
A Reusable Modular Toolchain for Automated
Dependability Evaluation

Leonardo Montecchi, Paolo Lollini, Andrea Bondavalli
Dipartimento di Matematica e Informatica

University of Firenze
I-50134 Firenze, Italy

{lmontecchi,lollini,bondavalli}@unifi.it

ABSTRACT
Model-transformation techniques have increasingly gained
attention in the design and evaluation of high-integrity sys-
tems, with the purpose to provide (semi-)automatic tools
for non-functional analysis. Analysis models are automati-
cally derived from an architectural description of the system
in a UML-like language. One of the main challenges is de-
signing tools which can be reused: the modeling language,
the analysis tools, and possibly the analysis method itself
are going to evolve over time (e.g., due to different domains,
new software versions, updates to standards). In this paper
we describe the design and implementation of the toolchain
for state-based dependability analysis developed within the
CHESS project. The toolchain, which also provides back-
annotation facilities, has been designed to be adapted to
different modeling languages and analysis tools. The tool
has been implemented as a plugin for the Eclipse platform,
and it is publicly available on the CHESS website.

Keywords
CHESS, non-functional analysis, reusability, toolchain, de-
pendability

1. INTRODUCTION
Model-Driven Engineering (MDE) techniques [25] have

gained popularity in the design of high-integrity systems,
and provide a useful means to automatize the analysis of
non-functional system properties. Approaches and tools for
automated derivation of dependability [5] models exist in
literature, but solutions are often bound to specific analy-
sis techniques, languages, domains, or tools. As the MDE
world is constantly evolving, with new models, languages,
and tools being constantly introduced or updated, a great
effort is being spent to develop more general approaches.
In this paper we describe the design and implemen-

tation of the “CHESS Plugin for State-Based Analysis”
(CHESS-SBA), a toolchain for automated state-based de-
pendability analysis developed within the CHESS project

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ValueTools’13, December 10 – 12 2013, Turin, Italy
Copyright 2013 ACM 978-1-4503-2539-4/13/12 ...$15.00.

[2]. The toolchain has been designed to be flexible, and be
easily adapted to different modeling languages and analysis
tools. It is implemented as a plugin for the Eclipse platform,
and it is publicly available on the CHESS website [2], as part
CHESS framework.
The paper is organized as follows. Related work is dis-

cussed in Section 2, while Section 3 introduce the context,
purpose, and requirements of the toolchain that we present
in this paper. Section 4 describes the abstract, reusability-
oriented, architecture on which the toolchain is based, and
how it has been concretely implemented within the CHESS
project. The reusability properties of the toolchain are dis-
cussed in Section 5, while conclusions are drawn in Section 6.

2. RELATED WORK
Several works in the literature adopt MDE approaches to

perform dependability analysis, using different techniques,
including Bayesian rules [11], Fault Trees [12], Stochastic
Petri Nets [1, 10, 20]. Tools implementing transformation
approaches have been also developed. To cite a few, OpenS-
ESAME [26] generates SPN models from diagrams express-
ing dependencies between components; ADAPT [24] imple-
ments a model transformation from AADL models to GSPN
models; the work in [17] describes a tool for availability and
reliability prediction based on Markov chains. A recent sur-
vey on UML-based approaches targeting dependability can
be found in [7].
Our toolchain does not only implement a model-

transformation workflow for dependability analysis, but it
also aims at being reusable (at least parts of it), in order to
survive the evolving MDE world.

