stream out, num components,
13 num failed noisy, num failed silent }
14 },
15 atomic streamadapter prefix ”s” { ... },
16 atomic streamplayer prefix ”s” { ... },
17
18 composition replica repcomponent {
19 parameters { num def 1 }
20 submodules {



21 block c { component mult paramref { num } }
22 }
23 mergerules {
24 mergeall num components { ”component.num components” },
25 mergeall num failed noisy { ”component.num failed noisy” },
26 mergeall num failed silent { ”component.num failed silent” }
27 } },
28 ...
29 composition node displayws {
30 parameters { streams def { 1 } }
31 submodules {
32 block ws { component mult 1 },
33 block proj { node proj },
34 block sa { streamadapter mult paramref { ”node proj.streams” } }
35 }
36 mergerules {
37 mergeall component state {
38 ”component.working state”, ”streamadapter.component state” },
39 mergebyname streams out {
40 ”streamadapter.stream out”, ”node proj.stream in” },
41 forward streams in { ”streamadapter.stream state in” }
42 } },
43 ...
44 composition stageset {
45 submodules { block sg { stage } }
46 mergerules {
47 mergebyname inout prefixes ”s” {
48 ”stage.incoming in”, ”stage.outgoing out” }
49 } }

2) Specification of Scenario: Listing 2 shows a subset of
the TMDL “Scenario” specification for a WO performance
comprising three stages and five multimedia streams, listed in
the following:

1. a orchestra – audio of the orchestra;
2. a scene – audio of actors;
3. v orchestra – video of the orchestra;
4. v scene – video of actors;
5. v director – video of the orchestra director.

Streams 1, 3, and 5 are captured in stage #1, while streams 2
and 4 are captured in stage #2. All the streams are reproduced
in all the three stages. Stage #1, corresponds to the model
depicted in Figure 2.

Listing 2 focuses on the specification of projectors of Stage
#1, i.e., the highlighted part of Figure 2. Using the component
template, a model class for a projector is created (lines 3–
8), and values are specified for all its parameters, except
sw fprob and spares, for which the default value specified
in the template is used.

Listing 2 also shows the definition of two different model
classes based on the same template. In particular, classes
s1 proj orchestra director and s1 proj scene are created
from the same node proj model template; the two nodes
“Projector Orchestra and Director” and “Projector Scene” in
Figure 2 are instances of these two classes.

The specification of s1 proj orchestra director states that
such composed class has an instance of the projector class as
submodels, and that it handles streams 3 and 5. Submodels
of kind “StreamAdapter” do not need to be specified: their
multiplicity is derived from the stream parameter, in a similar
way as for the node displayws template (see Listing 1).
Similarly, the specification of s1 proj scene specifies that the
corresponding projector should handle stream 4.

A class derived from the node displayws is shown in the
listing, specifying that the display workstation should process

streams 3, 4, and 5. Also in this case, the “StreamPlayer”
models do not need to be specified.

Listing 2. (Selected portions of the) TMDL/Scenario specification for a WO
performance composed of three stages and five streams.

1 scenario { root wo show
2 ...
3 class projector { usetemplate component
4 assignments {
5 ”component.failrate” value 0.006,
6 ”component.fprobnoisy” value 0.1,
7 ”component.sw delay” value 60.0,
8 } },
9 class workstation { usetemplate component ... }

10 ...
11 class s1 proj orchestra director { usetemplate node proj
12 assignments { ”node proj.streams” value { 3,5 } }
13 submodels { projector }
14 },
15 class s1 proj scene { usetemplate node proj
16 assignments { ”node proj.streams” value { 4 } }
17 submodels { projector }
18 },
19 ...
20 class s1 node displayws { usetemplate node displayws
21 assignments { ”node displayws.streams” value { 3,4,5 } }
22 submodels {
23 workstation, s1 proj orchestra director, s1 proj scene
24 } },
25 ...
26 class wo show { usetemplate stageset ... }
27 }

One of the major advantages in using this approach, once the
TMDL “Library” specification is established, is the ability to
automatically obtain the model for different system scenarios
by simply changing few lines of the TMDL “Scenario” speci-
fication. Listing 3 shows the modifications needed to perform
the modification discussed in Section III, i.e., introducing a
new projector for stream 5, v director.