3. PURPOSE AND REQUIREMENTS
The purpose of the toolchain we introduce in this paper is

to automatically perform state-based stochastic dependabil-
ity analysis starting from a high-level description of the sys-
tem architecture in a UML-based language. With the term
“state-based analysis” we refer to model-based dependabil-
ity evaluation using state-based stochastic methods (e.g., see
[23]). In such methods, a stochastic model of the system is
constructed, describing its states and the possible transitions
between them. State-based stochastic models are used to
evaluate different kind of properties, including performance,
reliability, availability, power efficiency.
Formalisms for this kind of analysis include Markov

chains, as well as higher-level formalisms like Stochastic
Petri Nets (SPNs) [6] or Stochastic Process Algebras (e.g.,
PEPA [16]). SPNs and their extensions are widely used for

Figure 1: High-level view of the toolchain.

this kind of analysis: they feature an intuitive graphical rep-
resentation, a formal semantics and a large set of supporting
tools.
The context which drove the development of the tool is

the ARTEMIS-JU “CHESS” project [2]. The project aimed
at developing an industrial-quality MDE infrastructure that
permits high-integrity embedded systems to be assembled
in a component-based fashion, while retaining guarantees in
terms of functional and non-functional properties. Practi-
cally, the project defined a UML-based language with spe-
cific restrictions and extensions in order to implement its
system design methodology [9]. Within CHESS, the devel-
opment process is supported by different kinds of analyses,
which allow the feasibility of the system’s design to be as-
sessed from different points of view. In accordance with
MDE principles, the analysis models are automatically de-
rived from the high-level model that describes the system’s
architecture. In order to support an an iterative and in-
cremental development process, analysis results are used to
enrich the initial architectural model from which the anal-
ysis has been triggered, in a process usually called “back-
annotation”.
The toolchain described in this paper implements one of

such techniques, namely state-based dependability analysis,
using SPNs with general probability distributions as the
analysis formalism. The reason behind this choice is due
mainly to the intent of supporting: i) non-exponential oc-
currence of faults (e.g., for mechanical components), and ii)
periodic maintenance schedules. The model is then eval-
uated using discrete-event simulation, using the simulator
extension of the DEEM tool [8].
From a high level perspective, the plugin should be able

to automatically i) generate an analysis model which com-
plies with the architectural description of the system, ii)
analyze the model for the specified metrics of interest, and
iii) propagate the obtained results back in the architectural
description received as input; the corresponding workflow
is depicted in Figure 1. Additionally, our objective was to
create a plugin as much reusable as possible, in order to be
adapted with reduced effort to other contexts. This led us
to define two set of requirements for the toolchain: “func-
tional” and “reusability” requirements (Table 1).

4. TOOLCHAIN ARCHITECTURE
The designed architecture for the analysis plugin is

sketched in Figure 2(a) and it is described in the following.
For greater flexibility the workflow is divided into a client
and a server process, communicating through a TCP/IP net-
work. Of course, the server and client processes may reside
on the same physical machine as well.

4.1 Client Process
The client has the responsibility of performing the re-

quired model transformations in order to i) generate the
analysis model in a format readable by the tool, and ii) per-
form the back-annotation of analysis results.
The client process takes as input an architectural model

Table 1: Functional (F*) and reusability (R*) re-
quirements for the toolchain.

F1 The plugin should take as input a description of the
system architecture in a UML-like language, including
properties needed for the analysis and target metrics.

F2 If the input model contains all the necessary informa-
tion, the plugin should be able to generate an analysis
model for the evaluation of specified metrics.

F3 The plugin should be able to analyze the generated model
using external tools.

F4 The plugin should be able to extract the results from the
analysis tool, and propagate them back into the architec-
tural model that was received as input.

R1 It should be possible to adapt the plugin when using
different architecture description languages (e.g., UML,
SysML, AADL. . .).

R2 It should be possible to adapt the plugin when using dif-
ferent state-based dependability analysis formalisms.

R3 It should be possible to adapt the plugin when using dif-
ferent analysis tools.

R4 The plugin should not depend on a specific platform or
operating system.

from the design environment, and it generates the analysis
model targeted to a specific analysis tool. The model is
then transmitted to the server process, which executes the
analysis tool and forwards the results back to the client. The
obtained results are then back-annotated into the original
architectural model that has triggered the analysis, and they
can be possibly used as input for further analyses.
The transformations chain within the client process in-

volves the use of five different metamodels (m1 . . .m5), and
four model-transformation algorithms (t1 . . . t4). In the
CHESS implementation, the client process is written in Java,
and it is realized as a plugin for the Eclipse framework [13];
therefore, it can be used on any platform for which Eclipse
is available.

4.2 Client Process – Metamodels

Architectural Model (m1)
An m1 model contains an architectural description of the
system in some kind of system engineering modeling lan-
guage (e.g., UML, SysML). The model should contain all
the information that is needed to perform the analysis, e.g.,
by using some ad-hoc extension to the a general purpose
modeling language, or by using a domain-specific language
that is able to represent all the required information. Typ-
ically, at this level the model contains a large number of
details that are unnecessary for the analysis, which are ex-
pression of different concerns of different stakeholders.
This metamodel can be reused in toolchains that use the

same architectural language to describe the system architec-
ture.

B CHESS Implementation. In the concrete implementa-
tion the “Architectural Model” is the CHESS ML language,
a component-based architecture description language based
on UML, SysML, and MARTE. In particular, state-based
dependability analysis is supported by a set of language ex-
tensions that are summarized in the “CHESS Dependability
Profile” [9].
The main elements supporting state-based analysis are:

• A set of predefined stereotypes used to describe com-
mon class of components, and having dependability-

(a) Abstract elements of the toolchain architecture

Abstract Element Implementation

Client Process Java (Eclipse Plugin)
Architectural Model m1 CHESS ML
Analysis-Depenent Model m2 IDM
Formalism-Depenent Model m3 PNML
Tool-Depenent Model m4 DEEM Input File
Analysis Results m5 DEEM Results File
m1 −→ m2 t1 ATL Module
m2 −→ m3 t2 ATL Module
m3 −→ m4 t3 ATL Query
m4,m1 −→ m1 t4 Java

Server Process Java (Standalone)
Analysis Tool DEEM Simulator

(b) Concrete elements in the CHESS plugin

Figure 2: The abstract architecture of our toolchain for automated dependability analysis ((a)), and how
they have been implemented in the CHESS plugin ((b)).

related attributes like the component’s fault occurence
rate or mean time to repair.

• The CHESS Error Model, which is implemented as a
particular kind of StateMachine diagram stereotyped
with the «ErrorModel» stereotype, and supports a de-
tailed specification of faults, errors and failure modes
affecting system components.

• The «Propagation» stereotype, with can be used to en-
rich potential propagation paths between components
with propagation probability and delay.

• A set of stereotypes to model maintenance activities
(both preventive and corrective).

• The «StateBasedAnalysis» stereotype, which allows
metrics of interest to be specified.

A detailed description of these modeling elements can be
found in [9]. The CHESS ML language is defined as a UML2
profile, and it has been implemented using the Eclipse Mod-
eling Framework (EMF) and Ecore.

Analysis-Dependent Model (m2)
An m2 model contains all the information that is neces-
sary and sufficient to perform the intended analysis, fil-
tered with respect to the original engineering model, and
organized in a convenient way to facilitate the subsequent
model-transformation steps. For example, when perform-
ing dependability analysis, only dependability-related infor-
mation is retained; similarly, for performance analysis, the
metamodel should be able to describe performance-related
information. In other words, this model is an analysis model
of the system which is not yet dependent on a specific analy-
sis formalism. The KLAPER language of [15] is an example
of m2 model.
In developing toolchains that perform, in different con-

texts, the same kind of analysis this metamodel can be
reused.

B CHESS Implementation. For the m2 level we adopted
the Intermediate Dependability Model (IDM) of [22]. The
IDM has been defined exactly with the purpose of being an
intermediate language to support model transformations for
state-based dependability analysis.
The IDM is a lightweight component-based language to

model dependability properties of systems. It allows de-
pendability properties of components to be specified, with-
out the additional details of software engineering languages.