Listing 3. Modified TMDL “Scenario” specification for adding a new
projector dedicated to stream 5, v director, to the model.

1 class s1 proj orchestra { usetemplate node proj
2 assignments { ”node proj.streams” value { 3 } }
3 submodels { projector }
4 },
5 class s1 proj director { usetemplate node proj
6 assignments { ”node proj.streams” value { 5 } }
7 submodels { projector }
8 },
9 class s1 proj scene { usetemplate node proj

10 assignments { ”node proj.streams” value { 4 } }
11 submodels { projector }
12 },
13 ...
14 class s1 node displayws { usetemplate node displayws
15 assignments { ”node displayws.streams” value { 3,4,5 } }
16 submodels {
17 workstation, s1 proj orchestra, s1 proj director, s1 proj scene
18 } },

Let us now suppose that the architecture of Stage #1
changes, and that stream v scene is now reproduced on two
identical projectors. The few required modifications to the
TMDL “Scenario” specification, with respect to Listing 2, are
shown in Listing 4.

Listing 4. Modified TMDL “Scenario” specification for a scenario where
stream v scene is reproduced on two identical projectors.

1 class s1 proj scene { usetemplate node proj
2 assignments { ”node proj.streams” value { 4 } }
3 submodels { projector replica repcomponent mult 2 }
4 },



Listing 5 considers the case in which the two projectors
have instead different properties. In this case, two different
classes projector a and projector b should be defined from
the same template, having different parameters. Then, the two
classes are set as submodels of the s1 proj scene model class,
which refers to stream v scene.

Listing 5. Modified TMDL “Scenario” specification for a scenario where
stream v scene is reproduced on two projectors having different properties.

1 class projector a { usetemplate component
2 assignments { ”component.failrate” value 0.006, ... }
3 },
4 class projector b { usetemplate component
5 assignments { ”component.failrate” value 0.001, ... }
6 },
7 class s1 proj scene { usetemplate node proj
8 assignments { ”node proj.streams” value { 4 } }
9 submodels { projector a, projector b }

10 },

Even these simple operations, if performed directly on the
model, would require considerable effort for the modeler.
Performing the same modification that is specified in Listing 5
would require the following steps: i) duplicating the atomic
model for the “Projector”, modifying the needed parameters,
ii) adding an instance of the new “Projector” atomic model
to the composed model of Figure 2, iii) properly connecting
the interfaces of the new model to the “Projector Scene” Join.
More complex modifications would require even more steps to
be performed, in the worst case leading to modify the shared
variables within all the Join nodes until the root of the overall
model. In the proposed approach, once the model library
has been specified, such modifications are instead handled
automatically by the automated model generation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an approach for the auto-
matic assembly of large stochastic models, based on template
model libraries and composition patterns. The approach is
built around the TMDL language, which allows libraries of
template models to be precisely defined, and then applied to
specify different system configurations and generate the related
analysis model. With respect to other MDE approaches for
stochastic analysis, the use of TMDL allows to apply the
generative approach to very different systems and different
contexts, without the need to redefine ad-hoc transformation
algorithms. Ongoing work is aiming at completing the im-
plementation to generate analysis models that can be directly
used as input by the Möbius tool [14], and in validating the
workflow in other domains, e.g. mobile networks [8], power
grid systems [11], or System-of-Systems evaluation [1].

An existing limitation of the proposed approach resides in
the definition of metrics to be evaluated on the generated
model, which are not addressed by the current workflow, and
must therefore still be specified manually; this aspect consti-
tutes a possible direction of future work. Another interesting
research direction we are planning to investigate consists in the
possibility to couple the model generation process with some
specific decomposition techniques for largeness avoidance
(e.g., [22]). Finally, understanding how the TMDL approach

can be extended to support transition superposition (i.e., action
synchronization) is also a possible direction for future work.
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