The elements of the IDM metamodel are grouped in five log-
ical packages: Statistics, Dependable Components, Threats
& Propagation, Maintenance & Monitoring e Dependability
Analysis. It supports the modeling of system components
and propagation paths between them, including a detailed
specification of the fault/error/failure chain. Maintenance
and error detection activities are also supported, as well as
the ability to define the details of the measures of interest
that should be evaluated on the system.
A case study of a fire detection system modeled with the

IDM language has been described in [21].

Formalism-Dependent Model (m3)
An m3 model contains an implementation of the analysis
model in the formalism that has been selected for the analy-
sis (e.g., Stochastic Petri Nets, Fault Trees, PEPA. . .). The
model is however still an abstract representation and it is
not yet bound to any specific analysis tool.
This metamodel can be reused in toolchains that use the

same formalism for performing the target analysis technique.
It should be noted that this metamodel can be reused even if
the kind of analysis is different; for example, Stochastic Petri
Nets can be used both for dependability and for performance
analysis.

B CHESS Implementation. In our implementation we have
selected PNML as m3 language. The Petri Net Markup
Language (PNML) [19] is a proposal for a Petri net inter-
change format based on XML that is under development as
an ISO/IEC standard.
More in details, ISO/IEC 15909 aims to provide a stan-

dard for the representation of Petri Nets models, and it is or-
ganized in three parts, describing: 1) formal definitions and
graphical notations, 2) the transfer format (i.e., the concrete
PNML language), and 3) Petri net types and extensions.
Such interchange format is a good choice for implementing
the m3 metamodel in our toolchain: it is an ISO standard,
it is specific of the formalism selected for the analysis, and
it is not tailored to any specific analysis tool.
However, currently only Part 1 [18] and Part 2 [19] of the

standard have been published, while Part 3 is still under de-
velopment and it has not been disclosed yet. Part 2 defines
the PNML language and the way to represent basic non-
timed P/T Petri nets, as well as the extension mechanisms
to attach additional properties to Petri net elements (e.g,
the firing ditribution of transitions). The actual standard-
ized extensions to support different classes of Petri nets will

however be included in Part 3 of the standard, and are not
yet available.
As such, an ad-hoc PNML extension (conforming to

ISO/IEC 15909-2) has been defined to represent the class of
SPNs needed for our analysis, which adds to the basic P/T
Petri nets defined in the standard the following features: i)
timed transitions; ii) inhibitor arcs; iii) priorities for imme-
diate transitions; iv) weights for immediate transitions; v)
metric of interest for the evaluation.

Tool-Dependent Model (m4)
An m4 model is the concrete analysis model in a format
specifically tailored to the selected analysis tool. Typically,
this model is a file that can be directly provided as input to
the tool.
This metamodel can be reused in toolchains that use the

same tool to perform the analysis. It should be noted that it
may be possible to reuse this metamodel even if a different
formalism is used for the analysis. It may occur for example
when using multi-formalism tools (e.g., Möbius [14]) as the
analysis tool.

B CHESS Implementation. A “DEEM Input File”, which
is used as the m4 model, is essentially a text file composed
of different sections, containing (in the following order): i)
the header, which is almost fixed for any input file; ii) the
definition of variables to be used in the study definition; iii)
the studies to be performed on the model, i.e., the combi-
nation of different values for the variables specified above;
iv) the list of places; v) the list of transitions; vi) the list
of arcs; vii) the list of measures of interest that should be
evaluated.

Analysis Results (m5)
An m5 model is a model describing the results provided by
the analysis tool, and it is used for the back-annotation pro-
cess. As above, when using multi-formalism tools, this meta-
model can be reused even if the adopted formalism varies.
Moreover, it can be reused even when different tools are used
for the analysis, but use some standard interchange format
for the produced output (e.g., CSV, XML).

B CHESS Implementation. Similarly to the input file, the
“DEEM Results File” is also a text file, containing the re-
sults of the evaluation. More in detail, the file contains: i) a
header, which is almost fixed, ii) the parameters that have
been used to run the analysis, including model parameters
and simulator parameters, ii) the time for which the analysis
has been run, and finally iv) a set of evaluated metrics.
For each metric the tool provides its mean, as well as the

confidence interval, and the number of samples on which it
has been computed.

4.3 Client Process – Transformations

Filtering (t1)
The first model-transformation has the task of filtering out
the information required for the analysis from the mass of in-
formation that is typically present in the architectural model
of the system. Usually, this is the most complex algorithm
of the entire chain, since it requires to navigate the entire
engineering model, which may consist of several different
diagrams, and relate concepts that refer to the same sys-
tem entities. This model-transformations is applied on m1
models to generate m2 models.

Typically, in the resulting m2 model the needed informa-
tion is spread across multiple domain elements (to facilitate
futher transformation steps), while in the original m1 model
it is highly aggregated (for modeling convenience).

B CHESS Implementation. The full transformation algo-
rithm to generate an IDM model starting from an CHESS
ML model is defined in [10, 22] and it is not described here
because of space constraints. The transformation algorithm
can be summarized in the following steps: i) projection of
atomic components, i.e., components for which the internal
structure it not considered for the analysis; ii) projection
of “error models” associated with components; iii) projec-
tion of composite components; iv) projection of propagation
paths; v) projection of maintenance information; vi) projec-
tion of metric of interest. In each step, a set of elements and
relation in the IDM model are created.
This transformation step is implemented as a “Module”

in the ATL language [4].

Analysis Model Implementation (t2)
The second transformation implements the analysis model
in the selected analysis formalism. The definition of this
model-transformation step requires an expert in the selected
analysis technique, and knowledge of the analysis formalism.
This model-transformation is applied on m2 models to gen-
erate m3 models.

B CHESS Implementation. From an high-level perspec-
tive, the algorithm is composed of the following steps: i)
projection of components, ii) projection of threats, iii) pro-
jection of propagation relations, iv) projection of activities,
v) projection of analysis metrics. This transformation step
is detailed in [10] and it is implemented as a “Module” in
the ATL language [4].

Code Generation (t3)
The third model-transformation has the task to generate the
actual input file needed for the analysis tool. For this reason,
this step is typically more oriented towards code generation
rather than model-transformation, since the final goal is to
generate a source file that should be read by the adopted
analysis tool. This model-transformation is applied on m3
models to generate m4 models.

B CHESS Implementation. The DEEM Input File is gen-
erated from the PNML model by looping through the list of
places, transitions, and arcs, and generating a string for each
of them: each element of the PNML model corresponds to a
specific string in the DEEM Input File. The first three sec-
tions of the file (header, variables, and studies) are mostly
fixed.
This transformation step is implemented as a “Query” in

the ATL language [4]. While ATL modules perform model-
transformations, queries are used to compute primitive val-
ues from source models. When strings are the primitive
type, ATL queries can be used to perform code generation.

Back-Annotation (t4)
The back-annotation is a particular kind of model-
transformation that has the task to propagate the results
of the analysis back into the model that has triggered it.
This transformation takes as input also the original model,
which is refined with the new information, i.e., it is applied
on a (m1,m5) pair of models, to generate a modified m1
model.

B CHESS Implementation. This transformation step takes
as input the specific output of the DEEM tool and the
CHESS ML model that triggered the analysis, and modi-
fies the latter by adding the results of the analysis.
At UML level (m1 model) the metric to be evaluated is

defined by means of the «StateBasedAnalysis» stereotype.
The name of the UML classifier to which the stereotype is
applied provides the search key to lookup the results value
in the DEEM Results File. In the current implementation,
once the resulting value has been identified, it is copied back
the obtained result is back-annotated in the measureEvalua-
tionResult attribute of the «StateBasedAnalysis» stereotype
that defined the metric. Given its simplicity, this transfor-
mation step is implemented as pure Java code.

4.4 Server Process
The server process has the task of actually executing the

analysis tool on the model generated by the client process,
and communicate the results back to it. Having a separate
process for executing the analysis tool has a number of im-
portant advantages.
First of all, the user is not constrained to the platform

required by the selected analysis tool. Complex analysis
tools often require a specific environment in order to work
properly, i.e., specific operating systems, libraries, or tuning
of system configurations. With this approach, the analysis
tool can be installed on a properly configured ad-hoc ma-
chine (possibly even a virtual machine), while the user can
continue to use its current environment. Second, it low-
ers the hardware requirements of the user machine, since it
makes it possible to move model evaluation, which is typi-
cally a resource-intensive task, to a dedicated machine. At
the same time, this approach does not not prevent setting up
a local-only configuration. Finally, this approach facilitates
the management of licensing issues; for example it is pos-
sible to distribute the code of the frontend as open source,
even if the backend relies on some proprietary tool.

B CHESS Implementation. The server process is written
in Java as well, and it consists in a wrapper to the DEEM
Simulator; it implements the TCP/IP communication with
the client, and interacts with the tool. The server starts by
listening on a predefined TCP port (9977), and it waits for
connections from client processes.
The server is multi-threaded, thus allowing multiple in-

stances of the DEEM Simulator to be executed in parallel,
taking advantage of multi-processor or multi-core systems.
When a new client connects, the server starts a new thread
to handle the connection, and returns in a listening state.
The thread receives the m5 model (i.e., a “DEEM Input
File”) from the client and saves it to a temporary folder
on the server machine. To avoid conflicts, the name of the
folder is derived from a combination of the current time
on the server, and the IP address of the client. The thread
then runs the DEEM Simulator with the provided input file,
and waits for the analysis to complete. While the analysis
is running, the server periodically updates the client on the
current progress. Once the simulation is finished, the results
file transmitted back to the connected client, the temporary
directory is removed, and the connection is closed.

5. REUSABILITY DISCUSSION
While it easy to verify that functional requirements (F1–

F4) are satisfied, we provide here some insights on the

reusability of the developed toolchain (requirements R1–
R4).
The adaptation of the toolchain to ADLs other than

CHESS ML (R1), e.g. AADL, SysML, requires to modify
only few elements of the architecture, namely m1, t1, and
t4. All the other elements (including the server process)
can be reused as they are. Of course, the new m1 language
should be able to express all the dependability information
that is needed for the analysis. Similarly, when reusing the
toolchain with other evaluation tools for SPNs (R3), meta-
models m1, m2, m3, as well as model transformations t1
and t2 can be completely reused.
Also when moving to another analysis formalism (R2),

e.g. PEPA, some of the existing toolchain elements can be
reused. In particular, metamodels m1 and m2, as well as
the associated t1 transformation can be reused as they are.
In certain cases it may be possible to reuse also m4, m5,
t3, t4, e.g., when the analysis tool is a multi-formalism tool
supporting the new formalism. Although the need to reuse
the toolchain for other analysis purposes was not part of
initial requirements, parts of the toolchain can in principle
be reused also for other kind of analyses. For example, SPNs
and similar formalisms are also used for performance, and
other kinds of analyses. In such case, metamodels m3, m4,
m5, transformations t3, t4, as well as the server process can
be reused. Of course, the source language m1 would be a
different language containing information for that particular
kind of analysis, which would then be filtered into a different
analysis-dependent intermediate model (m2).
Platform independency (R4) is achieved by using Java,

and by dividing the toolchain into a client and a server pro-
cess. Although the server process is bound to the platform
required by the evaluation tool (Linux in case of the DEEM
Simulator), the client process runs within the Eclipse frame-
work [13], which is available for a wide range of platforms.
The final user of the toolchain, which will interact with the
client process only, is therefore not forced to use any specific
platform.

6. CONCLUDING REMARKS
In this paper we introduced the “CHESS Plugin for State-

based Analysis”, an Eclipse plugin for automated state-
based dependability analysis. Its architecture is based on
modularity and reusability, to adapt to the evolving MDE
world. Another important benefit of the adopted toolchain
architecture is the convenience in its implementation: the
different elements of the plugin can be developed in isola-
tion, and can therefore be assigned to different teams or in-
dividuals, possibly based on their skills in different areas of
expertise (e.g., metamodeling, model-transformation, Java
coding).
The client process of the toolchain described in this pa-

per is available as the “CHESS Plugin for State-based
Analysis”, and can be freely downloaded from the web-
site of the CHESS project [2]. The server process is not
provided for download on the website; however, at the
time of writing, an instance of the server process running
the DEEM Simulator can be reached at the TCP address
rcl.dsi.unifi.it:5900, thus allowing the use of the whole
toolchain. The application of the plugin on a real case study
is also showcased in a demonstration video [2]. The case
study showcased in the video is an onboard system in the
railway domain [10]. Using the toolchain described in this

paper, the reliability of such system is automatically evalu-
ated, using different parameters.
A first benefit of its reusable architecture will be the reuse

of the developed toolchain in the recently started CON-
CERTO project [3], which will extend and consolidate the
work developed within the CHESS project.

Acknowledgment
This work has been partially supported by the
ARTEMIS-JU CONCERTO project (n.333053), by
the TENACE PRIN Project (n. 20103P34XC), funded by
the Italian Ministry of Education, University and Research,
and by the RACME-MAAS project, funded by the Tuscany
Region within the framework POR CReO FESR. The
authors would like to thank Stefano Puri and Nicholas
Pacini for their support in the implementation of t1, and
Fabio Duchi for the initial implementation of t2.

References
[1] N. Addouche, C. Antoine, and J. Montmain. “UML

models for dependability analysis of real-time sys-
tems”. In: Systems, Man and Cybernetics, 2004 IEEE
International Conference on. Vol. 6. 2004, pp. 5209–
5214.

[2] ARTEMIS-2008-1-100022 CHESS: “Composition with
guarantees for High-integrity Embedded Software com-
ponents aSsembly”. http://www.chess-project.org/
(Accessed: 13/11/2013).

[3] ARTEMIS-2012-1-333053 CONCERTO: “Guaran-
teed Component Assembly with Round Trip Anal-
ysis for Energy Efficient High-integrity Multi-core
Systems”. http://www.concerto-project.org/ (Ac-
cessed: 13/11/2013).

[4] Atlas Transformation Language (ATL). http://www.
eclipse.org/atl/ (Accessed: 13/11/2013).

[5] A. Avižienis et al. “Basic Concepts and Taxonomy
of Dependable and Secure Computing”. In: IEEE
Transactions on Dependable and Secure Computing 1
(2004), pp. 11–33.

[6] G. Balbo. “Introduction to Stochastic Petri Nets”. In:
Lectures on Formal Methods and PerformanceAnaly-
sis. Vol. 2090. LNCS. Springer, 2001, pp. 84–155.

[7] S. Bernardi, J. Merseguer, and D. C. Petriu. “Depend-
ability modeling and analysis of software systems spec-
ified with UML”. In: ACM Comput. Surv. 45.1 (Dec.
2012), 2:1–2:48.

[8] A. Bondavalli et al. “DEEM: a Tool for the Depend-
ability Modeling and Evaluation of Multiple Phased
Systems”. In: IEEE Int. Conference on Dependable
Systems and Networks (DSN). 2000, pp. 231–236.

[9] CHESS Deliverable 2.3.2 “Multi-concern Component
Methodology (MCM) and Toolset”. 2012.

[10] CHESS Deliverable 3.2.2 “Transformations and anal-
ysis support to dependability”. 2011.

[11] V. Cortellessa, H. Singh, and B. Cukic. “Early relia-
bility assessment of UML based software models”. In:
WOSP ’02: Proceedings of the 3rd international work-
shop on Software and performance. Rome, Italy: ACM,
2002, pp. 302–309.

[12] A. D’Ambrogio, G. Iazeolla, and R. Mirandola. “A
method for the prediction of software reliability”. In:
6th IASTED Software Engineering and Applications
Conference (SEA’02). 2002.

[13] Eclipse Platform. http : / / www . eclipse . org/ (Ac-
cessed: 13/11/2013).

[14] S. Gaonkar et al. “Performance and dependability
modeling with Möbius”. In: SIGMETRICS Perform.
Eval. Rev. 36 (4 2009), pp. 16–21.

[15] V. Grassi, R. Mirandola, and A. Sabetta. “From design
to analysis models: a kernel language for performance
and reliability analysis of component-based systems”.
In: Proc. of the 5th international workshop on software
and performance (WOSP ’05). ACM, 2005, pp. 25–36.

[16] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[17] A. Immonen and A. Niskanen. “A tool for reliabil-
ity and availability prediction”. In: 31st EUROMI-
CRO Conference on Software Engineering and Ad-
vanced Applications. 2005, pp. 416–423.

[18] ISO/IEC 15909-1:2004, “High-level Petri nets – Part
1: Concepts, definitions and graphical notation”. 2004.

[19] ISO/IEC 15909-2:2011, “High-level Petri nets – Part
2: Transfer format”. 2011.

[20] I. Majzik, A. Pataricza, and A. Bondavalli. “Stochas-
tic Dependability Analysis of System Architecture
Based on UML Models”. In: Architecting Dependable
Systems. Vol. 2677. Lecture Notes in Computer Sci-
ence (LNCS). Berlin, Heidelberg, New York: Springer-
Verlag, 2003, pp. 219–244.

[21] L. Montecchi, P. Lollini, and A. Bondavalli.
“Dependability Concerns in Model-Driven Engi-
neering”. In: IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops. Newport Beach, USA,
2011, pp. 254–263.

[22] L. Montecchi, P. Lollini, and A. Bondavalli. “Towards
a MDE Transformation Workflow for Dependability
Analysis”. In: IEEE International Conference on En-
gineering of Complex Computer Systems. Las Vegas,
USA, 2011, pp. 157–166.

[23] D. Nicol, W. Sanders, and K. Trivedi. “Model-based
evaluation: from dependability to security”. In: IEEE
Transactions on Dependable and Secure Computing
1.1 (2004), pp. 48–65.

[24] A.-E. Rugina, K. Kanoun, and M. Kaâniche. “The
ADAPT Tool: From AADL Architectural Models to
Stochastic Petri Nets through Model Transformation”.
In: Dependable Computing Conference, 2008. EDCC
2008. Seventh European. 2008, pp. 85–90.

[25] D. C. Schmidt. “Guest Editor’s Introduction: Model-
Driven Engineering”. In: Computer 39.2 (2006),
pp. 25–31.

[26] M. Walter, C. Trinitis, and W. Karl. “OpenSESAME:
an intuitive dependability modeling environment sup-
porting inter-component dependencies”. In: Proc. 3rd
Pacific Rim International Symposium on Dependable
Computing (PRDC’01). 2001, pp. 76–83.

http://www.chess-project.org/
http://www.concerto-project.org/
http://www.eclipse.org/atl/
http://www.eclipse.org/atl/
http://www.eclipse.org/

	Introduction
	Related Work
	Purpose and Requirements
	Toolchain Architecture
	Client Process
	Client Process – Metamodels
	Client Process – Transformations
	Server Process

	Reusability Discussion
	Concluding Remarks

